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Abstract
Image clustering divides a collection of images
into meaningful groups, typically interpreted
post-hoc via human-given annotations. Those
are usually in the form of text, begging the
question of using text as an abstraction for im-
age clustering. Current image clustering meth-
ods, however, neglect the use of generated tex-
tual descriptions. We, therefore, propose Text-
Guided Image Clustering, i.e., generating text
using image captioning and visual question-
answering (VQA) models and subsequently
clustering the generated text. Further, we intro-
duce a novel approach to inject task- or domain
knowledge for clustering by prompting VQA
models. Across eight diverse image cluster-
ing datasets, our results show that the obtained
text representations often outperform image
features. Additionally, we propose a counting-
based cluster explainability method. Our eval-
uations show that the derived keyword-based
explanations describe clusters better than the
respective cluster accuracy suggests. Overall,
this research challenges traditional approaches
and paves the way for a paradigm shift in image
clustering, using generated text1.

1 Introduction

Psychologists, neuroscientists, and linguists have
long studied the dependence of vision and language
in humans (Pinker and Bloom, 1990; Nowak et al.,
2002; Corballis, 2017). Although the relationship
between these modalities is not fully understood,
there is a consistent finding: the brain generates a
condensed representation to transmit visual infor-
mation between brain regions (Cavanagh, 2021).
A widely discussed type of representation is often
referred to as “visual language” or “language of
thought” (Fodor, 1975; Jackendoff et al., 1996).
Studies based on these concepts suggest that lan-
guage can be a crucial driver of visual understand-
ing. For example, children remember conjunctions

1Github repo: https://github.com/AndSt/
text_guided_cl
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Figure 1: A t-SNE visualization of the BLIP-2 image
embeddings for the STL10 dataset. While the images
are highly similar (blue background), text such as bird
and jet clearly distinguishes objects (and clusters).

of visual features better when accompanied by a
textual description (Dessalegn and Landau, 2013),
e.g., “the yellow is left of the black”. Given this re-
lationship between visual perception and language
comprehension, the question arises whether an ab-
stract textual representation benefits image cluster-
ing.

With the significant growth of visual content
created online, image clustering has become es-
sential in, e.g., retrieval systems, image segmenta-
tion, or medical applications (Mittal et al., 2021;
Pandey and Khanna, 2016; Kart et al., 2021). Lan-
guage offers dense, human-interpretable informa-
tion, providing multiple benefits when clustering
(Figure 1). Emerging multi-modal foundation mod-
els and large language models (LLMs), e.g., Blip2
(Li et al., 2023) or GPT-3 (Davidson et al., 2018),
allow to derive a “visual language” from images.
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In this paper, we propose text-guided image clus-
tering, i.e., deriving a textual representation from
images to perform clustering purely based on their
text representation. In Figure 2, we outline three
approaches to text-guided image clustering. These
approaches are structured by the degree of external
knowledge introduced into the clustering process.

First, caption-guided clustering uses image cap-
tioning models to generate brief descriptions of
the image content, requiring no external knowl-
edge. In order to inspect the qualities of image
and text representations, we compare vision en-
coder embeddings with TF-IDF (Sparck Jones,
1972) and SentenceBERT (SBERT, Reimers and
Gurevych, 2019) representations of the generated
text. Our experiments show that on a broad set of
eight image clustering datasets, text representations
on average outperform the image representations
of three state-of-the-art (SOTA) models. Second,
keyword-guided clustering injects knowledge about
the clustering task by prompting visual question-
answering (VQA) models to generate keywords,
using the assumption that only a few keywords
of interest are necessary to describe each image
sufficiently. Interestingly, we observe an average
performance increase of 5% for TF-IDF-based clus-
terings. Third, prompt-guided clustering introduces
domain knowledge in the form of tailored prompts
for VQA models. Quantitatively, we observe an-
other performance increase and qualitatively show
that clusters related to the question are formed bet-
ter. Further, we propose to use the generated text
for a straightforward counting-based cluster ex-
plainability method, generating a keyword-based
description for each cluster.

Our contributions can be summarized as follows:

• We propose text-guided image clustering, a
novel paradigm leveraging generated text for
image clustering.

• We introduce a new way of image clustering
by injecting task- and domain knowledge via
prompting visual question-answering models.

• We show in our experiments that text-guided
image clustering is competitive and often out-
performs clustering solely based on images
on several datasets.

• We propose a counting-based method to gener-
ate a description for each cluster, often exhibit-
ing stronger interpretability than the cluster
accuracy suggests.
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Q: Which keywords describe the image?
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A: the conference room

D
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w
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Figure 2: Taxonomy of the text generation processes,
structured by the degree of external knowledge. Text is
generated BLIP-2 (Li et al., 2023).

2 Related Work

We approach image clustering in a novel way by
generating more abstract text descriptions using
image-to-text models. Therefore, we discuss how
our approach relates to earlier work in image clus-
tering (Section 2.1), text clustering (Section 2.2)
and give an overview of the enabling technology
of image-to-text models in Section 2.3.

2.1 Image Clustering

Clustering is the task of grouping similar objects
together while keeping dissimilar ones apart. A key
problem for unsupervised clustering of images is
finding a good similarity measure. Deep learning-
based clustering methods approach this problem
by learning a representation that maps semantically
similar images closer together (Xie et al., 2016;
Yang et al., 2017; Niu et al., 2020; Caron et al.,
2018; Zhou et al., 2022b). A downside of unsu-
pervised methods is that relying only on image
information can suffer from the blue sky problem
(Häusser et al., 2018). For example, in Figure 1,
the blue background pixels make up most of the im-
ages. Our approach circumvents this downside by
generating a concise textual description of an im-
age. Multi-view clustering methods like (Jin et al.,
2015; Chaudhary et al., 2019; Yang et al., 2021; Xu
et al., 2022) combine heterogeneous views of data
instances into a single clustering. In contrast to our
work, they assume the availability of all modalities.

An important problem in clustering is explain-
ability (Fraiman et al., 2011; Moshkovitz et al.,
2020), aiming to describe the content of the in-
dividual clusters. In general, there are clustering
algorithms designed such that the resulting clus-
tering is explainable (Dao et al., 2018), or post-
processing methods that explain a given clustering.
Existing methods use interpretable features such as

2961



semantic tags (Sambaturu et al., 2020; Davidson
et al., 2018), especially when textual explainability
is considered. For instance, Zhang and Davidson
(2021) uses integer linear programming to assign
tags to clusters. Contrary to our approach, these
methods assume given textual tags.

2.2 Text Clustering
Typically, the text is transformed into a vector rep-
resentation, and then a clustering algorithm, e.g.,
K-Means, is applied. Early text representation ap-
proaches use counting-based representations such
as Bag-of-Words (BoW) or TF-IDF (Sparck Jones,
1972; Zhang et al., 2011). The field moved away
from frequency-based approaches as they neglect
word order and cannot represent contextualized in-
formation, e.g., computer ‘mouse’ vs. the animal
‘mouse’ (Peters et al., 2018). In recent years, the fo-
cus in Natural Language Processing (NLP) shifted
towards contextualized neural network-based vec-
tor encodings, dominated by transformer-based
methods (Vaswani et al., 2017). The first break-
through in transformer-based sentence representa-
tions was Sentence-BERT (SBERT) (Reimers and
Gurevych, 2019), a siamese network architecture
fine-tuning BERT (Devlin et al., 2019) on super-
vised datasets, e.g. NLI. Following SBERT, text
representation techniques are mostly trained using
contrastive learning where the choice of positive
and negative pairs is unsupervised, e.g., SimCSE
(Gao et al., 2021), or weakly-supervised, e.g., E5
(Wang et al., 2022b).

2.3 Image-To-Text Models
Image captioning provides textual descriptions for
given images. NIC (Vinyals et al., 2015) introduces
the now common use of an image encoder and a
language decoder. Subsequent models (Radford
et al., 2021; Yuan et al., 2021) additionally allow
multi-modal inputs, integrating both image and tex-
tual information to improve captioning and support
tasks like Visual Question Answering (VQA) (An-
tol et al., 2015). Wang et al. (2022a) use only one
image encoder and one text decoder, and perform
image /video captioning and VQA in one simpli-
fied architecture. Flamingo (Alayrac et al., 2022)
allows interleaving images and text by introducing
Perceiver Resamplers on top of pre-trained image
and language models. BLIP-2 (Li et al., 2023) is a
state-of-the-art model that takes fixed pre-trained
language and image models and only fine-tunes
a so-called Query-Transformer, which only uses

a few trainable parameters. This is useful in our
experiments because the underlying models are not
trained on multimodal data, ensuring a fair compar-
ison of the respective representations.

3 Methodology

We describe the formal setup, the experimental
setup, and the chosen datasets.

3.1 Problem Definition

Let X = x1, · · · ,xn ⊂ X denote the set of images
in our dataset. The goal of image clustering is to
obtain a clustering h : X → Y that assigns images
to their respective clusters. We propose to employ
image-to-text models which typically consist of an
image encoder f : X → Z , embedding images
into a latent space Z ⊂ Rd, and a text decoder, i.e.
a LLM, g : Z → T , where T is some text space.
The text is subsequently embedded t : T → V ⊂
Rl and clustered, e.g., with K-Means.

3.2 Experimental Setup

The central goal of this paper is to compare rep-
resentations based on images and generated text
for the task of image clustering. The following de-
scribes the choices and evaluation criteria common
to all experiments.
Clustering. To shed light on the question of
whether text is a (more) suitable representation for
image clustering, we compare the performance of a
clustering on the image space Z = f(X) and of a
clustering on the vectorization of the generated text
T = t(g(Z)). Following the deep clustering (Xie
et al., 2016; Yang et al., 2017) and self-supervised
learning (Zhou et al., 2022a) literature, we use K-
Means to evaluate the suitability of the respective
image and text embeddings for clustering. We run
K-Means 50 times in all experiments and report
the mean outcome to get robust results. Whenever
we need a single run, e.g., for qualitative analysis,
the run with the lowest K-Means loss, also called
inertia, is used.
Vectorization. In order to employ clustering algo-
rithms, images and texts need to be represented as
vectors. For image vectorization, we use the latent
space of an image encoder. We experiment with
multiple models introduced in Section 4.1. For text
vectorization, one frequency-based and one neural
algorithm are considered. TF-IDF (Sparck Jones,
1972) is a standard counting-based representation.
Using the scikit-learn (Pedregosa et al., 2011) im-
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plementation, English stop-words are removed, and
a maximum vocabulary of 2000 words is set. No
additional preprocessing is performed. Since nowa-
days transformer-based text representations are the
standard, we experiment with SBERT2 (Reimers
and Gurevych, 2019) as it was the first BERT-based
sentence representation. Note that larger, newer,
and better transformer-based models are available.
We deliberately choose a widely used, competitive,
small model as this strengthens our claim that clus-
terings based on generated text often outperform
clusterings based on image representations.
Metrics. To measure clustering performance, the
Normalized Mutual Information (NMI) (Vinh et al.,
2010) and the Cluster Accuracy (Acc) (Yang et al.,
2010) are computed. Both metrics take values be-
tween 0 and 1, where higher numbers indicate a
better match with the ground truth labels. For the
sake of readability, we multiply them by 100.

3.3 Datasets

We consider a diverse collection of datasets, sepa-
rated into three groups according to various chal-
lenges. Partially, there is an overlap between the
properties of the datasets. Nevertheless, our se-
lection of datasets is motivated by this grouping.
Note that this is a more diverse set of datasets as
typically used (Cai et al., 2022; Qian, 2023). An
overview of the dataset statistics and samples of
each dataset are depicted in Tables 6 and 7 in the
Appendix, respectively.
Standard Datasets. We utilize three widely-used
image clustering benchmarking datasets: STL10
(Coates et al., 2011), Cifar10 (Krizhevsky and Hin-
ton, 2009) and ImageNet10 (Deng et al., 2009).
Background Datasets. To assess the robustness
of our proposed method against background noise,
we include Sports10 (Trivedi et al., 2021) and iNat-
uralist2021 (Grant Van Horn, 2021), two datasets
containing high-resolution images of sports scenes
in video games and natural environments.
Human Interpretable Datasets. Three datasets
focusing on human concepts rather than individual
objects are included. LSUN (Yu et al., 2015), show-
ing, e.g., a living room or a kitchen, Human Activ-
ity Recognition (HAR) (Nagadia, 2022), contain-
ing scenes such as running and Facial Expression
Recognition (FER2013) (Barsoum et al., 2016),
e.g., surprise, are considered.

2https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2

4 Text-Guided Image Clustering

We explore the potential of generated text for image
clustering. First, we use standard image caption-
ing and observe that the text representation out-
performs the image representation of several mod-
els. Second, we guide the text generation using
VQA models to generate keywords, which we call
keyword-guided clustering, and introduce prompt-
guided clustering, where we use domain-specific
prompts to elicit relevant properties. Third, we use
the generated text for cluster explainability, obtain-
ing keyword-based descriptions for each cluster.

4.1 Caption-Guided Image Clustering

Modern foundation models provide the possibility
to work with multiple modalities. In particular, im-
age captioning models describe images with text.
Thus, as a first experiment, we investigate how well
text clustering on captioned text works in compari-
son to image clustering, and establish a consistent
experimental setup.
Setup. The commonality between current image
captioning models is that they consist of an image
encoder and a generative LLM to generate text con-
ditioned on the latent image space. As described
in Section 3.2 we assess the quality of image and
generated text by comparing the clustering perfor-
mance of the vision encoder embeddings with TF-
IDF and SBERT representations using K-Means.
We benchmark three SOTA image-to-text models,
namely a community-trained version of Flamingo3

(Alayrac et al., 2022), GIT4 (Wang et al., 2022a),
and BLIP-25 (Li et al., 2023), all available within
the Huggingface Transformers library (Wolf et al.,
2020). Note that we abstain from including ded-
icated clustering methods (Cai et al., 2022; Qian,
2023; Gao et al., 2021) because they are based on a
much weaker image encoder, thus achieving much
lower performance. Furthermore, it is not straight-
forward to train transformer-based image models
using clustering objectives. We probabilistically
sample a maximum of 80 tokens, without any addi-
tional parameters. Only for Flamingo, we set top-K
to 8, following the original repository. Experiments
were performed on a single A100 40GB and took
about 40h hours.

3https://huggingface.co/dhansmair/
flamingo-mini

4https://huggingface.co/microsoft/
git-large

5https://huggingface.co/Salesforce/
blip2-flan-t5-xl
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Standard Background Human
Model Representation STL10 Cifar10 ImageNet10 Sports10 iNaturalist2021 FER2013 LSUN HAR Avg

Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI

Flamingo Image 95.0 95.13 84.0 84.19 99.38 98.85 75.87 81.61 40.8 58.09 36.79 17.33 60.67 60.98 50.07 43.67 67.82 67.48
TF-IDF 82.22 77.0 81.85 76.23 94.32 89.57 54.16 49.86 34.27 43.63 25.77 2.91 70.58 64.04 40.92 35.52 60.51 54.85
SBERT 97.74 94.68 93.64 86.15 98.36 96.05 60.32 55.89 44.93 58.99 29.79 9.77 68.96 68.41 51.37 46.84 68.14 64.6

GIT Image 51.15 63.62 66.37 64.87 95.41 93.78 71.17 75.69 42.47 53.0 24.1 2.15 52.06 51.78 38.81 33.18 55.19 54.76
TF-IDF 79.92 74.71 74.0 66.73 82.69 76.78 87.42 84.6 36.12 42.84 25.24 1.66 65.34 57.68 42.87 36.05 61.7 55.13
SBERT 96.58 93.34 86.79 76.97 96.37 92.72 85.73 88.14 46.04 58.78 26.61 1.95 69.82 61.95 48.11 42.66 69.51 64.56

BLIP-2 (*) Image 99.65 99.16 98.69 97.59 99.8 99.35 91.31 93.22 44.97 62.7 35.97 21.2 62.07 64.47 52.65 47.06 73.14 73.09
TF-IDF 83.3 79.35 89.0 84.75 93.54 88.81 99.38 98.65 34.17 39.07 31.86 6.89 76.69 71.05 50.51 46.09 69.81 64.33
SBERT 98.03 96.27 97.31 94.07 98.22 96.63 99.07 98.47 47.43 61.63 38.21 20.53 81.11 74.37 50.85 46.68 76.28 73.58

´

Table 1: Comparison of Clustering Accuracy and NMI of image space and generated captions, using TF-IDF and
SBERT representations, of multiple Image-to-Text models. For each combination of dataset and metric, underlined
numbers represent the best overall performance, and bold numbers the best performance per model. (*) Note that
BLIP-2 is pre-trained on ImageNet21K (Deng et al., 2009), which STL10 and ImageNet10 are subsets of.
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Figure 3: Effect of the number of captions sampled per
image for BLIP-2. The number of captions is depicted
on the X-axis, mean and standard deviation of clustering
performance are on the Y-axis.

We start by studying the effect of the number of
captions generated per image. For each amount of
captions, we sample 6 versions and report the mean
and standard error in Figure 3.
Results. We observe that, for TF-IDF, with a grow-
ing number of captions, the performance increases
monotonically, whereas SBERT saturates for many
datasets. Being counting-based, we think that the
reason is that TF-IDF is better at reducing the effect
of outlier captions, i.e. single bad captions. For
all following experiments, we choose to sample 6
text generations as a trade-off between sampling
efficiency and clustering performance.

The full image captioning results are shown
in Table 1. The average scores (Avg) show that
SBERT outperforms the other two representations

across all model types on almost all datasets, while
the TF-IDF representation performs worst. Note
that we abstain from sophisticated preprocessing
such as lemmatization or stemming, which is com-
mon for frequency-based representations such as
TF-IDF, to keep the setup simple and depend on
text information as purely as possible. This might
(to a certain degree) explain the worse performance.

Further, we observe that BLIP-2 is the best-
performing model. It performs especially well on
the standard datasets, which we think is due to the
fact that it was pre-trained on ImageNet21k in a
self-supervised fashion.

In summary, the results show that text repre-
sentations, obtained only based on (latent) image
representations, provide competitive clustering per-
formance, often outperforming the corresponding
image representation.

4.2 Knowledge Injection

Now we investigate the potential of guiding the
text generation so that it is specifically suited for
clustering. By using modern VQA models, it is
possible to elicit dedicated information from im-
ages. In the following, we introduce two ways to
make use of VQA models.
Keyword-Guided Clustering. Given that it
is common to (verbally) describe clusters using
keywords, we hypothesize that it is beneficial to
prompt the model to generate keywords. The rea-
sons are: 1) keywords provide useful inputs for
simpler, traditional count-based representations
such as TF-IDF, 2) keywords are useful for count-
based analysis methods, such as the proposed clus-
ter explainability algorithm in section 4.3, and 3)
ground truth cluster labels (as given by classifica-
tion datasets used in the clustering literature) are
typically described using only a few keywords.
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Sports10 iNaturalist2021 FER2013 LSUN HAR Avg
Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI Acc NMI

Image ViT 91.31 93.22 44.97 62.70 35.97 21.2 62.07 64.47 52.65 47.06 57.39 57.73

Caption-Guided TF-IDF 99.38 98.65 34.17 39.07 31.86 6.89 76.69 71.05 50.51 46.09 58.52 52.35
SBERT 99.07 98.47 47.43 61.63 38.21 20.53 81.11 74.37 50.85 46.68 63.33 60.34

Keyword-Guided TF-IDF 99.08 97.82 42.13 48.25 47.05 27.34 76.2 69.28 51.35 45.47 63.16 57.63
SBERT 96.89 96.87 48.44 59.48 46.44 29.96 70.63 70.82 55.66 50.07 63.61 61.44

Prompt-Guided TF-IDF 84.83 94.46 38.01 47.61 46.86 34.25 66.4 59.92 52.74 47.96 57.77 56.84
SBERT 98.70 98.12 48.57 62.23 45.60 36.04 71.59 63.54 60.93 52.94 65.08 62.57

Table 2: Comparison of clustering performance of the BLIP-2 image encoder features, and examined types of
generated text. For prompt-guided clustering, the clusterings belonging to the prompt with the lowest K-Means are
evaluated. For each dataset and metric combination, the best performance is bold, and the second-best performance
is underlined.

Prompt-Guided Clustering. In real-world scenar-
ios, often, some domain knowledge about the given
data is available. The ability of VQA models to re-
trieve dedicated information from images opens up
the possibility of using domain knowledge in the
natural form of text. An example is to ask "Which
activity is performed in the picture?". Note, cru-
cially, that this is not possible using standard image
clustering models.
Setup. Due to resource constraints, we only use
the best-performing (cf. Table 1) image-to-text
model, BLIP-2, for the subsequent experiments.
Based on the results depicted in Figure 3, we sam-
ple k = 6 texts for each image.

For keyword-guided clustering, we use the ques-
tion "Which keywords describe the image?". To
perform prompt-guided clustering, we create four
questions for each of the datasets. The questions
were created by naively transforming the name of
the dataset into a question, e.g. for human ac-
tion recognition "Which activity is performed?"
is asked. Note, that no additional prompt engineer-
ing efforts were made, as we are not aware of a
more principled way to design such prompts. Find
all questions in Table 8 in Appendix B.

BLIP-2 solves the “standard” datasets with al-
most 100% and they exhibit only a collection of
objects, making it difficult to pose interesting ques-
tions other than ‘What objects are described?’.
Thus, they are excluded in the following experi-
ments. It is well known that current LLMs pos-
sibly generate very different texts, even though
the prompt has the same meaning (Elazar et al.,
2021). Therefore, in Table 2 we use an unsuper-
vised heuristic to decide which prompt works best
by taking the prompt belonging to the clustering
with the lowest K-Means loss.

Modality / Question SBERT
Acc NMI

Image 52.65 47.06
Which keywords describe the image? 55.66 50.07
What type of motion is depicted in the picture? 49.20 42.54
Which activity is shown in the picture? 56.03 49.69
Which action is shown in the picture? 58.68 52.86
What is the person doing in the picture? 60.93 52.94

Table 3: A case study for prompt-guided image cluster-
ing on Human Action Recognition, using the SBERT
representation. Find the full table in Appendix B.

Results. In Table 2 we observe that the average
performance (Avg) for caption-guided image clus-
tering and SBERT-based keyword-guided cluster-
ing is similar. Using keywords, TF-IDF improves
on average by 5% for both cluster accuracy and
NMI, closing the gap to SBERT. This result is in
line with our hypothesis that keywords are a useful
representation for image clustering.

As a case study, Table 3 holds the results for the
HAR dataset. We observe a notable variance in the
performance of multiple prompts. This is a com-
mon phenomenon for prompting-based methods
(Zhao et al., 2021). Using the K-Means loss as a
proxy for selecting the best prompt leads to the best
average performance in Table 2.

Interestingly, the confusion matrices in Figure 4
show different assignment patterns depending on
the question posed to the VQA model. For instance,
when posing the question ‘What room is shown in
the picture?’, all room clusters are formed well, but
the others, e.g. bridge or tower, are worse. We
argue that this variation is not an issue but a feature
of prompt-guided image clustering, e.g., during
exploratory data analysis, where one might want to
investigate different aspects of a dataset.

In summary, we demonstrate that it is possible
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Figure 4: Confusion matrices based on three clustering results from text generated with three different VQA prompts.
While a similar cluster accuracy is achieved, we observe that the clustering relates to the prompt. In the middle all
room clusters are clustered well, on the right side the clustering is not able to distinguish well between dining room,
kitchen and restaurant (see corresponding dining room row), but leads to better overall accuracy.

to improve clustering performance by injecting do-
main knowledge in the form of text and that the
clustering changes according to the posed ques-
tions. Further examples of the impact of different
prompts on the embedded space and clustering are
shown in t-SNE embeddings in Figures 6 and 7 in
the Appendix.

4.3 Cluster Explainability

So far, we use the generated text solely to form clus-
ters. But given the (built-in) interpretability of text,
a natural extension is to use text as an explanation
of the formed clusters. Explainability for image
clustering is an important issue, as it provides in-
sights into how the clustering algorithm groups the
images, helping users understand the underlying
patterns and relationships. The availability of tex-
tual descriptions for each cluster sample allows us
to extrapolate to textual descriptions of each clus-
ter as a whole.Note that this is not possible using
models considering only images.

We hypothesize that a concise way to describe
a cluster is to use a small set of keywords. This
is based on the fact that the considered datasets
use keyword-based labels. Thus, we introduce the
following algorithm to obtain keywords for each
cluster from the generated text.
Explainability Algorithm. For each predicted
cluster, the keywords are sorted by their number of
occurrences in the generated texts. The algorithm
returns the most frequent keywords per cluster. If
a keyword occurs in multiple cluster descriptions,

it is not considered, and the next most occurring is
chosen. We take the two most occurring keywords
based on an initial screening of the LSUN dataset.
Find the Pseudocode in the Appendix C.

Setup. We provide a quantitative analysis of the
generated descriptions by applying two metrics.
First, we introduce the subset exact match (SEM)
metric, for which we lowercase each string and
check whether the ground truth cluster name ap-
pears in the predicted keywords. No further stan-
dardization, such as stemming or lemmatization, is
performed. Second, SBERT embeddings are used
to check the similarity between cluster names and
keywords obtained by the explainability algorithm.
According to our initial investigation, we use a co-
sine similarity of 0.4 as the threshold to indicate a
match between ground truth and explanation. For
each dataset, we provide the cluster accuracy and
the explainability performance given the ground
truth (Truth) clustering and the predicted (Pred)
clustering, corresponding to the cluster accuracy.
Out of the 50 conducted K-Means runs, we use
the clustering with the lowest K-Means loss for the
analysis.

Results. Table 5 depicts the quantitative evalua-
tion of our algorithm. We observe that the SBERT
metric is always equal to or higher than the SEM
metric, which makes sense as SEM is a rather strict
metric, not understanding synonyms or syntacti-
cal changes, e.g., "TableTennis" vs. "table tennis".
Interestingly, in most cases, the SBERT metric is
higher than the clustering accuracy. Table 4 shows
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Ground Truth Explanation SEM SBERT Sim.

Sports10

AmericanFootball football, nfl 0 1
Basketball basketball, basketball game 1 1
BikeRacing motorcycle, rider 0 1
CarRacing car, speed 0 0
Fighting fight, boxing 0 1
Hockey hockey, hockey game 1 1
Soccer soccer, soccer game 1 1
TableTennis ping pong, table tennis 0 0
Tennis tennis, tennis game 1 1
Volleyball volleyball, beach 1 1

LSUN

bedroom bedroom, bed 1 1
bridge bridge, river 1 1
church_outdoor church, cathedral 0 1
classroom classroom, teacher 1 1
conference_room meeting, conference 0 1
dining_room dining room, dining table 1 1
kitchen kitchen, wood 1 1
living_room living room, living 1 1
restaurant restaurant, bar 1 1
tower tower, city 1 1

Table 4: Examples of generated explanations for
Sports10 and LSUN. If a value in the SEM or SBERT
Sim. column is 1, it means that the metric says ground
truth and explanation match.

an example of generated descriptions and metrics.
We observe that both metrics cannot understand
that “TableTennis” and “ping pong, table tennis”
have the same meaning, but still, all cluster descrip-
tions of Sports10 are correct. For iNaturalist2021
and FER2013, we observe that the generated text
is often of bad quality, resulting in low-quality de-
scriptions. We conclude that the generated descrip-
tions provide a good overview of the content of the
generated clusters and in most cases, describe the
dataset better than clustering accuracy suggests.

5 Broader Impact

We believe there is a lot of unused potential for text
as an abstraction in image clustering.
Text as a proxy for “meaningful” clustering.
Clustering research aims to find meaningful clus-
ters. In general, it is an open question to de-
fine what meaningful exactly stands for, some re-
searchers even call it an ill-posed problem. We
argue that text is a good proxy to express meaning-
fulness as it is based on the natural human form
of communication. This is a novel viewpoint on
the task of image clustering aligning with research
methodologies in the clustering community, where
clustering methods are commonly benchmarked
with datasets that have human-annotated textual la-
bels as ground truth. Our research contributes to the
discussion about meaningful clustering by showing

Cluster Acc SEM SBERT Sim.
TF-IDF SBERT Truth Pred Truth Pred

STL10 87 98 100 100 100 100
ImageNet10 94 99 30 30 100 100
CIFAR10 91 97 90 90 100 100
Sports10 99 98 50 50 80 80
iNaturalist2021 40 48 0 0 91 45
LSUN 75 68 70 80 100 100
HAR 51 56 20 13 87 87
FER2013 46 46 12 12 38 25

Table 5: Evaluation of our explainability method. In
“Truth”, the explainability method is applied to the
ground truth clustering whereas in “Pred” it is applied
to the clustering of the given clustering accuracy. Num-
bers are boldened if the explainability score of a found
clustering (“Pred” columns) outperforms clustering ac-
curacies.

that generated text improves the interpretability of
the detected clusters.
Knowledge Injection. Furthermore, it can be
highly subjective what determines a meaningful
clustering. For a given dataset, different people are
interested in different types of information. For
example, in real-world scenarios, an expert might
have several questions about a dataset based on
their domain knowledge. We show that these ques-
tions can be used to guide the clustering process by
prompting VQA models. Given the current speed
of research, we believe that the increasing ability to
use more detailed prompts will drastically improve
our knowledge injection method. This, in turn, will
open up new research avenues for injecting knowl-
edge into the clustering process.

6 Conclusion

In this work, we introduce Text-Guided Image Clus-
tering, using image-captioning and VQA models
to automatically generate text, and subsequently
cluster only the generated text. After applying mul-
tiple captioning models on eight diverse datasets,
our experiments show that representations of gen-
erated text outperform image representations on
many datasets. Further, we use text to include task-
and domain knowledge by prompting VQA models,
resulting in additional improvements in clustering
performance. We find that it is possible to shape the
clustering favorably according to the information
given by a specific prompt. Additionally, we use
the generated text to obtain a keyword-based de-
scription for each cluster and show their usefulness
quantitatively and qualitatively.
While it is difficult to identify background noise or
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irrelevant features in the pixel space, text is discrete
and interpretable. We show that text-guided image
clustering often outperforms clustering purely on
image information, and provides interpretability.
Therefore, our research provides insights into the
role of text in determining meaningful clusterings.

7 Limitations

While our proposed approach shows promising re-
sults, several limitations apply.

Text-guided image clustering is dependent on
the quality and effectiveness of the generated text.
In cases where the generated text is incomplete,
misleading, or fails to capture the essential features
of the images, the clustering algorithm may strug-
gle to accurately group similar images. Current
image-to-text models are mostly trained on data
obtained from the internet. For example, because
of licensing and other restrictions, many domain-
specific images are not represented appropriately
in the training data, resulting in poor text genera-
tion abilities for those domains. Nevertheless, our
experiments are performed on a wide variety of
datasets, more diverse than in common image clus-
tering research, proving the general applicability
of the method.

While we show that our approach is effective
for image clustering, we do not include results
for other visual modalities, such as video or 3D
point clouds. We show that it is worthwhile to
investigate the possibility of clustering images us-
ing generated text and generating textual cluster
explanations. The rapid advancement of machine
learning models will also enable the same approach
for other modalities.

The approach of prompt-guided image clustering
is based on the assumption that domain knowledge
is readily accessible, allowing the generation of
specific questions to guide VQA models. While we
show that leveraging domain knowledge can prove
advantageous, clustering methods are frequently
employed for exploratory data analysis. Introduc-
ing domain knowledge may limit the discovery of
novel insights or alternative interpretations due to
biased prompts.
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A Dataset Description

Here, we provide some additional information
about the datasets. An overview of the datasets
is given in Table 6, including name, number of
classes, number of images, and size, given in pixels.
You can find examples of images of each dataset in
Table 7.

In the following, there is a small description of
the datasets, including the class labels, provided
in their original form which we also use in the
evaluation of our explainability algorithm.

STL10 (Coates et al., 2011). This traditional
dataset consists of 10 classes, namely “deer, horse,

bird, cat, ship, airplane, car, truck, monkey, dog”.
We use the full dataset, i.e. train and test split.
Note, that it is inspired by Cifar10 and attempts
to be more complicated because it contains fewer
images.

Cifar10 (Krizhevsky and Hinton, 2009). The
dataset is comprised of 10 similar object classes:
“deer, horse, bird, automobile, airplane, cat, ship,
truck, dog, frog”. Again, we use the full dataset.

ImageNet10. Imagenet-10 is a subset of the
larger ImageNet dataset, containing 10 classes.
Given the hierarchical nature of of ImageNet, each
class is described by multiple keywords: ’trailer
truck, tractor trailer, trucking rig, rig, articulated
lorry, semi’, ’snow leopard, ounce, Panthera uncia’,
’airliner’, ’Maltese dog, Maltese terrier, Maltese’,
’sports car, sport car’, ’orange’, ’soccer ball’, ’air-
ship, dirigible’, ’container ship, containership, con-
tainer vessel’, ’king penguin, Aptenodytes patago-
nica’

Sports10 (Trivedi et al., 2021). The Sports-10
dataset provides labeled images from 175 video
games across 10 sports genres. The labels are “Car-
Racing, Tennis, AmericanFootball, BikeRacing,
TableTennis, Fighting, Basketball, Hockey, Soccer,
Volleyball”.

Inaturalist2021 (Grant Van Horn, 2021). The
full dataset contains images of 10,000 species
separated into 10 classes, which are “Animalia,
Arachnids, Amphibians, Birds, Insects, Ray-finned
Fishes, Plants, Mollusks, Reptiles, Fungi, Mam-
mals”. We experiment with the validation set.

Dataset Group Name No. of classes No. of Images Size (pixels)

Standard STL10 10 13000 96x96
ImageNet10 10 13000 500x364
CIFAR10 10 60000 32x32

Background Sports10 10 3000 1280x720
iNaturalist 2021 11 100000 284x222

Human LSUN 10 3000 341x256
Human Action Recognition 15 18000 240x160
FER2013 8 35488 48x48

Table 6: Overview over some basic dataset statistics.

LSUN (Yu et al., 2015). The Large-Scale
Scene Understanding (LSUN) dataset offers la-
beled images depicting scenes from the following
categories: “conference_room, dining_room, bed-
room, church_outdoor, bridge, tower, restaurant,
living_room, classroom, kitchen”. We experiment
with the test set.

HAR (Nagadia, 2022). contains images of hu-
man activities. They are “running, sleeping, lis-
tening_to_music, texting, drinking, clapping, fight-
ing, eating, sitting, using_laptop, cycling, calling,
laughing, hugging, dancing”.
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FER2013 (Barsoum et al., 2016). The Facial
Expression Recognition 2013 dataset consists of
labeled grayscale images depicting human facial
expressions, which are “surprise, anger, contempt,
happiness, fear, disgust, sadness, neutral”.

B Knowledge Injection

In section 4.2 we introduce prompt-guided cluster-
ing. For each dataset, multiple prompts are tested.
They are generated by adapting the dataset name
and transforming them into a question. Table 8
encompasses all prompts used in our experimental
setup, accompanied by the corresponding evalua-
tion performance metrics, namely Cluster Accuracy
(Acc) and Normalized Mutual Information (NMI)
for the image encoder representation, and the TF-
IDF and SBERT representations. The used model
is BLIP-2. Further, we provide a visual inspection
of the same numbers in Figure 5.

In order to get a better understanding of the com-
parison of embedding structure, and how generated
text relates to that, we provide two examples. In
Figure 6 there is an example of the LSUN dataset
and in Figure 7 there is a corresponding example
of the Sports10 dataset.

C Explainability

In this section, we provide pseudo-code for the
algorithm in section 4.3. As described previously,
it counts the number of keyword occurrences per
cluster. Afterwards, it takes the top two exclusive
keywords.

Algorithm 1 Explainability
Require:
1: X = {X1, X2, ..., Xm} : be the set of keyword lists for each sample,
2: Y = {Y1, Y2, ..., Ym} : be the set of (predicted) cluster labels for each

sample,
3: n : Number of output keywords per cluster.
Ensure: List
4: procedure SIMPLEXAI(X,Y )
5: A, O← [], [] ▷ Active keywords, and others
6: for i in unique(Y ) do
7: K ← count-ordered list of keywords cluster i
8: A[i]←K[0 : n]
9: O[i]←K[n :]
10: end for
11: while

⋂
i A[i] ̸= ∅ do ▷ Remove duplicates

12: D ← ⋂
i A[i]

13: A[i]← A[i] \D
14: A[i]← A[i] ∪O[0 : |D|]
15: O[i]← O[2|D| :]
16: end while
17: return A
18: end procedure
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Figure 5: Comparison of all used strategies. Find the questions for prompt-guided clustering in Table 8.

Keywords: meeting,  teacher, 
lecture, meeting room,  office, 
conference room,  classroom

Keywords: student,  seminar,  
audience,  teacher, presentation, 
presenter,  lecture, classroom

VQA: teacher teaching a class,  
meeting room,  a classroom, 
classroom setting

VQA: group of people in a conference room, 
meeting room, this picture was taken inside a 
seminar centered discussion

Figure 6: t-SNE embeddings of BLIP2 for the LSUN dataset. From left to right: Image embedding (Acc: 63.11),
Keyword SBERT embedding (Acc: 71.12) and VQA SBERT embedding (Acc: 81.83 with prompt: “What
environment is shown in the picture?”). The improvement in cluster accuracy corresponds to better separated
clusters in the t-SNE embeddings.
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Dataset Image1 Label1 Image2 Label2

STL10 bird car

CIFAR10 automobile horse

ImageNet10 airship, dirigible soccer ball

Sports10 CarRacing BikeRacing

iNaturalist2021 Birds Insects

LSUN kitchen bridge

Human Action Recognition cycling running

FER2013 anger happiness

Table 7: Examplatory images of the datasets. The images contain different properties, such as image quality or
background noise. Also, the labels vary in their syntax and semantic meaning, e.g. objects vs. movements.
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Image TF-IDF SBERT
Dataset Modality / Question Acc NMI Acc NMI Acc NMI

Sports10 Image 91.31 93.22
Caption 99.38 98.65 99.07 98.47
Keyword 99.08 97.82 96.89 96.87
Which sport is shown in the picture? 84.89 94.57 98.7 98.12
What type of sport is shown in the picture? 84.83 94.46 99.0 98.21
Which game is shown in the picture? 84.0 90.64 95.77 95.58
Which sports contest is shown in the picture? 84.76 93.06 98.64 97.7

iNaturalist2021 Image 44.97 62.7
Caption 34.17 39.07 47.43 61.63
Keyword 42.13 48.25 48.44 59.48
What type of biological object is shown in the picture? 38.01 47.61 47.14 61.21
What is the biological classification of the object in the picture? 35.23 39.66 47.82 60.43
Which biological category is shown in the picture? 42.1 50.3 48.57 62.23
Which species is shown in the picture? 45.57 38.13 45.65 56.55

LSUN Image 62.07 64.47
Caption 76.69 71.05 81.11 74.37
Keyword 76.2 69.28 70.63 70.82
What location is shown in the picture? 47.04 45.12 53.49 49.11
What kind of environment is shown in the picture? 72.63 67.52 81.37 74.6
What room is shown in the picture? 66.4 59.92 71.59 63.54
What scene is shown in the picture? 76.71 70.5 78.15 77.05

HAR Image 52.65 47.06
Caption 50.51 46.09 50.85 46.68
Keyword 51.35 45.47 55.66 50.07
What type of motion is depicted in the picture? 42.68 36.69 49.2 42.54
Which activity is shown in the picture? 50.77 46.04 56.03 49.69
Which action is shown in the picture? 52.75 48.13 58.68 52.86
What is the person doing in the picture? 52.74 47.96 60.93 52.94

FER2013 Image 35.97 21.2
Caption 31.86 6.89 38.21 20.53
Keyword 47.05 27.34 46.44 29.96
What type of countenance is shown in the picture? 30.53 9.64 33.53 17.34
Which emotion is shown in the picture? 46.86 34.25 45.6 36.04
Which facial expression is shown in the picture? 48.93 33.55 52.85 39.0
Which mood is shown in the picture? 46.89 28.66 45.54 31.03

Table 8: Full evaluation table for all prompts. All representations, image and text are based on the BLIP-2 model.
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Keywords: speed racing car,  
track race,  road, crash, driving

Keywords: motorcycle, highway,  
play,  screen,  road game, rider

VQA: motorbike racing, racing
game, riding a motorcycle

VQA: racing, car racing game, driving a car 
down the highway with a beach behind it

Figure 7: t-SNE embeddings of BLIP2 for the Sports10 dataset. From left to right: Image embedding (Acc: 91.31),
Keyword SBERT embedding (Acc: 96.89) and VQA SBERT embedding (Acc: 99.00 with prompt: “What type of
sport is shown in the picture?”). The improvement in cluster accuracy corresponds to better separated clusters in the
t-SNE embeddings.

2976


