
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2977–2988

March 17-22, 2024 c©2024 Association for Computational Linguistics

CCPrefix: Counterfactual Contrastive Prefix-Tuning
for Many-Class Classification

Yang Li1 ∗, Canran Xu2, Guodong Long1, Tao Shen1, Chongyang Tao3, Jing Jiang1

1Australian AI Institute, University of Technology Sydney
2 eBay Inc. 3 Microsoft

yang.li-17@student.uts.edu.au, canxu@ebay.com
{guodong.long, tao.shen, jing.jiang}@uts.edu.au, chotao@microsoft.com

Abstract

Recently, prefix-tuning was proposed to effi-
ciently adapt pre-trained language models to
a broad spectrum of natural language classifi-
cation tasks. It leverages soft prefix as task-
specific indicators and language verbalizers as
categorical-label mentions to narrow the for-
mulation gap from pre-training language mod-
els. However, when the label space increases
considerably (i.e., many-class classification),
such a tuning technique suffers from a verbal-
izer ambiguity problem since the many-class
labels are represented by semantic-similar ver-
balizers in short language phrases. To over-
come this, inspired by the human-decision pro-
cess that the most ambiguous classes would
be mulled over for each instance, we propose
a brand-new prefix-tuning method, Counter-
factual Contrastive Prefix-tuning (CCPrefix),
for many-class classification. Basically, an
instance-dependent soft prefix, derived from
fact-counterfactual pairs in the label space, is
leveraged to complement the language verbal-
izers in many-class classification. We conduct
experiments on many-class benchmark datasets
in both the fully supervised setting and the few-
shot setting, which indicates that our model
outperforms former baselines.

1 Introduction

While the fine-tuning approach has been highly suc-
cessful in the field of natural language processing,
enabling the effective application of knowledge to
specific tasks, a significant disparity still exists be-
tween the pre-training and fine-tuning stages. This
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As a stage actor, Greg has been a resident company member of the 
Alley Theatre in Houston, Texas.
Q: The type of Greg is _________.

Instance: 

A. Person-Actor B. Person-Employee

Why Person-Actor?

As a stage actor, Greg has been a resident company member of the 

Alley Theatre in Houston, Texas.

Why Person-Actor not Person-Employee?

As a stage actor, Greg has been a resident company member of the 
Alley Theatre in Houston, Texas.

Figure 1: An illustrative example of entity typing task
from FewNERD (Ding et al., 2021) dataset. Option A is
its ground-truth label, and Option B is the counterfactual.
Red words are the related attributes for the question.

disparity can impede the efficient transfer and adap-
tation of knowledge in Pre-trained Language Mod-
els (PLMs) to various downstream tasks. The root
of this gap is largely due to the varied nature of
objectives that downstream tasks present. To nar-
row this gap, Prompt-tuning (Brown et al., 2020;
Schick et al., 2020) has been proposed to unify the
objective of different tasks into a cloze-style task
to predict target words. Compared to the prevalent
fine-tuning, the prompt-tuning paradigm is consis-
tent with language model pre-training and thus gen-
eralizable with few learnable parameters (Brown
et al., 2020; Trinh and Le, 2018; Petroni et al.,
2019; Davison et al., 2019).

To effectively utilize masked language models
(MLMs) in prompt tuning, it’s essential to create
a task-specific template and verbalizers, forming
a cloze-style task. Typically, the template might
be a natural language prompt or a sequence of con-
tinuous tokens to engage the language model. The
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verbalizers, on the other hand, are often phrases in
natural language that correspond to specific task
labels. For example, in natural language inference
(NLI), a training example could be structured with
a prompt like “[Premise] [MASK] [Hypothesis]”.
In this setup, a group of label words is crafted as po-
tential options to fill the placeholder (e.g., [MASK])
in the designed template. Again, in NLI, the ver-
balizers are defined as {Then, Maybe and But}, cor-
responding the three-class categories {entailment,
neural and contradiction}. Clearly, it is quite feasi-
ble for experts to choose appropriate label words,
given that there are distinct semantic boundaries
between these mutually exclusive labels.

As the number of labels increases, the semantic
distinctions among many categories can become
blurred, potentially leading to overlaps and result-
ing in the issue of verbalizer ambiguity. This phe-
nomenon is highlighted in studies such as Webson
and Pavlick (2022); Cao et al. (2021), which note
the high sensitivity of performance to the selection
of label words. For example, consider the entity
typing task, where categories like “Person-Actor”
and “Person-Employee” both fall under the same
broader category of “Person”, as illustrated in Fig
1. To address this issue of verbalizer ambiguity,
Han et al. (2021) proposed manually creating logic
rules to combine multiple sub-prompts into a final
prompt for each class. However, this approach is
limited due to the need for time-consuming and
expert-devised logic rules.

Taking inspiration from the social science re-
search (Miller, 2019), we adopt the contrastive pro-
cedure of human explanation to generate diverse
information prefixes for training instances. Con-
cretely, rather than explaining “why A”, it is more
effective to explain “why A not B”, where B serves
as an implicit counterfactual of A within the cur-
rent context. In Figure 1, we present an instance
from the FewNERD (Ding et al., 2021) dataset,
where the task is to classify the type associated with
Greg. From a machine learning perspective, a well-
trained model will recognize that Greg is associ-
ated with multiple attributes, including “Houston”,
“company” and “actor”, all of which are deemed
valuable for prediction. As illustrated in Figure 1,
these contributed attributes can be redundant for
prediction as highlighting. Hence, the contrastive
explanation approach tends to overlook most simi-
larity attributes between “Employee” and “Actor”,
focusing instead on the more salient semantics that
are critical for the model’s differentiation task.

In this paper, we propose Counter-factual Con-
trastive Prefix-tuning, or CCPrefix 1, designed to
reduce semantic vagueness among verbalizers and
address the issue of verbalizer ambiguity. Our
process begins by constructing all possible fact-
counterfactual label pairs, with each class alter-
nately assumed as the fact while the other classes
are treated as counterfactuals. Each instance is then
projected onto the subspaces spanned by these fact-
counterfactual pairs, generating a range of potential
contrastive attributes. These potential attributes are
subsequently filtered through a global prototype
alignment learning method, resulting in an instance-
dependent soft prefix. Lastly, we employ a straight-
forward Siamese representation learning approach
for each instance to ensure stability throughout the
training process. This methodical multi-step ap-
proach strives to reduce ambiguity and enhance
the effectiveness of prefix-tuning in the realm of
natural language processing.

To comprehensively validate the efficacy of
CCPrefix, we conduct extensive experiments on
three many-class classification tasks in both fully
supervised and few-shot settings, including rela-
tion classification, topic classification and entity
typing. The experimental results suggest that our
work presents a promising step forward in the field,
demonstrating the substantial potential of CCPrefix
in handling complex classification tasks in natural
language processing.

2 Methodology

In this section, we will provide a detailed explana-
tion of our approach, with its overall architecture
illustrated shown in Figure 2.

Task Definition. First of all, we provide the task
definition about the classification problem in fine-
tuning paradigm. The classification tasks can be
denoted as T = {X ,Y}, where X is the instance
set, Y = {y1, y2, . . . , y|R|} is the class set, and |R|
is the number of classes. The first token of the input
is [CLS] which contains the special classification
embedding. PLMs models take the hidden state
h of the first token [CLS] as the representation of
the whole sequence. A simple softmax classifier
is then added to the top of PLMs to predict the
probability of class yc:

p(yc|h) = Softmax(Wh) (1)

1We will open our codes, data, and models.
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Figure 2: Our proposed model, CCPrefix. For easy comprehension, we zoom out contrastive prefix construction
and contrastive attributes generation in Section 2.2. The losses Lcls, Ls and Lcon are defined in Equation (9),
Equation (8) and Equation (5). The black line is the forward path for both training and inference, while the green
line is the training path with supervised signal.

Algorithm 1 Contrastive Attributes Construction
Input: the class set Y , instance x, a PLM model

M
Output: Contrastive attributes C ∈

R|R|×(|R|−1)×de

1: Initialize the verbalizer V = ϕ(Y) ∈ R|R|×de

2: Initialize the matrix C ∈ R|R|×(|R|−1)×de

3: Obtain instance representation hx =
Pool(M(x))

4: for all vi ∈ V do
5: for all vj ∈ V , i ̸= j do
6: Construct the contrastive subspace ui,j =

vi − vj ∈ Rde

7: Project the instance onto the subspace

ci,j =
ui,j⊗u⊤

i,j

⟨u⊤
i,jui,j⟩ hx

8: end for
9: Form Ci,∗ representing the attributes be-

tween i-th fact and the other label
10: end for
11: return C ∈ R|R|×(|R|−1)×de

where W is the task-specific parameter matrix.
Both the parameters from PLMs and W will
be jointly fine-tuned by maximizing the log-
probability of the correct label.

2.1 Prefix Tuning for Classification

Formally, prefix tuning consists of a series of prefix
tokens {c1, . . . , cm} and a verbalizer ϕ : V → Y
that bridges the class set Y and the set of answer
words V . To construct the cloze-style tasks, at least
one placeholder [MASK] should be placed into the

template for the PLMs, M, as the following shows:

T (X,C) = {e1, . . . , el, c1, . . . , cm, e[MASK]},
(2)

where {e1, . . . , el} is the embedding of instance
X . With the soft prefix template T (·) and the
verbalizer ϕ, the learning objective is to maximize
1
|X |

∑
x∈X log p([MASK] = ϕ(yx)|T (x)).

2.2 Contrastive Prefix Construction
We would elaborate on the process of exploring all
potential contrastive attributes from each instance
and the way we construct the prefix templates.

Contrastive Generation. Thus, for classifica-
tion tasks, following (Jacovi et al., 2021), we con-
struct all causal factors by projecting the sentence
representation into the contrastive space. First
of all, each instance x would be encoded by a
deep neural encoder f(·) that transforms x into
X = {e1, e2, . . . , el} ∈ Rl×de , where l is the
sentence length and de the embedding dimension.
Then, we use a multi-layer perception (MLP) with
ReLU activation, and mean pooling over the se-
quence to get the whole sentence representation,
hx = Pool(MLP(X)).

Commonly, the prediction of the model Whx is
linear in the latent input representation. The proces-
sor of prediction aims to map hx to a specific direc-
tion wi via dot product to obtain the logits of class i.
As proposed by Jacovi et al. (2021) in terms of con-
trastive explanation, given two classes, yp and yq,
if we are particularly interested in the contrastive
attributes that the model predicts yp rather than yq,
we can construct a new basis, up,q = wp − wq,
which represents a contrastive space for yp and yq.
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Selected 

Contrastive Attribute 
Prototype 

Figure 3: An illustration of the selection process of
top-2 contrastive attributes ci,j using the similarities
between all possible ci,j and their corresponding proto-
types pi,j , where i-th class is fact and j-th class is its
counterfactual.

Thus, yp is the fact while yq is one of its counterfac-
tuals. However, for each instance, the golden label
is unavailable before prediction. Hence, we hypoth-
esize that the i-th class yi is the fact in turn while
the rest in the finite-label space are counterfactu-
als to build fact-counterfactual pairs. Specifically,
we employ the derivable vectors as the verbalizer
V ∈ R|R|×de to map to the class set Y . Thus, sup-
posing that i-th class yi is the fact while one of the
rest class yj is the counterfactual, the contrastive
subspace is:

ui,j = vi − vj ∈ Rde , i ∈ |R|, j ̸= i (3)

Then, by projecting the instance representation hx

onto the subspace ui,j , the contrastive attribute
between the specific fact-counterfactual pair is ex-
plored:

ci,j =
ui,j ⊗ u⊤

i,j

⟨u⊤
i,jui,j⟩

hx (4)

where ⊗ is the outer product and ⟨·⟩ is the inner
product. For the contrastive attributes generated
between the same fact and the rest counterfactuals,
we denote these attributes as Ci,∗ ∈ R(|R|−1)×de ,
where i, ∗ represents the fact-counterfactual pairs
consisting of the i-th fact and the rest labels as-
sumed as counterfactuals. Sequentially operating
eq.3 and eq.4, we extract all contrastive attributes
C ∈ R|R|×(|R|−1)×de from each instance. We sum-
marize the former procedure of constructing con-
trastive attributes in Algorithm 1.

Prototype Constraint. Obviously, since we
suppose each label as the fact to form fact-
counterfactual pairs in turn, it is inevitable to

face the noisy attributes projected by invalid fact-
counterfactual pairs for each instance. Therefore,
the contrastive attributes should be selected only
if it is generated by the valid fact-counterfactual
pairs formed by the accurate label. To distin-
guish valid contrastive attributes, we introduce a
set of global prototypes {P0,∗,P1,∗, . . . ,P|R|,∗} ∈
R|R|×(|R|−1)×de corresponding to contrastive at-
tributes. Concretely, for the contrastive attributes
ci,j generated by projecting instance onto the
subspace between i-th fact and j-th counterfac-
tual, there is only one corresponding prototype
pi,j . The fine-grained global prototypes can learn
the common features of its corresponding fact-
counterfactual attribute among the whole training
instances. During training, according to the in-
stance’s ground-truth label, these prototypes can
be split into two groups. One is the set of positive
prototypes while the other is the rest of negative
prototypes P−,∗ ∈ R(|R|−1)×(|R|−1)×de . The posi-
tive prototypes represent the common knowledge
of the corresponding attributes C+,∗ generated by
the valid fact-counterfactual pairs. These proto-
types are trained with the following self-contrastive
learning loss:

Lcon = − log
exp(⟨WC+,∗,P+,∗⟩)∑
− exp(⟨WC+,∗,P−,∗⟩))

(5)

where W ∈ Rde×de is the learning weight matrix
and ⟨·⟩ is the inner product to calculate the similar-
ity. This objective forces the positive prototypes to
draw up positive contrastive attributes. Simultane-
ously, the negative contrastive attributes would be
pushed away from the positive prototypes.

Prefix Construction. Thus, by calculating the
similarities between instance’s contrastive at-
tributes and the corresponding prototypes, we se-
lect the top-m’s most similar attributes Csel ∈
Rm×de as additional prefix tokens, as shown in
Figure 3. The selected contrastive attributes will be
considered as a series tokens in the prefix template
T (·), as Equation (2).

2.3 Siamese Prefix Tuning Objective
We note that some selected top-m contrastive at-
tributes may inevitably take false classes as facts,
thereby introducing unwanted noise. Therefore, it
is crucial to force the PLMs to focus on the valid
contrastive attributes and consequently stabilize the
model performance. Hence, we leverage a simple
Siamese representation learning method (Chen and
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He, 2021) to simultaneously train the PLMs, M,
via maximizing the similarity between the prefix
templates with selected contrastive attributes Csel

and the same instance with all positive attributes
C+,∗. These two inputs with different contrastive
attributes are fed into M to obtain the [MASK] rep-
resentation z and z+:

z = M(X̂) = T (X,Csel),

z+ = M(X̂+) = T (X,C+,∗).
(6)

Then, we minimize the negative cosine similarity
between two outputs with an MLP f(·):

D(z, z+) = − f(z)

||f(z)||2
· z+
||z+||2

(7)

Following Chen and He (2021), we use a sym-
metrized loss with the stop-gradient operation:

Ls=
1

2
D(f(z), sg(z+))+

1

2
D(f(z+), sg(z)).

(8)

Here, X with attributes C+,∗ receives no gradient
from z+ in the first term, but it receives gradients
from f(z+) in the second term, and vice versa.

Finally, the learning objective is to minimize the
following loss:

Lcls = − 1

|X |

|X |∑

k=1

logp([MASK] = vk|xk) (9)

where p([MASK] = vk|xk) is the predicted distri-
bution for the k-th sample in dataset X and vk is
the answer word corresponding to its ground truth
label yk. Overall, our final training loss is

L = Lcls + Ls + Lcon (10)

3 Experiments

We conduct comprehensive experiments on several
many-class classification tasks, including relation
classification (RC), topic classification (TC) and
entity typing (ET).

3.1 Datasets
We adopt 4 popular datasets for relation classifica-
tion, i.e., TACRED (Zhang et al., 2017), TACREV
(Alt et al., 2020), ReTACRED (Stoica et al., 2021)
and SemEval 2010 Task 8 (Hendrickx et al., 2009)
(SemEval), one for topic classification, i.e., DB-
Pedia (Lehmann et al., 2015), and one for entity
typing, i.e., FewNERD (Ding et al., 2021).

Dataset #Class Task |Dtrain| |Ddev| |Dtest|
TACRED 42 RC 68,124 22,631 15,509
TACREV 42 RC 68,124 22,631 15,509
ReTACRED 40 RC 58,465 19,584 13,418
SemEval 19 RC 6,507 1,493 2,717
DBPedia 14 TC 56,000 5,600 70,000
FewNERD 66 ET 338,753 48,667 96,901

Table 1: Basic statistics of the datasets, where RC stands
for relation classification, TC stands for topic classifica-
tion, and ET stands for entity typing.

• TACRED, TACREV and ReTACRED are
used widely for relation classification. While
TACRED is the origin, TACREV and ReTA-
CRED are its revised versions with modifica-
tions in test sets and some relation tpyes.

• SemEval is a traditional dataset for RC.

• DBPedia is an ontology dataset with struc-
tured information extracted from WikiPedia.
We privately set a 10% of the training dataset
as the validation set.

• FewNERD is a manually large-scale dataset
of entity typing containing 66 fine-grained
entity types. We focus on the inter-task, where
train/dev/test splits may share coarse-grained
types while keeping the fine-grained entity
types mutually disjoint.

More details of these datasets are shown in Ta-
ble 1. For evaluation, we use F1 scores as the
metric for RC, and mean accuracy for TC and ET.

3.2 Settings
To fairly compare with SoTA baselines, we evalu-
ate CCPrefix under fully supervised and few-shot
settings for RC tasks, and exclusively in few-shot
settings for TC and ET, where for each class, K
instances are sampled for training and validation.
Following previous works (Han et al., 2021; Cui
et al., 2022), we set K as 8, 16, 32 for relation clas-
sification and 1, 2, 4, 8, 16 for topic classification
and entity typing. We use a fixed set of 5 random
seeds to sample instances and take the average of
all results as the final result.

3.3 Implementation Details
Our model is implemented based on PyTorch
(Paszke et al., 2019) with V100 and the Trans-
former repository of Huggingface (Wolf et al.,
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Extra Data TACRED TACREV ReTACRED SemEval

C-GCN (Zhang et al., 2018) - 66.3 74.6 80.3 -
ROBERTALARGE (Liu et al., 2019) - 68.7 76.0 84.9 87.6
KNOWBERT (Peters et al., 2019) ✓ 71.5 79.3 - 89.1
SPANBERT (Joshi et al., 2020) ✓ 70.8 78.0 85.3 -
LUKE (Yamada et al., 2020) ✓ 72.7 80.6 90.3 -
PTR (Han et al., 2021) - 72.4 81.4 90.9 89.9

CCPrefix (Ours) - 72.6 82.9 91.2 90.6

w/o ConAtt in §2.2 - 70.0 80.9 90.6 90.1
w/o Prototypes in §2.2 - 71.9 81.2 90.5 90.4
w/o Lcon in Eq.5 - 71.3 81.8 90.6 90.2
w/o Siamese in §2.3 - 72.0 81.8 90.8 90.1

Table 2: F1 scores (%) for RC tasks on the 4 datasets in the fully supervised setting. “w/o ConAtt” denotes using
manually Prefix template and soft verbalizer. “w/o Prototypes” denotes that the cluster is rely on the verbalizer.
“w/o Siamese” denotes that the input of Prefixs template only maintain instance and selected contrastive attribute.

TACRED TACREV ReTACRED

8 16 32 8 16 32 8 16 32

Fine-Tuning (Ours) 12.2 21.5 28.0 13.5 22.3 28.2 28.5 49.5 56.0
PTR (Han et al., 2021) 28.1 30.7 32.1 28.7 31.4 32.4 51.5 56.2 62.1

CCPrefix (Ours) 30.1 33.4 37.6 29.8 33.0 34.0 54.5 61.4 65.2

w/o ConAtt in §2.2 18.1 29.6 32.6 18.1 29.0 32.7 41.1 55.5 64.1
w/o Prototypes in §2.2 28.5 33.1 36.3 30.4 31.7 33.2 54.2 56.3 62.1
w/o Lcon in Eq.5 28.2 33.2 37.3 28.9 32.1 33.8 53.5 59.7 64.4
w/o Siamese in §2.3 23.8 33.1 32.9 27.9 30.4 33.2 50.6 57.7 63.4

Table 3: F1 scores (%) for RC tasks in the few-shot setting. We use K = 8, 16, 32 for few-shot settings.

2020). For RC and TC tasks, our model is based
on ROBERTALARGE (Liu et al., 2019), while for
ET, it is based on BERTBASE (Devlin et al., 2019).
Adam optimizer (Kingma and Ba, 2015) is used
for all datasets, where the learning rate is manually
tuned ∈ {1e-5, 3e-5, 5e-5 }, and the decay rate
is set to 1e-2, and the batch size is set to 16. For
the fully-supervised setting, the epoch is 5 while
for few-shot setting, it is 30. The best model is
selected based on the performance on the devel-
opment set. We select top-m attributes as prefix,
where m = |R| − 1.

3.4 Comparison Methods

We mainly compare CCPrefix with several rep-
resentative methods in many-class classification
tasks, including learning-from-scratch methods,

fine-tuning methods and Prefix-tuning methods. 1)
C-GCN (Zhang et al., 2018) is a learning-from-
scratch based on graph neural networks for relation
classification. 2) For fine-tuning vanilla PLMs, we
directly select ROBERTALARGE as our baselines
for relation classification. 3) Since entity informa-
tion is crucial in relation classification, we select
SPANBERT (Joshi et al., 2020), KNOWBERT
(Peters et al., 2019) and LUKE (Yamada et al.,
2020) as our baselines. 4) We select PTR (Han
et al., 2021), a prompt augmentation model, for
relation classification. 5) For topic classification
and entity typing, our baselines are ProtoVerb (Cui
et al., 2022) that uses manual prompts, and PETAL
(Schick et al., 2020) that extracts words as prompts.

2982



DBPedia FewNERD

1 2 4 8 16 1 2 4 8 16

PETAL (Schick et al., 2020) 60.06 78.21 86.40 88.41 92.90 20.88 31.28 43.10 50.78 55.49
ProtoVerb (Cui et al., 2022) 72.85 85.49 90.91 95.75 96.30 25.00 35.72 48.28 56.06 61.29

CCPrefix (Ours) 84.02 93.26 95.17 97.66 98.45 22.78 32.47 51.49 58.54 63.38

Table 4: Few-Shot TC & ET performance of F1 scores (%) on the DBPedia and FewNERD datasets. We use
K = 1, 2, 4, 8, 16 for few-shot settings.

3.5 Main Quantitative Evaluation

We compare CCPrefix with several recent methods
to conduct an in-depth analysis.

Fully Supervised Setting As indicated in Ta-
ble 2, CCPrefix significantly outperforms for-
mer baselines, even surpassing KNOWBERT and
LUKE that leverage external task-specific knowl-
edge to enhance models. Compared to PTR (Han
et al., 2021), which manually constructs logic rules
as the prompt, CCPrefix even outperforms. Such
comparison indicates that the unique task-related
information to form a unique prefix can better stim-
ulate task-specific knowledge in PLMs.

Few-Shot Setting To further assess our model,
we evaluate CCPrefix in few-shot settings. For re-
lation classification, as shown in Table 3, CCPrefix
outperforms PTR, with an average improvement
of 6.6% on ReTACRED. For topic classification,
as shown in the left panel of Table 4, CCPrefix
exceeds PETAL and ProtoVerb by a large margin.
Specifically, in the extreme data scarce scenario
(K = 1, 2), our model surpasses ProtoVerb by
15.3% and 9.1%. This demonstrates that, if the
class labels are semantically diverse, our model
is capable of acquiring sufficient knowledge from
the PLM even in this limit. For entity typing, our
model exceeds former baseline in several scenar-
ios (K = 4, 8, 16) but not good when training in-
stances are extremely scarce (K = 1, 2). We in-
fer that for fine-grained entity typing, although our
model can cancel out most of the attributes between
two classes sharing the same coarse class with sub-
tle differences in semantics (e.g., ‘building-theater”
and “building-library” are under type “building”),
it is hard to discriminate such contrastive attributes
in extreme data scarce scenario.

3.6 Ablation Study

We carry out an ablation study on relation classifica-
tion datasets to further investigate the effectiveness
of each component in CCPrefix, as detailed in the

Relation Top selected counterfact
per:siblings per:title
per:parents per:countries_of_residence
org:dissolved org:member_of
per:origin org:dissolved
per:children per:country_of_birth
per:city_of_birth per:city_of_death
per:employee_of per:countries_of_residence
per:religion per:city_of_death
org:alternate_names org:founded_by
per:cause_of_death per:country_of_death
org:website org:members

Table 5: The top selected counterfactual relation learned
by the model for some relation types.

bottom panel of Table 2 and Table 3. “w/o ConAtt”
causes more performance degradation in the few-
shot setting than in the fully supervised one, which
indicates that contrastive attributes can further stim-
ulate the knowledge in PLMs. For “w/o Proto-
types”, attribute-verbalizer similarities are used
as the selection criteria, causing a significant per-
formance drop due to noise attributes, although it
slightly outperforms CCPrefix in TACREV under
K=8. Contrastive attributes, derived from map-
ping text through all possible fact-counterfactual
pairs, may contain overlapped semantic informa-
tion, especially in scenarios where K=8. Thus,
solely relying on their semantics for prototype to
constraint could be ineffective or even detrimental
to model performance. “w/o Lcon” has less per-
formance reduction in the few-shot setting than
that in the fully supervised setting. We infer that
the unbalanced training data distribution may hurt
the performance significantly. The performance
of “w/o Siamese” drops severely in the extreme
data scarce scenario (K = 8), indicating that sim-
ple representation learning can force the PLMs to
focus on the valid contrastive attributes in prefix.

3.7 Selected Counterfact

Since the prefix are instance aware, we limit our
analysis to a subset of 7K instances in the test set
that could be correctly classified. For each relation
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y∗=per:city_of_birth (y∗, y’)=per:city_of_birth, per:city_of_death

Gross , a 60-year-old native of

Potomac , Maryland , was working

for a firm contracted by USAID

when he was arrested Dec 3 ,

2009 , and sent to Cuba ’s

high-security Villa Marista prison
.

Gross , a 60-year-old native of

Potomac , Maryland , was working

for a firm contracted by USAID

when he was arrested Dec 3 ,

2009 , and sent to Cuba ’s

high-security Villa Marista prison
.

Figure 4: The highlighted tokens of the same sentence where the two entities are underscored. On the left, the
tokens are projected onto the ground truth y∗=per:city_of_birth, and on the right onto the contrastive space between
y∗ and the counterfactual y’=per:city_of_death.

type, we count the most frequently selected coun-
terfactual relation. Part of the results are shown
in Table 5. It is notable that most of the time the
model can match a pair per relations, or a pair
of org relations. Also, the model prefers to se-
lect two relation types semantically correlated but
with subtle differences. For example, for relation
per:city_of_birth or org:dissolved, the correspond-
ing contrastive attribute factor is per:city_of_death
or org:member_of, respectively.

3.8 Case Study
To analyze the influence of individual tokens on
model prediction, we conduct a case study on the re-
lation per:city_of_birth between entities “he” and
“Potomac”. “Potomac”, as depicted in Figure 4. We
compute the similarity between each word and the
fact y∗=per:city_of_birth, as well as the contrastive
attribution factor between y∗=per:city_of_birth and
y’=per:city_of_death. For clarity, words with simi-
larity scores exceeding the average are highlighted.
For clarity, in both cases, we only highlight the
words with similarity score that are greater than
the average similarity score. Our results reveal that
the contrastive attribute factor yields concentrated,
key determinant highlights such as “native of”. In
contrast, using y∗ alone results in scattered high-
lights, diverging from human expectations of the
significant predictors.

3.9 Error Analysis
Our model operates under the strong assumption
that all labels, save for the golden one, act as
counterfactuals of the golden label. This hypoth-
esis neglects the semantic correlations and over-
laps among different classes, potentially impacting

model performance. This issue is especially ap-
parent in the entity typing task, where fine-grained
entity types may semantically overlap, thereby chal-
lenging our assumption. When class labels pos-
sess subtly distinct semantics, more data is needed
to construct valid contrastive attributes. This can
cause model performance to drop in scenarios of ex-
treme data scarcity, like with the FewNED dataset
at K = 1, 2. For the entity-centric classification
tasks, when the sample has multiple entities, it is
possible that the selected contrastive attributes are
mismatched with the targeting entity, thus leading
to misprediction.

3.10 Remark: Significance in the Context of
Evolving Language Models

Our work, grounded in the era of BERT-style mod-
els, holds substantial relevance in the rapidly evolv-
ing landscape of language models, including the ad-
vent of newer architectures like OPT and LLaMA.
The core innovation of CCPrefix — the use of
counterfactual contrastive prefix-tuning for many-
class classification — transcends the specificities of
the underlying language model architecture. This
method addresses a fundamental challenge in natu-
ral language processing: the ambiguity in verbal-
izer choice and the complexity of many-class clas-
sification. As newer models like OPT and LLaMA
continue to push the boundaries of language un-
derstanding and generation, they inherently inherit
similar challenges. Our approach, therefore, may
contribute a valuable technique that can be adapted
and extended to these newer architectures.

By leveraging counterfactual reasoning and con-
trastive learning, CCPrefix enhances a model’s abil-
ity to discern subtle language variations and ambi-
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guities, which are often overlooked in traditional
classification tasks. This enhanced understanding
is crucial in applications requiring a deep compre-
hension of context, sentiment, and nuanced lan-
guage cues. Thus, while our experiments and im-
mediate results are contextualized within the BERT-
style framework, the implications and potential ap-
plications of CCPrefix extend far beyond. It repre-
sents a significant stride in the ongoing journey of
language model development, underscoring its en-
during significance in the field. Our work not only
provides a strategic direction for improving clas-
sification performance, especially in many-class
scenarios, irrespective of the foundational model
but also suggests a pathway for future research and
development in AI, particularly in enhancing the
adaptability and efficiency of language models in
complex, real-world applications.

4 Related Work

Prefix Tuning in Classification. The templates
can be categorized into two groups, i.e., discrete
prompt (Brown et al., 2020; Schick et al., 2020;
Schick and Schütze, 2021) and continuous prefix
(Lester et al., 2021; Li and Liang, 2021). Dis-
crete prompts often manually designed for all train-
ing instances with task descriptions. Han et al.
(2021) leverage manual logic rules to combine
label-related sub-prompts together. Although it
is a concrete manifestation of human’s interpreta-
tion of the task, discrete prompts may not be the
optimal solution. Continuous prefixes (Lester et al.,
2021; Li and Liang, 2021), attached to instances,
have proven useful but fail to fully capture the di-
versity of training instances. Though it has shown
its merits, the shared prefix has ignored the diver-
sity of training instances and has no contribution
to discriminating the label space. Our work in-
spired by the human decision process, introduces
an instance-dependent prefix, better addressing the
discrimination of label space.

Verbalier in Classification. Reformulating prob-
lems as language modeling tasks have been ex-
plored in few-shot scenarios (Brown et al., 2020;
Trinh and Le, 2018; Petroni et al., 2019; Davi-
son et al., 2019). Manually defining the required
mapping word for the cloze-style task between the
model’s predication and labels is difficult as it re-
quires expert knowledge. Thus making automatic
verbalizer search (Schick et al., 2020; Schick and
Schütze, 2021) an appealing alternative. This ap-

proach iteratively enhances the label-to-word map-
ping in a greedy fashion.

Counterfactual Contrastive. Explanation of ar-
tificial intelligence is widely concerned in recent
years. Miller (2019) presents the philosophical
foundations of explanation that human relies on
the contrastive explanations. Jacovi et al. (2021)
highlights the attributes in the latent space to pro-
vide fine-grained explanation of model decision.
Furthermore, Ross et al. (2021) produces con-
trastive explanations by editing the inputs for the
contrast case while Gardner et al. (2020) uses
it for evaluation. Paranjape et al. (2021) builds
contrastive prompts with instance-specific infor-
mation for explanation. Zhang et al. (2020) em-
ploys contrastive counterfactuals with the multi-
instance framework for vision-language ground-
ing. Kaushik et al. (2020) tasks humans with re-
vising dataset to revise the dataset with counter-
factuals. Meanwhile, Yang et al. (2021) produces
high-quality augmented data with counterfactuals
to overcome out-of-distribution data in the field.
Due to the strong explanation of counterfactual, we
leverage counterfactual to disambiguate the seman-
tic overlap between labels.

5 Conclusion

In this paper, we propose a novel task-agnostic ap-
proach named CCPrefix. We sequentially construct
fact-counterfacutal pairs to extract the attributes
from the sample. With a set of global prototypes,
the valid contrastive attributes will be selected as
the prefix. A simple Siamese represeatation learn-
ing is employed to stable the training process. The
experiment results verify the superiority of our
model without extra data and human experts for
manually designing Prefix templates. While our
approach proves flexible for a broad spectrum of
tasks in NLP, adapting it to Causal Language Mod-
els (CLMs) presents operational challenges. We
are committed to this exploration, recognizing its
potential impact. We’re also extending our work to
include contrastive methods in CLMs for Relation
Extraction tasks, aiming to increase our method’s
applicability across various models and tasks. This
exploration signifies our method’s potential for fur-
ther expansion and adaptation in the field.

Limitations

A principal limitation of our CCPrefix model is
the strong assumption it makes in the classifica-
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tion task: it regards all labels other than the gold
standard as counterfactuals. This premise may not
consistently hold true, particularly in scenarios in-
volving hierarchical labels with overlapping seman-
tics. This assumption may impact the performance.
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