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Abstract

Event Extraction is a crucial yet arduous task
in natural language processing (NLP), as its
performance is significantly hindered by labo-
rious data annotation. Given this challenge,
recent research has predominantly focused on
two approaches: pretraining task-oriented mod-
els for event extraction and employing data aug-
mentation techniques. These methods involve
integrating external knowledge, semantic struc-
tures, or artificially generated samples using
large language models (LLMs). However, their
performances can be compromised due to two
fundamental issues. Firstly, the alignment be-
tween the introduced knowledge and event ex-
traction knowledge is crucial. Secondly, the
introduction of data noise during the augmenta-
tion is unavoidable and can mislead the model’s
convergence. To address these issues, we pro-
pose a Contrastive Event Aggregation Network
with LLM-based Augmentation to promote
low-resource learning and reduce data noise
for event extraction. Different from the exist-
ing methods introducing linguistic knowledge
into data augmentation, an event aggregation
network is established to introduce event knowl-
edge into supervised learning by constructing
adaptively-updated semantic representation for
trigger and argument. For LLM-based augmen-
tation, we design a new scheme including a
multi-pattern rephrasing paradigm and a data-
free composing paradigm. Instead of directly
using augmentation samples in the supervised
task, we introduce span-level contrastive learn-
ing to reduce data noise. Experiments on the
ACE2005 and ERE-EN demonstrate that our
proposed approach achieves new state-of-the-
art results on both of the two datasets.

1 Introduction

Event Extraction, as a fundamental task of infor-
mation extraction, aims at acquiring structured in-
formation about periodical incidents from plain
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text (Li et al., 2021b; Gao et al., 2023a; Liu et al.,
2022a). As shown in Figure 1a, it is usually accom-
plished by trigger extraction and argument extrac-
tion. Most of the methods are based on supervised
learning, which require adequate high-quality la-
beled data. However, data annotation is usually ar-
duously expensive, which means only insufficient
data can be used to train a supervised model. In
such low-resource scenarios, event extraction mod-
els often suffer from poor performances, especially
when facing the hard samples with rare patterns.

To alleviate data sparsity, some methods lever-
age large-scale unsupervised data with pretraining
tasks such as semantic structure analysis (Wang
et al., 2021; Fan et al., 2022). For such methods,
a crucial and challenging issue is the alignment
between rich knowledge lying in unsupervised data
and event knowledge. Alternatively, data augmenta-
tion methods are proposed by rephrasing the event-
related fragments and adjunct fragments, which are
lexically different but semantically consistent. As
shown in Figure 1b, token-level augmentations are
based on linguistic knowledge such as synonym
replacement, which results in limited diversity im-
provement. Sentence-level augmentations use text
generation techniques such as back translation to
produce more diverse samples. With recent suc-
cess on text generation, LLMs can be introduced
for more flexible and diverse augmentation. Mean-
while, data noise is unavoidably expanded. Subtle
lexical changes in token-level possibly result in
event structure deviations. New events can be un-
expectedly introduced by sentence-level augmen-
tation without annotated. In supervised learning,
model’s convergence can be misled by data noise in
the training data. However, few existing studies of
event extraction focus on the data noise alleviation.

This paper proposes a Contrastive Event Aggre-
gation Network with LLM-based Augmentation
(CEAN). Firstly, we establish an event aggrega-
tion network with a knowledge bank by construct-
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Leaving to Singapore, she is going to attend a summit on AI with the local officials.

Trigger Destination Agent 

Place Entity Entity Trigger 

Event Type: Transport-Movement 

Event Type: Contact-Meet 

(a) Event Extraction (b) Data Augmentation

Figure 1: Examples of event extraction and data augmentation. In (a), the event-related fragments (the triggers and
arguments) are marked in red and blue. The adjunct fragments are underlined. In (b), token-level and sentence-level
augmentation are demonstrated where the rephrased fragments are underlined. Cleaned and noisy augmentation are
marked in green and purple. By replacing the “to” with “from”, the role of “Singapore” deviates from “Destination”
to “Origin”. By using “retired” in the rephrasing, a new event of “End-Postion” is unexpectedly introduced.

ing adaptively-updated semantic representation for
trigger and argument. The knowledge bank is to
store and aggregate the event-related knowledge
extracted from both the original and augmented
samples. The event aggregation module of the
network activates the aggregated knowledge and
aligns it with the event extraction task. Secondly,
we propose an LLM-based augmentation method
with a rephrasing paradigm by paraphrase gener-
ation and a composing paradigm relying on event
schema, which enables precise control of seman-
tic and lexical diversity metrics. Thirdly, instead
of using the generated samples to train a super-
vised model directly, we introduce a span-level
contrastive learning loss function which transforms
the supervised learning process into a similarity
measurement on triggers and arguments to reduce
data noise. ACE2005 and ERE-EN, two bench-
marks of event extraction, are used to validate our
approach which reaches F1-score of 82.5%, 61.5%
and 67.7%, 55.4% in trigger classification and ar-
gument role classification on the two datasets.

We summarize our contributions as belows:
• An event aggregation network is established to

mitigate the data sparsity by event knowledge
aggregation.
• A new LLM-based augmentation method is

proposed including a multi-pattern rephras-
ing paradigm and a data-free composing
paradigm. A span-level contrastive learning
strategy is proposed to alleviate data noise.
• New state-of-the-art results are achieved on

ACE2005 and ERE-EN. Each contribution is
validated through the ablation study.

2 Related Work

Traditional extraction studies are based on elabo-
rate feature engineering (Ji and Grishman, 2008;
Liao and Grishman, 2010), which are replaced by

deep learning-based methods with Convolutional
Neural Network (Nguyen and Grishman, 2015,
2016), Recurrent Neural Network (Nguyen et al.,
2016; Sha et al., 2018), Transformer (Ren et al.,
2021; Li et al., 2021a; Wadden et al., 2019; Lin
et al., 2020; Wang et al., 2021; Lu et al., 2021; Fan
et al., 2022; Shi et al., 2023) etc. According to the
procedure of trigger and argument extraction, exist-
ing studies can be classified into pipeline-based and
joint-based methods, which arrange the two extrac-
tion subtasks either in a serial or parallel paradigm,
respectively (Li et al., 2022, 2021b). Mostly, the
extraction task can be solved in classification man-
ner or generative manner (Li et al., 2021b). For
classification manner, the typical studies employ
transformer-based encoder with modules such as
feed forward network (Yang et al., 2019a) or global
pointer (Su et al., 2022; Zhang et al., 2023; Cao
et al., 2022; Ning et al., 2023) to conduct token
classification or sequence labeling. For generative
manner, many approachs with transformer decoder
architecture are recently proposed to solve the ex-
traction tasks by machine reading comprehension
or sequence-to-structure generation (Lu et al., 2021;
Liu et al., 2022b; Shi et al., 2023). With the surge in
popularity of LLMs especially ChatGPT (Ouyang
et al., 2022), some research has attempted to con-
duct zero-shot or few-shot event extraction by har-
nessing the powerful capabilities of LLMs, only
achieving unsatisfactory performances (Gao et al.,
2023b; Wei et al., 2023; Li et al., 2023).

To tackle the data sparsity, unsupervised pretrain-
ing on tasks such as abstract meaning representa-
tion are explored (Wang et al., 2021; Fan et al.,
2022). Additionally, data augmentations are con-
ducted by external knowledge introduction (Chen
et al., 2017; Liu et al., 2016; Yang et al., 2019b),
mask token prediction (Yang et al., 2019a), back-
translation (Xie et al., 2020), blank infilling (Gao
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et al., 2023a) etc. Recenet studies prove that token-
level augmentation can only bring poor diversity
improvement (Gao et al., 2023a), and possibly re-
sults in event information deviation (Yang et al.,
2019a). Sentence-level augmentation can better
improve diversity, but also unavoidably bring data
noise (Gao et al., 2023a). Recent studies introduce
LLMs in sentence-level augmentation and receive
performances improvement (Bonifacio et al., 2022;
Whitehouse et al., 2023; Dai et al., 2023). Retrieval-
based methods are also proposed for low-resource
learning of information extraction (Huang et al.,
2023; Chen et al., 2022).

3 Contrastive Event Aggregation
Network

This section describes our proposed model CEAN
for closed-domain event extraction. Detailed archi-
tecture is introduced as two parts, event aggregation
network and span-level contrastive learning. The
proposed approach is in pipeline-based paradigm,
with only minor differences in model architecture
and training methods for trigger and argument ex-
traction. Therefore, we use the notations with a
superscript of ∗ to represent the layers, tensors or
functions that occur in both trigger and argument
extraction. The notations marked with a superscript
of T or A are specifically used for trigger extraction
or argument extraction, respectively. Data-related
notations are summarized in Table 1.

3.1 Event Aggregation Network

As illustrated in Figure 2, our proposed event aggre-
gation network is comprised of an encoder for con-
textual representation, an event aggregation mod-
ule for knowledge introduction and a global pointer
module for event-related fragment extraction. The
event-related fragment to extract is the trigger span
and argument span in trigger and argument extrac-
tion, respectively.

3.1.1 Text Encoder for contextual
representation

A transformer-based deep encoder is used for con-
textual embedding. Given s, the encoder trans-
forms it into H∗

s ∈ Rn×v, which is shown in Eq.1.

H∗
s = {h1, ..., hn} = Enc∗(s) (1)

where Enc∗ is the text encoder; hi ∈ Rv is the
representation vector of the ith token and v is the
hidden dimension of the encoder.

3.1.2 Event Aggregation Module for
knowledge introduction

It has been proven that low-resource learning can
be promoted by the introduction of external knowl-
edge (Chen et al., 2017; Liu et al., 2016). Few of
studies focus on sample-wise knowledge, which
means knowledge is not built by a carefully se-
lected knowledge base but is discovered from the
interactions among samples. An event aggregation
module is proposed to better represent the event
knowledge in sample-wise with contextual infor-
mation. It includes a span expanding matrix to
represent every possible span with contextual in-
formation, a knowledge bank to derive the centroid
of each event type or argument role, and an event
consistency layer to evaluate the semantic distance
between a span and each centroid. We first in-
troduce the event aggregation module for trigger
extraction, then the argument extraction.

Trigger Extraction Given s, a span expanding
matrix JT ∈ Rn×n×2v is built to generate represen-
tations for all possible 1

2

(
n
2

)
spans, which means

only the upper triangular of JT is valid. For each
element in JT , JT [x, y] is defined as the text en-
coder representation for s[x : y], which is derived
by Eq 2.

JT [x, y] = (hx ⊕ hy), x ≤ y (2)

where JT [x, y] is the concatenation of hx and hy.
A knowledge bank KT

EA ∈ Rm×2v is built for all
event types as event knowledge aggregation, which
is shown in Eq.3.

KT
EA = {K1, ...Km} (3)

where each element Ke ∈ R2v denotes the repre-
sentation centroid of all triggers with same event
type e, derived by Eq.4.

Ke =
1

||Te||
∑

t∈Te

(hhead(t) ⊕ htail(t)) (4)

where hhead(t) and htail(t) denote the text encoder’s
output of the head and tail tokens of trigger t.

A consistency layer W T
EA is leveraged to weight

the consistency between each span and each event
type, which is a linear layer sharing the same shape
with KT

EA in this paper. W T
EA is initialized by

KT
EA and updated in a momentum manner, which

is introduced in § 3.3. The consistency between a
span s[x : y] and an event type e is scored by Eq.5.

cT = W T
EA[e]J

T [x, y] (5)
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Figure 2: The architecture of Event Aggregation Network, including a text encoder, an event aggregation module
and a Global Pointer module. In this figure, the workflow of trigger extraction is illustrated, where the input format
of text encoder is “[CLS] + Sentence + [SEP]”. In argument extraction, the architecture is slightly different which is
introduced in § 3.1.2, while the input format of text encoder is “[CLS] + Sentence + [SEP] + EventType + [SEP]”.

Symbol description
s = {t1, ..., tn} A sequence with n tokens.
s[x : y] = {tx, ..., ty} A span of s with a start index x and an end index y.
E,R The universial sets of event type and role in event extraction schema.
m, l Numbers of event types and argument roles in event extraction schema
Te, Ar All the triggers and arguments labeled with event type e and role r in dataset.

Table 1: Notation Table

Argument Extraction The event aggregation
module of argument extraction is basically similar
with trigger extraction with following differences.
For span expanding matrix JA of argument extrac-
tion, an element JA[x, y] denotes the representa-
tion difference between s[x : y] and the trigger t in
the context, as shown in Eq. 6.

JA[x, y] = hhead(t) ⊕ htail(t) − hx ⊕ hy (6)

For knowledge bank KA
EA ∈ Rl×2v of argument

extraction, each element Kr ∈ R2v denotes the
representation difference between all the arguments
with role r and their triggers, derived by Eq. 7.

Kr =

∑
a∈Ar

(hhead(t) ⊕ htail(t) − hhead(a) ⊕ htail(a))

||Ar||
(7)

where t denotes the trigger in the context of a;
hhead(a) and htail(a) denote the text encoder’s out-
put of the head and tail of argument a.

For consistency layer WA
EA ∈ Rl×2v of argu-

ment extraction, we also introduce a linear layer
to weight the consistency between each span and
each role. The KA

EA is also used to initialize and
update the WA

EA in argument extraction. In ad-
dition, an extra term is introduced to weight the
relevance between a span and a trigger by dot prod-
uct between their representations. The consistency

between s[x : y] and role r with the trigger t is
scored by Eq.8.

cA = WA
EA[r]J

A[x, y]+

WA
b [r][hhead(t) ⊕ htail(t)] · [hx ⊕ hy]

(8)

where WA
b ∈ Rl is a liner layer to balance the two

terms.

3.1.3 Global Pointer Module for span
extraction

We take trigger extraction and argument extrac-
tion as sequence labeling-based tasks, and adopt
Global Pointer (GP) (Su et al., 2022), a widely-
used model for sequence labeling, in CEAN. Given
s, GP scores if s[x : y] can be extracted as an
event-related fragment of o by Eq. 9.

GP ∗(s)[x, y, o] = (W ∗
p hx)

⊤(W ∗
q hy) + γ∗[o](hx ⊕ hy)

(9)

where o denotes an event type in event extraction or
an argument role in argument extraction. GP ∗(s)
is the global pointer module’s output matrix for
the given input s, which is GP T (s) ∈ Rn×n×m in
trigger extraction and GPA(s)n×n×l in argument
extraction. Wp and Wq are the parameters for the
start and end projections, which are W T

p ,W T
q ∈

Rv×d in trigger extraction and WA
p ,WA

q ∈ Rv×d
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in argument extraction. Here, d is the projection
dimension. γ is the classification weight, which is
γT ∈ Rm×2v in trigger extraction and γA ∈ Rl×2v

in argument extraction.
Our proposed event aggregation network works

by the linear combination of Event Aggregation
Module and Global Pointer Module. Given s,
Event Aggregation Network uses Eq. 10 to score
if s[x : y] can be extracted as an event-related frag-
ment of o.

EA∗(s)[x, y, o] = GP ∗(s)[x, y, o] + c∗ (10)

where EA∗ is the output of the event aggregation
network, which is EAT in trigger extraction and
EAA in argument extraction. Here, EAT is de-
rived by the sum of GP T and cT , while EAA is
derived by the sum of GPA and cA.

With EA∗(s), we use L∗
SL to denote the super-

vised loss function in trigger and argument extrac-
tion, which is Multilabel Categorical Cross En-
tropy (Su et al., 2022) in Eq. 11.

L∗
SL =

1

||O||
∑

o∈O

[log (
∑

i∈Ω
pos
o

e(−EA∗(s)[xi,yi,o]) + 1)

+ log (
∑

j∈Ω
neg
o

e(EA∗(s)[xj ,yj ,o]) + 1)]
(11)

where O is E in trigger extraction and R in argu-
ment extraction. Ωpos

o ,Ωneg
o are all the spans that

labeled and not labeled as an event-related frag-
ment of o, with ||Ωpos

o ||+ ||Ωneg
o || = 1

2

(
n
2

)
;

3.2 Span-level Contrastive Learning
Directly using augmented samples with noise as
training data for supervised learning can mislead
the model convergence. Thus, we propose a span-
level contrastive learning loss function which trans-
forms the supervised learning process on the whole
augmented sentences into a similarity measurement
on triggers and arguments. This can help the train-
ing process to be better shielded from augmented
noise such as incorrect or incomplete mislabelings.
Data augmentation is introduced in § 4.

Given a sample s from the original dataset, s+

is the sequence of a positive sample derived from
augmentation; S− are sequences of negative sam-
ples, chosen from the same minibatch, which are
labeled with event types or argument roles different
from those of s. We use s[xo : yo] and s+[x+o , y

+
o ]

to denote the event-related fragment of o in the
original and augmented positive samples, and use

s−[x−o , y
−
o ] to denote the spans not labeled as event-

related fragment of o from the negative samples.
We define L∗

CL as the contrastive loss function
which is shown in Eq.12.

L∗
CL =

KL(D∗(s, xo, yo, o), D
∗(s+, x+

o , y
+
o , o))

[

∑
s−∈S− KL(D∗(s,xo,yo,o),D∗(s−,x−

o ,y−
o ,o))

||S−|| ]

(12)

where KL denotes the Kullback-Leibler diver-
gence. D∗(s, x, y, o) is the probability distribution
that s[x : y] can be extracted as an event-related
fragment of o, which is described as Bernoulli dis-
tributions shown in Eq. 13.

D∗(s, x, y, o) ∼ BN(σ(EA∗(s)[x, y, o])) (13)

where the σ denotes the sigmoid function and the
BN denotes the Bernoulli distribution.

Algorithm 1 Training Process of CEAN.

Input: Original training dataset S and augmenta-
tion dataset S+; A pre-trained text encoder θ0;
Nums of the training epoch N and batch size
bs; Hyperparameters α, β;

Output: θ∗N ,W ∗
GP = {W ∗

p ,W
∗
q , γ

∗},W ∗
EA (and

WA
b );

1: Randomly intialize the parameter of W ∗
GP ;

2: for i = 1→ N do
3: Calculate K∗

EA with θ∗i−1, S, S
+;

4: if i = 1 then
5: W ∗

EA ← K∗
EA

6: else
7: W ∗

EA ← βW ∗
EA + (1− β)K∗

EA

8: end if
9: for j = 1→ (N//bs) do

10: Get the original samples Sj ;
11: Select positive samples S+

j from S+;
12: Select negative samples S−

j from Sj ;
13: Calculate the output of EAN to Sj and

S+
j with θ∗i−1,W ∗

GP ,W ∗
EA (and WA

b );
14: Calculate L∗

SL by Sj ;
15: Calculate L∗

CL by Sj , S+
j and S−

j ;
16: Calculate L∗

sum by L∗
SL and L∗

CL;
17: Use L∗

sum to update the parameters
θ∗i ,W ∗

GP ,W ∗
EA (and W ∗

b ) by back propogation;
18: end for
19: end for

3.3 Training Contrastive Event Aggregation
Network

Finally, the CEAN is trained with the weighted
sum loss between the L∗

SL in Eq. 11 and the L∗
CL
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Step 1: Patterns Discovery Step 2: Rephrasing & Composing Step 3: Evaluation

Figure 3: The flowchart of LLM-based data augmentation with three steps. The ph, pv , pc, pr and x in prompts are
marked in black, red, blue, green and purple respectively. Each time we construct a prompt, we firstly sample a
pattern for pv , according to the occurance frequency in step 1.

in Eq. 12, which is shown in Eq.14.

L∗
sum = L∗

SL + αL∗
CL (14)

where the α is a hyperparameter to balance them.
The entire training process can be clearly illustrated
by Algorithm 1.

During training process, the W ∗
EA is basically

updated by back propogation algorithm along with
the text encoder and the Global Pointer module.
Since the parameters of the encoder is updated, the
K∗

EA accordingly changes. Thus, the W ∗
EA is ad-

ditionally updated in a momentum manner before
each epoch, which can be illustrated by Eq.15.

W ∗
EA ← βW ∗

EA + (1− β)K∗
EA (15)

where K∗
EA denotes the knowledge bank output by

the text encoder after the (i− 1) epoch, β ∈ [0, 1]
is the momentum coefficient hyperparameter.

4 LLM-based Data Augmentation

This section describes LLM-based data augmenta-
tion shown in Figure 3. The paraphrase patterns
and the prompt engineering for two paradigms are
introduced, followed by evaluation metric.

4.1 Paraphrase Patterns
Lexical diversity can be improved by various pat-
terns in word-level or sentence-level (Gao et al.,
2023a). We firstly leverage an LLM to automati-
cally discover paraphrase patterns on Parabank (Hu
et al., 2019), a large-scale paraphrase dataset. Ac-
cording to the frequency, main patterns include syn-
onym replacement and transformations on tense,
part of speech, voice and sentence structure, from
token-level to sentence-level. Prompts are accord-
ingly designed to instruct an LLM to rephrase or
compose samples based on main patterns.

Fragment Function

x
An original sentence for rephrasing
or an event structure for composing.

pv
Instruct the LLM to generate text
with a given pattern discovered in § 4.1.

pc
Inform the LLM of the event structure
to preserve after rephrasing.

pr
Instruct the LLM to annotate triggers
and arguments on the generated sentence.

ph
Role prompting fragment instructing
an LLM to impersonate an expert.

Table 2: Prompt engineering for LLM-based data aug-
mentation. The pc is only necessary in the rephrasing
paradigm while the others are shared by two paradigms.

4.2 Prompt Engineering for Two Paradigms

The proposed data augmentation scheme includes
a rephrasing paradigm and a composing paradigm.
The former one makes word-level or sentence-level
modifications on original samples while the lat-
ter one composes entirely new sample with given
event description. They are conducted by prompt
engineering with the fragments of x, pv, pc, pr, ph
listed in Table 2, whose examples are provided by
Table 5 in § A. Augmented samples from the two
paradigms are collected as augmented candidates.

4.3 Evaluation Metrics

For the augmentation candidates in § 4.2, we eval-
uate them from semantic consistency and lexical
diversity. For semantic consistency evaluation, we
introduce the pre-trained text encoder in Eq. 1, us-
ing “[CLS]” tokens as sentence representations.
For lexical diversity evaluation, word-level Leven-
shtein Distance is used. Given candidate s′ with
event type e, the semantic consistency and lexical
diversity are calculated by Eq. 16 and 17.
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Con(s′, e) = min
s∈De

(
cosine(Hs′ [CLS], Hs[CLS]) + 1

2
)

(16)

DIV (s′, e) = min
s∈De

(
LD(s′, s)

||s′|| ) (17)

where De denote all the original samples labeled
with e; the LD(·) denotes the word-level Leven-
shtein Distance. Samples with high lexical diver-
sity and high semantic consistency are desired, so
the evaluation function is defined as Eq. 18.

ϕ(s′, e) = Con(s′, e) + λDIV (s′, e) (18)

where λ is a coefficient to balance them. Eq 18
is used to select samples from the candidates of
rephrasing and composing paradigms separately.
We use ρ to denote the number ratio of the rephras-
ing samples and the composing samples.

5 Experiment

5.1 Dataset and Evaluation Criteria
To validate our contributions, experiments are per-
formed on the ACE05-E+ and ERE-EN datasets,
both of which contain multi-token event triggers
and pronoun roles. For a fair comparison, both
dataset split and evaluation criteria align with the
previous work (Lin et al., 2020). The ACE05-E+

dataset, with a schema of 33 event types and 22
roles, is split into a training set, a validation set
and a test set with 4419, 468 and 424 events. The
ERE-EN dataset, with a schema of 38 event types
and 21 roles, is split into a training set, a validation
set and a test set with 6208, 525 and 551 events.
Other information of the datasets is listed in Ta-
ble 6 in § A. In the experiments, the result of trigger
classification(Tri-C) are used as input features in
argument role classification(Arg-C). The metrics of
Precision(P ), Recall(R) and F1-score(F1) are cal-
culated based on the following criteria while the F1
of each task is the pivital metric for comparison.

• A trigger is correctly classified if its offset and
event type match the golden label.

• An argument is correctly classified if its offset,
event type and role match the golden label.

5.2 Expermental Setup
Computational facilities and software environment
used for the experiments is listed by Table 7 in § A.
Hyperparameter selections are listed by Table 8
in § A. A pre-trained MPNet-BASE (Song et al.,
2020) is used as the text encoder. The Adam op-
timizer (Kingma and Ba, 2017) is used for model

training. To derive the augmentation dataset, we
firstly generate a candidate dataset which is 4 times
size of the original dataset D0 by using text-davinci-
003 (Ouyang et al., 2022) in our augmentation
scheme. Then, the candidate samples are sorted
by Eq 18 while only the high-scoring samples are
retained. We set the retaining proportion to 12.5%,
25% and 50%. Based on the performances on vali-
dation set, we select 25% to produce an augmenta-
tion dataset DA, sharing the same size of D0. To
further demonstrate our LLM-based data augmenta-
tion scheme, two extra augmentation datasets DSR

and DMTP , sharing the same size with DA, are pro-
duced by synonym replacement and masked token
prediction which are listed by Table 9 in § A. For
reproducibility, experiments are performed under 3
random seeds and the medium result is chosen for
overall performance comparison.

5.3 Overall Performance
The studies recently published for Tri-C and Arg-
C on ACE05-E+ and ERE-EN are introduced for
comparisons. Overall performances of the compar-
ison are listed in Table 3, where the CEAN denotes
an Event Aggregation Network trained with origi-
nal and augmentation dataset by the loss in Eq. 14.

Compared to the existing methods in Table 3, our
approach achieves best F1 on both datasets. In Tri-
C and Arg-C of ACE05-E+, our approach improves
the F1 by 2.7% and 0.4%. In Tri-C and Arg-C of
ERE-EN, our approach improves the F1 by 0.8%
and 0.3%. Our approach manages to improve P
and keep a competitive R.

In conclusion, our approach outperforms all the
other studies on each dataset, becoming the state-
of-the-art of ACE05-E+ and ERE-EN.

5.4 Ablation Study
To explore how the performances are affected by
event aggregation module, data augmentation and
contrastive learning, ablation study is conducted on
ACE05-E+. Starting by a text encoder and a GP
module, we implement each of the three contribu-
tions. Detailed description and performances of the
ablation study are listed in Table 4.

Experiments of G1 are used to validate the event
aggregation network, including event aggregation
module and knowledge bank. In G1-2, event aggre-
gation module without knowledge bank is evalu-
ated, which brings−0.6% and +0.3% on the F1 of
Tri-C and Arg-C to G1-1. In G1-3, knowledge bank
is evaluated based on event aggregation module,
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Methods
ACE05-E+ ERE-EN

Tri-C Arg-C Tri-C Arg-C
F1 P R F1 P R F1 P R F1 P R

ONEIE (Lin et al., 2020) 72.8 72.1 73.6 54.8 55.4 54.3 59.1 58.4 59.9 50.5 51.8 49.2
CLEVE (Wang et al., 2021) 79.8 78.1 81.5 61.1 55.4 68.0 - - - - - -

InterIE (Fan et al., 2022) 75.3 - - 60.1 - - - - - - - -
Text2Event (Lu et al., 2021) 71.8 71.2 72.5 54.4 54.0 54.8 59.4 59.2 59.6 48.3 49.4 47.2
GTEEDP (Liu et al., 2022b) 74.3 67.3 83.0 54.7 49.8 60.7 66.9 61.9 72.8 55.1 51.9 58.8

HDGSE (Shi et al., 2023) 77.2 75.5 79.0 57.7 57.6 57.8 66.1 64.5 67.9 53.5 54.5 52.6
CEAN 82.5 82.9 82.1 61.5 60.9 62.2 67.7 69.4 66.1 55.4 54.1 56.8

Table 3: Overall performance comparisons between existing methods and CEAN on ACE05-E+ and ERE-EN.

Index Model W ∗
EA Loss Data Tri-C Arg-C

F1 P R F1 P R
G1-1 GP - L∗

SL D0 77.1 80.3 74.1 59.4 55.0 64.7
G1-2 EAN Random Initialization L∗

SL D0 76.5 78.8 74.3 59.7 56.0 63.9
G1-3 EAN Knowledge Bank L∗

SL D0 81.2 84.1 78.5 60.5 59.4 61.6
G2-1 EAN Knowledge Bank L∗

SL D0+DA 81.5 82.3 80.8 60.6 56.6 65.3
G2-2(a) CEAN Knowledge Bank L∗

sum D0+DSR 81.5 82.0 81.0 60.5 59.6 61.4
G2-2(b) CEAN Knowledge Bank L∗

sum D0+DMTP 81.6 82.1 81.1 60.3 59.1 61.5
G2-2(c) CEAN Knowledge Bank L∗

sum D0+DA 82.5 82.9 82.1 61.5 60.9 62.2

Table 4: Ablation study on ACE05-E+. Event Aggregation Network (EAN) is validated in G1 by a GP model and an
EAN with different settings. Data augmentation and span-level contrastive learning are verified in G2 with original
dataset D0 and augmented datasets {DSR, DMTP , DA} as training data, and L∗

SL or L∗
sum as loss functions.

(a) Epoch 0 of Tri-C (b) Epoch 15 of Tri-C

(c) Epoch 0 of Arg-C (d) Epoch 15 of Arg-C

Figure 4: Visualization of event aggregation by PCA on ACE05-E+. The top 5 event types and roles of ACE05-
E+’s test set are chosen for demonstration, which are Attack, Meet, Transport, Transfer-Ownership, End-Position
and Entity, Place, Person, Artifact, Destination. Their points are marked in blue, red, green, black and orange
respectively. Their trigger and argument spans in test set are selected, whose slices are extracted from J∗ and are
reduced into 2-dim vectors, which are plotted as the dot points. The Ke and Kr of these top event types and roles
are also reduced into 2-dim vectors, which are plotted as the triangle points. A dot point is correctly classified in
this figure if it shares the same color with its nearest triangle point.

which brings 4.1% and 1.1% improvement on F1
of the two tasks to G1-1, and +4.7% and +0.8%
to G1-2. For a better demonstration, we provide

the visualization of event aggregation in Figure 4
by Principal Component Analysis (PCA). After 15
training epochs, the event aggregation accuracy,
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(a) Trigger Classfication (b) Argument Classfication

Figure 5: F1 on test set in the first 15 epochs of G1-3. The WEA is initialized by knowledge bank. The F1 on test
set is quickly improved from the first epoch.

defined by the ratio of the correctly classified dot
points to all the dot points, is improved from 63.4%
and 41.4% to 81.9% and 62.7% in Tri-C and Arg-
C. In addition to performance improvement, event
aggregation module can help the model to obtain a
faster convergence, proven by Figure 5.

Experiments of G2 are used to verify the LLM-
based augmentation scheme and contrastive learn-
ing strategy. In G2-1, using the augmentation
scheme without the span-level contrastive learn-
ing loss Lsum brings +0.3% and +0.1% on the
F1 of Tri-C and Arg-C to G1-3. In G2-2(c), using
the augmentation scheme with Lsum brings +1.3%
and +1.0% on the F1 of Tri-C and Arg-C to G1-3.
Also, in G2-2(c), our augmentation scheme brings
+1.0%, +1.0% and +0.9%, +1.2% on the F1 of
Tri-C and Arg-C to G2-2(a) and G2-2(b).

In conclusion, all proposed contributions are
proven effective for event extraction, and the com-
bination of them reaches the best performance.

6 Conclusion

We propose a Contrastive Event Aggregation Net-
work with LLM-based Augmentation to promote
low-resource learning and reduce data noise for
event extraction. CEAN introduces event knowl-
edge into supervised learning by establishing
knowledge bank for triggers and arguments. We
design an LLM-based augmentation scheme includ-
ing a multi-pattern rephrasing paradigm and a data-
free composing paradigm to improve lexical diver-
sity. We introduce span-level contrastive learning
to reduce data noise unavoidably originated in the
augmentation. Experiments on the ACE2005 and
ERE-EN datasets demonstrate that our proposed
approach achieves new state-of-the-art results.

Limitations

Similar with many pipeline-based methods, the
performance of CEAN on Arg-C is limited by the
error propogation from trigger classification. That
is, the incorrectly extracted triggers in Tri-C are
used as the input features of Arg-C, resulting in
amplification of errors. We take the golden triggers
as the input of G1-3 and obtain a F1 = 70.3%
on Arg-C. That means the error propogation from
Tri-C leads to a 9.8% decreasement on the F1 of
Arg-C. Future work should explore transforming
CEAN into a joint-based method to alleviate effect
of error propogation.

Ethics Statement

We are aware of and fully agree with the ACL
Ethics Policy. Large language model is used for
data augmentation in event extraction. There is a
low possibility that the generate contents include
biased, toxic, counterfactual or harmful texts. Thus,
it is important to evaluate all potential issues when
the model is deployed in real event extraction task.
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Paradigm Prompt Augmentation Result
Rephrasing You are an English expert. Please rephrase the in-

put text by using passive voice while the event of
“transfer-ownership” should be maintained. Please
also return which word corresponds to the buyer of
this event in your generated text. Input text: He sold
his cinema to Disney for over $1 billion.

The cinema was sold to Dis-
ney for over $1 billion by him.
The buyer in this event is Dis-
ney.

Rephrasing You are an English expert. Please rephrase the input
text by using adverbial clause while the event of “be-
born” should be maintained. Please also return which
word in your generated text corresponds to the word
“birth”. Input text: The movie star announced the
birth of her second daughter on social media.

On social media, the movie
star announced that her sec-
ond daughter was born. The
word “birth” corresponds to

“born”.

Rephrasing You are an English expert. Please rephrase the input
text by modifying the syntax while the event of “Start-
Position” should be maintained. Please also return
which word in your generated text triggers this event.
Input text: In her last year at university, she began
interning in government departments.

She started interning in gov-
ernment departments during
her last year at university.
(Trigger word: started)

Rephrasing You are an English expert. Please rephrase the input
text by replacing the word “leaving” with its syn-
onym while the event of “End-Position” should be
maintained. Please also return which word in your
generated text is the synonym. Input text: After leav-
ing the company where he worked for 5 years, he
returned to teach at the university.

After departing from the com-
pany where he worked for 5
years, he returned to teach at
the university. (Synonym: de-
parting)

Composing You are a journalist. Please use exclamative clause to
write an one-sentence news report detailing an event
of “Marriage”. Please also indicate which word in
your generated text triggers the event.

“Congratulations to the new-
lyweds who just exchanged
rings and said ’I do’!" - Trig-
ger words: exchanged rings,
said ’I do’.

Composing You are a journalist. Please use a gerund to write
an one-sentence news report detailing an event of
“Conflict:Convict”. Please also indicate which word
in your generated text triggers the event.

The victim’s family demands
justice for the brutal murder,
convicting the suspect being
their only hope to end the
conflict. (The word “convict-
ing” triggers the event.)

Composing You are a journalist. Please use imperative clause
to write an one-sentence news report detailing an
event of “Movement:Transport”. Please also indicate
which word in your generated text is the destination
of the movement.

Evacuate the passengers im-
mediately as a train carry-
ing hazardous chemicals de-
railed en route to the indus-
trial zone. (destination: in-
dustrial zone)

Composing You are a journalist. Please use perfect tense to write
an one-sentence news report detailing an event of
“Life:Injure”. Please also indicate which word in
your generated text is the victim of the event.

The athlete has been rushed
to the hospital after hav-
ing sustained a severe injury
while competing in the cham-
pionship. (victim: athlete)

Table 5: Examples of LLM-based data augmentation scheme with rephrasing and composing paradigms.
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Dataset LDC Catalog Number License
ACE2005 LDC2006T06 LDC User Agreement for Non-Members
ERE-EN LDC2015E29/68/78 LDC User Agreement for Non-Members

Table 6: Information of the used datasets.

Issue Information
Computing Infrastructure Nvidia Tesla T4
Total Computational Budget 6 GPU hours
Software Environment Python 3.6.3 & Pytorch 1.6.0

Table 7: Computational facilities and software information of the experiments.

Hyperparameters Value
Sequence max input length n 128
Batch size bs 8
Training epoch number in trigger extraction N 25
Training epoch number in argument extraction N 50
Learning rate of the GP module 2e− 4
Learning rate of the other modules 2e− 5
β1 of Adam optimizer 0.9
β2 of Adam optimizer 0.999
ϵ of Adam optimizer 1e− 8
Weight decay of Adam optimizer 0
Hidden dimension of the text encoder v 768
Projection dimension in trigger extraction d 64
Projection dimension in argument extraction d 512
Coefficient of loss function α 1e− 2
Coefficient of event aggregation module in trigger extraction β 0.8
Coefficient of event aggregation module in argument extraction β 0.7
Size ratio between the augmentation candidates and the original dataset 4
Size ratio between the augmentation dataset and the original dataset 1
Coefficient of augmentation evaluation λ 1
Number ratio between the rephrasing samples and the composing samples ρ 1

Table 8: Hyperparameter selections for the experiments.

Augmentation Method Dataset Descrition
Synonym Replacement DSR Given an original sample, we randomly sampled 15% of

tokens and replace them with their synonym words retrieved
from WordNet, a lexical database widely used in natural
language processing researches, to generate the augmented
sample.

Masked Token Prediction DMTP Given an original sample, we randomly sampled 15% of
tokens and replaced each of them with a [MASK] token. Then,
the augmented sample was derived by using a pre-trained
model to make masked token predictions on these positions.

LLM-based Data Augmentation DA First, we generate a candidate dataset which is 4 times size of
the original dataset by the first two steps of our augmentation
scheme. Then, the candidate samples are sorted by Eq 18
while only the top 25% are retained.

Table 9: Information of the augmentation datasets produced for experiment G2-2. Each of the three datasets shares
the same size with the original dataset.
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