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Abstract

Customizing machine translation models to
comply with desired attributes (e.g., formal-
ity or grammatical gender) is a well-studied
topic. However, most current approaches rely
on (semi-)supervised data with attribute anno-
tations. This data scarcity bottlenecks democ-
ratizing such customization possibilities to a
wider range of languages, particularly lower-
resource ones. This gap is out of sync with
recent progress in pretrained massively mul-
tilingual translation models. In response, we
transfer the attribute controlling capabilities to
languages without attribute-annotated data with
an NLLB-200 model as a foundation. Inspired
by techniques from controllable generation, we
employ a gradient-based inference-time con-
troller to steer the pretrained model. The con-
troller transfers well to zero-shot conditions, as
it operates on pretrained multilingual represen-
tations and is attribute- rather than language-
specific. With a comprehensive comparison to
finetuning-based control, we demonstrate that,
despite finetuning’s clear dominance in super-
vised settings, the gap to inference-time control
closes when moving to zero-shot conditions, es-
pecially with new and distant target languages.
The latter also shows stronger domain robust-
ness. We further show that our inference-time
control complements finetuning. A human eval-
uation on a real low-resource language, Ben-
gali, confirms our findings. Our code is here.

1 Introduction

Pretrained multilingual translation models with
massive coverage (Zhang et al., 2020; Liu et al.,
2020; Fan et al., 2021; Xue et al., 2021; NLLB
Team et al., 2022) have become of the backbone
of many translation systems. While their off-the-
shelf translation quality has been constantly im-
proving (Fan et al., 2021; Ma et al., 2021; NLLB
Team et al., 2022), the flexibility of customiza-
tion towards desired attributes, such as formality
or grammatical gender, is another important metric.

…

…

…

…

Figure 1: The number of translation directions with
attribute-annotated data (right) is far less than that of
what massively pretrained models serve (left).

Adapting generic systems for attribute-controlled
translation relies on training data with attribute in-
formation. Creating such annotated data often re-
quires language-specific knowledge and manual
curation. This makes data acquisition challenging
even for single languages. When scaling to the nu-
merous directions served by massively multilingual
models, it quickly becomes impractical, as shown
in Figure 1. While prior works (Michel and Neubig,
2018; Saunders et al., 2020; Nadejde et al., 2022)
showed promising results of finetuning on limited
attribute-annotated data, to allow other languages
without supervised data to similarly benefit from
the customization possibilities, the transferability
of the attribute controllers remains to be studied.

A straightforward way to achieve attribute con-
trol is finetuning on attribute-specific data. Re-
cent works (Rippeth et al., 2022; Wu et al., 2023)
have shown that finetuning with just hundreds of
attribute-specific sentences is sufficient. However,
small finetuning data also brings the risk of over-
fitting and catastrophic forgetting (Freitag and Al-
Onaizan, 2016; Thompson et al., 2019). It is espe-
cially relevant when generalizing to new languages,
where finetuning on some languages may erase
the knowledge of others from pretraining (Garcia
et al., 2021; Cooper Stickland et al., 2021; Liu and
Niehues, 2022). While these issues may be miti-
gated by partial finetuning (Houlsby et al., 2019;
Bapna and Firat, 2019), domain mismatch between
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Figure 2: Left: Inference-time control by gradient-based classifier guidance: training classifiers for attributes on
decoder activations, and using its predictions to edit inference-time model activations towards desired attributes.
Right: Standard training-time control by finetuning on attribute-specific data.

the finetuning data and the test domain can still
degrade translation quality. We will validate these
concerns in various zero-shot conditions with dif-
ferent language relatedness and domains.

On the other end of the spectrum, inference-time
customization is another paradigm of attribute con-
trol. In this case, the pretrained model is fully
unchanged in the training stage. At inference time,
the generation process is steered towards desired
attributes by e.g. re-weighting entries in the out-
put distribution (Saboo and Baumann, 2019; Yang
and Klein, 2021; Landsman et al., 2022) or editing
model activations (Dathathri et al., 2020). To en-
able cross-lingual transfer, the controller must be
trained on features that are shared across languages.
This precludes methods that operate on the surface
vocabulary level. In this work, we will extend an
activation-based approach (Dathathri et al., 2020)
originally for decoder-only models to cross-lingual
transfer on pretrained translation models.
Task Formalization We focus on the following
task: Given a pretrained many-to-many multilin-
gual translation model covering N languages and
N(N − 1) translation directions, along with par-
allel data on k (k ≪ N(N − 1)) translation direc-
tions where the target translation corresponds to
specific attributes (e.g., formality level), we aim to
customize the pretrained model to translate with
desired attributes for as many directions as possible.
We refer to the subsequent model as an attribute
controller. Specifically, after learning on the k sets
of parallel data with attribute annotation, to what
extent can we transfer the attribute controller to the
remaining N(N − 1)− k translation directions?

2 Background and Related Work

Attribute-Controlled Translation Previous works
investigated controlling various attributes of ma-
chine translation outputs, for instance politeness

(Sennrich et al., 2016; Niu et al., 2018; Feely et al.,
2019), gender (Vanmassenhove et al., 2018; Saun-
ders et al., 2020), length (Takase and Okazaki,
2019; Lakew et al., 2019; Marchisio et al., 2019;
Niehues, 2020), or style in general (Michel and
Neubig, 2018; Schioppa et al., 2021; Vincent et al.,
2023; Wang et al., 2023). As existing works mainly
focus on supervised conditions with at least some
supervised data, how these approaches generalize
to new languages remains unclear. In face of data
scarcity, one approach is to use synthetic data by
pseudo-labeling (Rippeth et al., 2022; Lee et al.,
2023). In our work, by building upon massively
multilingual translation models, we do not assume
the scalability of creating synthetic data for all lan-
guages served by the backend model, nor do we
assume a classifier that can a priori distinguish at-
tribute classes for zero-shot languages.
Multilinguality for Controllable Generation Our
work is also related to controllable text generation
in general. Despite steady progress in this field
(Keskar et al., 2019; Krause et al., 2021; Yang and
Klein, 2021; Liu et al., 2021), how the controller
generalizes across languages is likewise less ex-
plored. With the recent surge of large language
models (LLMs), attribute-controlled translation has
also been addressed by prompting multilingual lan-
guage models in a few-shot manner (Sarti et al.,
2023; Garcia et al., 2023). Notably, Sarti et al.
(2023) reported promising few- and zero-shot at-
tribute control results using multilingual LLMs. In
this work, we take a different perspective by us-
ing a pretrained dedicated encoder-decoder trans-
lation model as backend, and transferring the at-
tribute control capabilities with lightweight add-
ons. As currently open LLMs still lag behind ded-
icated translation models (Zhu et al., 2023; Sarti
et al., 2023) especially on low-resource languages
(Robinson et al., 2023), we believe improving the
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attribute control capabilities of massively multilin-
gual conventional models is still highly relevant.
Multilingual Domain Adaptation Attribute con-
trol can be viewed as a light domain adaptation
task. Prior works (Cooper Stickland et al., 2021;
Vu et al., 2022) adapting pretrained multilingual
models have reported catastrophic forgetting of
languages absent from the finetuning stage. Our
results on finetuning for zero-shot attribute con-
trol (§6.1) shows a different picture. One potential
reason is that, compared to adapting to fully new
domains such as medical or law texts, the attribute
control task can be learned with less data. This in
turn requires less intense finetuning and is therefore
less vulnerable to forgetting.

3 Transferring Attribute Controllers for
Multilingual Translation

To generalize to new translation directions, an ideal
controller should be attribute- rather than language-
specific. That is, its representation for different
attribute labels varies little with specific languages.

Inference-Time Control by Classifier Guidance:
Our first approach builds upon the observation that
the activations of pretrained multilingual models
capture commonalities of different languages (Pires
et al., 2019; Liu et al., 2020). An attribute classi-
fier trained on these activations can then potentially
transfer across languages, which we use at infer-
ence time to steer the generation for languages with-
out attribute-annotated data. The control takes ef-
fect on inference-time model activations instead of
parameters, as shown in Figure 2. Specifically, we
first train an attribute classifier while freezing the
pretrained model, and then edit the model activa-
tions towards the wanted attribute based on the pre-
dicted label at inference time. This idea has shown
success in controllable image synthesis (Dhariwal
and Nichol, 2021) and text generation (Li et al.,
2022). To the best of our knowledge, no prior work
has explored it for cross-lingual transfer.

Specifically, we extend the approach by
Dathathri et al. (2020) to encoder-decoder mod-
els. For machine translation, Given a frozen pre-
trained model, we run forward passes with attribute-
annotated1 parallel data (X,Y)c for c ∈ [C],
where X and Y are the source and target sentences
with individual sentence pairs (x,y)i ∈ (X,Y),
and C is the number of attribute labels.

1Only the target side needs attribute labels.

While freezing the translation model’s parame-
ters, we train a classifier that maximizes P (c | h),
where c is the ground-truth attribute label and h is
the last decoder layer’s hidden states after forced-
decoding parallel data (x,y):

h = decoder(y, encoder(x)). (1)

Like with a standard model, the output distribution
is then softmax(Wh), where W maps the hidden
states h to the vocabulary distribution.

At inference time step t, the hidden state is:

ht = decoder(yt−1,At−1), (2)

where yt−1 is the token from the previous step,
and At−1 is the model activations. At−1 contains
activation key-value pairs2 from the decoder self-
attention and cross-attention for steps 1 to t − 1,
and is cached in most Transformer decoding imple-
mentations (Ott et al., 2019; Wolf et al., 2020).

Based on all available decoder states till t−1, we
predict an attribute label: argmaxcP (c | h1,...,t−1).
Following Dathathri et al. (2020), we meanpool the
states from timestep 1 to t− 1 for the prediction. It
also empirically showed better performance than 1)
using a token-level classifier without pooling and
2) operating on the cumulative sum of hidden states
from all time steps so far.3

As h1,...,t−1 is only determined by At−1, we can
rewrite P (c | h1,...,t−1) as P (c | At−1). Compar-
ing the prediction to the desired attribute c∗, we can
derive gradients measuring how much the current
activations satisfy the desired c∗. The gradients,
∇At−1P (c∗ | At−1), are then back-propagated for
several iterations with given step sizes, resulting in
updated activations Ãt−1, which further leads to
modified decoder hidden state:

h̃t = decoder(yt−1, Ãt−1). (3)

A new output token yt (that more likely satisfies the
control) is generated from h̃t by softmax(Wh̃t).

Finetuning-Based Control: A more common
way to realize control is finetuning the pretrained
model on attribute-specific parallel data, as done in
domain adaptation (Freitag and Al-Onaizan, 2016).
To transfer to directions without annotated data,

2Note these are not the key/value projection weights of the
Transformer, but the activations after applying the projections.

3In initial experiments training an English-German formal-
ity classifier, the accuracy on the dev set was 86.7% (mean-
pool), 66.1% (token-level) and 73.0% (cumulative sum).
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Task Directions # Sent. per lang. per att.

Formality control (formal/informal)
train en→{de, es, fr, hi, it} 400
test (supervised) en→{de, es, fr, hi, it} 600
test (new tgt) en→{pt, ru, ko} 600
test (new src) {de, fr, hi, it}→es 366-572
Grammatical gender control (feminine/masculine)
train en→es 194
test (supervised) en→es 552-556
test (new tgt) en→{it, fr} 515-546
test (new src+tgt){es, fr}→it, {es, it}→fr 271-365

Table 1: Data overview. Codes: German (de), Spanish
(es), French (fr), Hindi (hi), Italian (it), Korean (ko),
Portuguese (pt), Russian (ru), source (src), target (tgt).

the adaptation step must mostly learn the desired
attributes rather than the specific languages in fine-
tuning, so as not to forget the languages without an-
notated data. On our tasks, naive finetuning already
works effectively: We finetune the full model on
each attribute, resulting in one specialized model
per attribute as shown in Figure 2.4 Partial fine-
tuning e.g. with adapters (Bapna and Firat, 2019;
Philip et al., 2020) is a more parameter-efficient
approach. We do not explore partial finetuning in
this work, as it does not fully align with our focus
on the transferability of attribute controllers.

4 Experimental Setup

We experiment on two attribute control tasks: for-
mality and grammatical gender control. As out-
lined in Table 1, the training data has English on
the source side. For the target languages, there is
one set of translations per attribute. The low data
volume not only reflects the practical challenge of
data acquisition, but is also an established condition
in existing benchmarks (Nadejde et al., 2022).

4.1 Formality Control (In-Domain)

The training data come from CoCoA-MT (Nadejde
et al., 2022)5, where the test domain overlaps with
training. For zero-shot conditions, we transfer con-
trollers trained on different language pairs to new
translation directions. Specifically, we investigate
the following two cases:

4We tried prepending attribute tags to the source sen-
tences (Chu et al., 2017; Kobus et al., 2017), but this was
not enough to make the pretrained model to be attribute-aware.
A potential reason is that the pretrained model tends ignore
the source tags as noise, and that the low amount of finetuning
data cannot re-establish the importance of the tags.

5We excluded Japanese, where our pretrained model has
very low translation accuracy on formality-annotated words
(<40%, whereas all 5 other languages score >60%).

Transfer to New Target Languages We train
the attribute controllers on one or multiple target
languages to assess the impact of multilinguality
on transfer. We compare the following settings:
• Single-direction: We use en→es and de as rep-

resentative Romance and Germanic languages;
• Multilingual: We train on all languages in the

training data: en→{de, es, fr, hi, it}.
For the new target languages, we choose three

directions from the IWSLT 2023 formality control
shared task6 (Agarwal et al., 2023): en→pt (close),
en→ru (related), and en→ko (distant) for their
different degrees of relatedness to the languages in
training. Among them, en→ko has 400 sentences
of supervised data. We use it to establish the oracle
performance in the presence of supervised data.

Transfer to New Source Languages We re-align
the CoCoA-MT test set using English as pivot, cre-
ating a new test set with non-English source and
target sentences.7 Unlike translating from English,
here the source sentences also contain formality
information. This allows testing if the model can:
1) preserve the source formality level; 2) change
the source formality level when steered so.

4.2 Gender Control (Out-of-Domain)
For the formality control setup above, the data for
training the attribute controller come from the same
domain as the test set. To evaluate domain gener-
alization, for grammatical gender control, we train
the controller on texts with very different styles
from the test data. For training the attribute con-
troller, we use the en-es set from Saunders et al.
(2020)8 with artificial sentences of very simple
grammatical structure up to 7 words. In contrast,
for the test set we use MuST-SHE (Bentivogli et al.,
2020), which consists of TED talks with much
longer sentences and more versatile styles. More
dataset details are Appendix A.2. Besides transfer
to new target languages like previously (§4.1), we
also explore the following setting:

Transfer to New Source & Target Languages
The MuST-SHE test set comes in en-{es, fr, it}.
Like previously, we re-align them using English
as pivot, creating non-English source and target

6https://github.com/amazon-science/
contrastive-controlled-mt/tree/main/IWSLT2023

7The original test sets only have English input. As the
English sentences mostly overlap, we create new pairs of two
non-English languages by matching their English translations.

8https://github.com/DCSaunders/
tagged-gender-coref#adaptation-sets
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sentences. In this case, both the source and tar-
get sentences have the same gender. As the at-
tribute training data is in en→es, we evaluate {es,
fr}→it and {es, it}→fr for the transfer to new
translation directions where both the source and
target languages differ from training.

4.3 Models and Evaluation
Models We use two types of backend models. For
the main experiments, we use the pretrained NLLB-
200 distilled 600M model (NLLB Team et al.,
2022), which covers 200 languages for many-to-
many translation. We also train a Transformer-
base (Vaswani et al., 2017) from scratch to verify
if observed phenomena are specific to models with
massive multilingual pretraining. The Transformer-
base model covers all languages in our experiments
and is trained on OPUS-100 (Zhang et al., 2020).
Details of these data are in Appendix A.1. Training
and inference details are in Appendix B.
Control Evaluation For formality control, we
report matched accuracy (M-Acc; %) following
Nadejde et al. (2022). For gender control, we
use the official evaluation script (Bentivogli et al.,
2020) for accuracy (%). For formality, as the test
set is the same for both formalities, the baseline
M-Acc for the two formality labels add up to 1.0.
This is not the case for gender control.
Quality Evaluation We use COMET↑ (Rei et al.,
2020)9 as the main translation quality metric, and
additionally report BLEU↑10 to compare to prior
works. Note that BLEU is impacted by n-gram
matches on the correct formality or gendered words,
while COMET is less susceptible to the artifact. For
COMET score comparisons, we run paired T-tests
and bootstrap resampling using comet-compare.
We use "*" or "†" to mark systems better or worse
than the base pretrained model at p = 0.05.
Human Evaluation To test the transfer to real low-
resource languages, we conduct a human evalua-
tion on Bengali, which was marked as low-resource
in the NLLB-200 training data (NLLB Team et al.,
2022). Details on the evaluation are in Appendix C.
Baselines Few existing works experimented on
the same data conditions as ours. An exception
is the “mBART-large Gold Finetuned” model
by Rippeth et al. (2022), who finetuned mBART
(Liu et al., 2020) on parts of CoCoA-MT (Nadejde
et al., 2022) for formality control. Their results

9with Unbabel/wmt22-comet-da (×100 for readability)
10using sacreBLEU (Post, 2018) with confidence intervals:

bs:1000|rs:12345|c:mixed|e:no|tok:13a|s:exp|v:2.3.1

Model Formal Informal Avg. BLEU COMET2022

en→de
base 45.6 54.4 − 35.7±1.0 82.1
+CG 95.0 89.6 92.3 38.4±1.1 81.6†
+FT 100.0 100.0 100.0 43.6±1.2 83.8*

Rippeth et al. 93.6 77.4 85.5 37.4 −

en→es
base 29.7 70.3 − 40.0±1.1 83.9
+CG 72.9 92.4 82.7 41.2±1.2 84.4*
+FT 100.0 95.9 98.0 46.0±1.2 85.5*

Rippeth et al. 96.7 82.7 89.7 38.3 −

en→fr
base 76.8 23.2 − 36.0±1.1 80.8
+CG 99.8 77.2 88.5 38.8±1.2 80.9
+FT 100.0 99.3 99.7 43.0 ±1.1 83.0*

en→hi
base 96.7 3.3 − 24.0±0.9 75.5
+CG 99.3 30.7 65.0 24.3±0.9 75.0†
+FT 99.6 99.2 99.4 36.4±1.0 81.7*

Rippeth et al. 98.5 64.7 81.6 28.7 −

en→it
base 3.2 96.8 − 41.3±1.1 84.9
+CG 18.7 99.5 59.1 40.6±1.1 84.1†
+FT 98.6 99.3 99.0 49.6±1.1 86.0*

Table 2: Formality control results in supervised condi-
tion (controllers trained on formality-annotated data).

ModelFeminine Masculine Global BLEU COMET2022

en→es
base 58.8 86.7 73.6 45.0±1.2 84.9
+CG 75.0 89.7 82.8 44.7±1.2 84.7
+FT 90.2 89.7 86.9 43.7±1.2 84.0†

Table 3: Grammatical gender control results in super-
vised condition (cross-domain: controller trained on
gender-annotated data from a different domain).

overlap with our supervised results on en→{de, es,
hi} and zero-shot results on en→ru. Other than
this, the majority of prior works used more relaxed
data conditions than ours, e.g., using an existing
attribute classifier that covers zero-shot languages
for pseudo-labeling (Lee et al., 2023) or hypothesis
reranking (Wu et al., 2023). We report these results
in Appendix D. Overall, our model’s performance
is comparable to the leading systems.

5 Supervised Conditions

Table 2 and Table 3 show formality and gender con-
trol results respectively with supervised controllers
on NLLB-200. Overall, both finetuning and CG
are able to steer the output towards given attributes,
while maintaining the original translation quality
or at the cost of a slight degradation.

Finetuning more effective than classifier guid-
ance in supervised conditions: A comparison
of scores in Table 2 and Table 3 clearly shows
FT is more effective than CG. For formality con-
trol, FT consistently scores nearly 100% M-Acc.
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Pretrained Massively Multilingual Transformer-base

Model Formal Informal Avg. BLEU COMET2022 Formal Informal Avg. BLEU COMET2022

en→pt

base 47.7 52.3 − 41.7±1.1 85.1 35.8 64.2 − 38.7±1.1 82.2
+CG (de) 75.6 74.2 74.9 43.0±1.1 84.9 50.0 72.8 61.4 38.7±1.1 81.8†
+FT (de) 99.0 45.5 72.3 40.4±1.0 85.3 79.2 71.2 75.2 39.6±1.1 82.7*
+CG (es) 85.4 83.6 84.5 43.8±1.0 85.0 53.3 79.8 66.6 38.8±1.1 81.7†
+FT (es) 99.8 28.7 64.3 40.3±1.0 85.2 93.9 80.1 87.0 40.5±1.0 82.5*
+CG (multi) 84.8 80.0 82.4 43.7±1.1 84.9 55.9 80.8 68.4 39.0±1.1 81.8†
+FT (multi) 99.5 51.0 75.3 42.3±1.0 85.9* 95.8 81.9 88.9 41.4±1.0 83.1*
+CG +FT (multi) 100.0 83.2 91.6 42.1±1.0 85.7* 97.8 93.7 95.8 41.0±1.0 82.4

en→ru

base 55.0 45.0 − 30.3±1.0 83.7 43.9 56.1 − 24.2±1.0 75.9
+CG (de) 87.3 77.7 82.5 32.2±1.0 83.1 67.2 71.8 69.5 24.6±0.9 75.0†
+FT (de) 99.5 84.7 92.1 33.0±1.1 84.2* 84.0 69.3 76.7 25.0±1.0 75.8
+CG (es) 86.8 73.9 80.4 32.4±1.0 83.2 61.7 76.8 69.5 24.8±1.0 75.0†
+FT (es) 98.3 60.6 79.5 32.8±1.1 84.1* 83.5 68.6 76.1 26.1±1.0 76.6*
+CG (multi) 87.3 78.2 82.8 32.2±1.0 83.2 72.2 80.9 76.6 25.0±1.0 75.0†
+FT (multi) 99.8 79.6 89.7 33.0±1.1 84.2* 87.5 69.8 78.7 25.9±1.0 77.0*
+CG +FT (multi) 100.0 93.0 96.5 33.1±1.0 84.4* 96.2 91.3 93.8 26.2±1.0 76.2
Rippeth et al. (2022) 100.0 13.8 56.9 23.5 − − − − − −

en→ko

base 50.9 49.1 − 15.7±0.7 82.6 32.0 68.0 − 10.6±0.6 74.0
+CG (de) 67.0 64.6 65.8 15.7±0.7 82.1† 45.2 78.2 61.7 10.4±0.6 73.4†
+FT (de) 67.8 54.2 61.0 12.8±0.6 84.1* 42.7 66.4 54.6 10.7±0.6 74.0
+CG (es) 68.9 61.6 65.3 15.1±0.8 82.1† 46.3 77.6 62.0 10.7±0.6 74.1
+FT (es) 64.4 47.3 55.9 14.0±0.7 84.4* 47.4 62.7 55.1 11.7±0.6 75.2*
+CG (multi) 67.0 61.7 64.4 15.5±0.8 82.2 46.0 78.1 62.1 10.6±0.6 74.1
+FT (multi) 68.5 46.2 57.4 13.4±0.7 84.7* 48.3 68.4 58.4 11.0±0.6 74.4
+CG +FT (multi) 70.0 63.5 66.8 13.2±0.7 84.2* 58.9 81.8 70.4 10.8±0.6 73.4†

+oracle CG (ko) 70.3 62.6 66.5 15.2±0.7 81.7† 58.9 82.3 70.6 11.2±0.6 74.5*
+oracle FT (ko) 79.4 93.5 86.5 22.2±0.9 86.2* 86.7 97.9 92.3 19.1±0.9 74.0*

Table 4: Zero-shot formality control results. Best and second best results under the same data condition are marked.

It also substantially improves the quality scores
due to adapting towards the specific domain of the
attribute-annotated data, which is the same as the
test domain in this case. On the other hand for
CG, while it also improves the formality accuracy,
the scores lag behind finetuning in both accuracy
and quality. The gap is especially prominent on
hi and it, where the underlying NLLB model has
a strong bias towards a single formality: the ac-
curacy for the rare formality is nearly zero (3.3%
and 3.2% respectively). This is likely to do with
NLLB’s training data, which might be skewed to-
wards one single formality for some languages. In
this case, CG can only partly recover the ability
to generate translation in the formality NLLB is
unfamiliar with. These results indicate that CG is
only effective when the underlying model does not
suffer from an absolute bias towards one attribute.

Classifier guidance more robust to domain mis-
match: As motivated in §4.2, the gender control
results in Table 3 allow us to assess the impact of
domain mismatch between the controller training
data and the test data, a very realistic scenario in
practice. Here, while finetuning achieves higher

accuracy for gendered words, it also degrades trans-
lation quality by 0.9 COMET. This provides further
evidence that the previously improved COMET
scores (Table 2) are results of finetuning on in-
domain data. In contrast, the translation quality
with CG does not significantly differ from NLLB
by the T-tests, suggesting its stronger domain ro-
bustness. We hypothesize it is because CG operates
on the last decoder layer’s hidden states, which are
just one projection away from the output vocab-
ulary. These representations likely contain more
word-level than domain information, which is pre-
cisely needed in the task of attribute control.

6 Zero-Shot Conditions

6.1 New Target Languages

Now we transfer the trained controllers to target
languages unseen when training the controllers,
i.e., those without attribute annotation. In Table 4
and Table 5, we report the results on formality
and gender control respectively. In Table 4, we
also compare the single-direction and multilingual
controllers as motivated in §4.1.
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Model FeminineMasculineGlobal BLEU COMET

en→it

base 53.8 88.9 73.1 35.1±1.0 84.1
+CG 72.3 92.8 83.6 35.4±1.1 83.7
+FT 83.6 91.2 87.8 34.4±1.0 83.5†
+CG +FT 88.6 94.5 91.8 33.4±1.0 82.6†

en→fr

base 55.3 88.4 72.4 38.3±1.3 82.6
+CG 67.8 90.3 79.4 38.7±1.2 82.5
+FT 78.9 90.8 85.0 38.2±1.2 82.0†
+CG +FT 87.0 91.9 89.5 37.4±1.2 81.9†

Table 5: Zero-shot grammatical gender control results
on new target languages with domain mismatch.

Gap between finetuning and classifier guidance
shrinks in zero-shot conditions: While finetun-
ing was consistently leading in supervised condi-
tions (§5), now under zero-shot conditions with un-
seen target languages, the gap shrinks. For formal-
ity control, on Korean, the most distant language,
CG consistently achieves stronger control results
than finetuning, indicating more robustness when
transferring to unfamiliar settings. Overall in Ta-
ble 4, for the main experiments on NLLB-200, CG
outperforms FT in 7 of the 9 pairwise comparisons
({de, es, multi} × 3 target languages). With gen-
der control results in Table 5, finetuning achieves
stronger control accuracy (avg. +4.9% abs.) but
degrades translation quality (−0.6 COMET) due to
domain mismatch. On the other hand, CG retains
the translation quality. This confirms the previous
finding (§5) on its stronger domain robustness.

Multilingual controllers help when the base
model is not massively multilingual: In Table 4,
controllers trained on multiple translation direc-
tions (multi) are compared to those trained on
single directions (en→es or de). On Transformer-
base, multi consistently outperforms its single-
direction counterparts, regardless whether the con-
troller is finetuning- or CG-based. In contrast,
for the pretrained NLLB, there is no clear dis-
tinction between the multilingual systems and rest.
This indicates that NLLB does not further bene-
fit from multilinguality in the controller training
stage, likely because it already underwent a mas-
sively multilingual pretraining stage. This shows
that massively multilingual models are a useful ba-
sis for attribute control especially when annotated
resources are limited to single languages.

Classifier guidance is complementary with fine-
tuning: When applying CG on top of the fine-
tuned models, we see the strongest control accuracy
for both formality and gender control. This obser-

Model Quality FormalityWinWin & Tie
(1-5) (1-3) (%) (%)

(1)NLLB-200 4.25±0.75 2.69±0.46 − −
(2)CG (multi) formal4.00±0.79 2.63±0.48 56.3 81.3
(3)CG (multi) inf. 4.44±0.70 2.38±0.69 62.5 93.8
(4)FT (multi) formal 4.31±0.85 2.63±0.48 43.8 68.8
(5)FT (multi) inf. 4.13±1.05 2.44±0.49 62.5 93.8

Table 6: Human evaluation on Bengali, with quality on
a 5-point scale↑ and formality on a 3-point scale (↑: for-
mal) with standard deviations. Last two columns show
pairwise comparison of formality scores to baseline
NLLB-200 given the same source sentences (winning:
scoring more in the direction of the desired formality).

vation is consistent whether the base model is the
pretrained NLLB or the normal Transformer-base.
Compared to finetuning alone, the addition of CG
also does not degrade translation quality on NLLB.
On the more challenging case of gender control
which involves domain mismatch, adding CG to
finetuning does not impact translation quality on
fr and causes a slight degradation on it. This
is likely linked to poor hyperparameter choices in
CG: due to time constraints we directly used the
hyperparameters when applying CG alone, which
are too strong for models already finetuned for at-
tribute control. We are optimistic for improved
scores under more fitting hyperparameters.

Finetuning did not erase knowledge on other
languages: To our surprise and different from re-
sults in domain adaptation (Cooper Stickland et al.,
2021; Vu et al., 2022), finetuning did not erase the
pretrained model’s knowledge on the target lan-
guages absent in supervised finetuning, as reflected
by the translation quality scores (Table 4, 5). This
is not specific to NLLB, but also observed on the
Transformer-base trained with random initializa-
tion on a few translation directions. Therefore, this
phenomenon is not a result of massively multilin-
gual pretraining, but more likely linked to the light
finetuning strength with limited number of updates
and small learning rates.

Comparison to oracle data condition: In the
bottom rows of Table 4, we report the oracle perfor-
mance of using 400 sentences as supervised data
for training the controllers. Our strongest zero-shot
results match the performance of oracle CG, but
still lag far behind the upper-bound of finetuning
on in-domain data with attribute annotation (oracle
FT). We believe this gap is magnified as Korean is
not only linguistically distant from the languages
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Source Formal Source Informal

Model Formal Informal Avg. BLEU COMET2022 Formal Informal Avg. BLEU COMET2022

X→de base 77.8 22.2 − 23.9±0.5 79.0 48.5 51.5 − 24.7±0.5 79.3
+CG 98.6 71.5 85.1 25.9±0.5 78.7 94.0 87.7 90.9 27.0±0.5 79.0
+FT 100.0 100.0 100.0 30.1±0.7 80.7* 100.0 99.7 99.9 30.0±0.6 80.7*

X→es base 57.8 42.2 − 29.8±0.5 82.7 20.3 79.7 − 29.9±0.5 82.7
+CG 86.7 73.3 80.0 30.5±0.8 82.3 67.5 93.7 80.6 31.1±0.6 82.3
+FT 99.6 77.4 88.5 32.8±0.7 83.9* 99.8 97.8 98.8 33.2±0.7 83.9*

X→fr base 97.0 3.0 − 29.5±0.6 79.1 87.7 12.3 − 30.3±0.6 79.6
+CG 99.8 40.4 70.1 30.6±0.6 78.9 99.9 59.5 79.7 32.5±0.6 79.6
+FT 99.9 99.4 99.7 34.2±0.7 81.0* 100.0 100.0 100.0 35.6±0.6 81.5*

X→hi base 98.2 1.8 − 20.2±0.4 73.2 98.4 1.6 − 20.8±0.4 73.6
+CG 99.2 9.8 54.5 20.3±0.4 73.0 99.2 12.3 55.7 20.8±0.4 73.4
+FT 99.4 99.3 99.4 26.5±0.6 75.3* 99.7 99.5 99.6 27.7±0.6 75.8*

X→it base 23.0 77.0 − 27.6±0.6 83.5 1.5 98.5 − 28.0±0.6 83.6
+CG 45.8 88.1 67.0 28.1±0.6 82.9 17.1 99.4 58.3 28.0±0.6 82.9
+FT 99.2 88.1 93.7 32.4±0.7 84.4* 98.2 99.2 98.7 32.8±0.7 84.5*

Table 7: Zero-shot formality control results on new source languages, using controllers trained on English as source.
Sources are {de, es, fr, hi, it}. Colored columns indicate source formality agreeing with desired target formality.

ModelFeminine Masculine Global BLEU COMET2022

es→it
base 79.4 89.3 85.2 30.0±1.5 83.3
+CG 87.6 92.3 90.4 29.5±1.4 82.9†
+FT 90.9 90.5 90.7 30.0±1.3 82.9†

fr→it
base 75.4 90.4 84.2 28.1±1.4 82.6
+CG 85.1 94.1 90.4 27.7±1.4 82.3
+FT 90.4 93.6 92.3 28.6±1.4 82.5

es→fr
base 83.2 87.0 85.3 31.2±1.4 79.9
+CG 86.8 88.8 87.9 31.3±1.4 79.8
+FT 89.2 88.5 88.8 31.4±1.5 79.7

it→fr
base 76.1 87.2 84.3 31.5±1.3 80.4
+CG 86.4 89.1 87.9 31.5±1.3 80.5
+FT 90.6 88.9 89.6 31.8±1.4 80.4

Table 8: Zero-shot grammatical gender control results
on new source and target languages.

used in training, it also differs in the notion of for-
mality: Korean involves multiple levels of formal-
ity instead of a binary informal-formal distinction.
For the zero-shot transfer, this means transferring a
controller trained for binary control to a multi-class
problem with an unknown class mapping, which is
naturally more challenging.

Human Evaluation on Bengali: The results are
in Table 6. First, adding attribute control does not
appear to impact translation quality. Second, pair-
wise comparisons with the baseline show both CG
and finetuning are effective in formality control,
where CG has slightly higher win ratio than FT
against the baseline. Third, the impact on formality
scores is more prominent when steering towards in-
formal translation. This likely because the baseline
translations already have a high level of formality.

Moreover, the rare usage of the lowest formality
level in Bengali (Appendix C) could explain the
relatively high formality scores for the systems
steered towards “informal” (rows (3) and (5)).

6.2 New Source and Target Languages

New source languages easier than new target
languages: In Table 7, we report the results of
transferring controllers trained with English source
to new source languages. Contrasting these scores
with the target-side zero-shot results in Table 4, it
is clear that transferring to new source languages
is a much easier task. This is expected, as attribute-
controlled translation primarily places lexical con-
straints on the target side. Once the controller
can generate translations with the correct attribute,
swapping the source language does not pose a large
challenge. Even when the source formality dis-
agrees with the desired output formality (uncolored
columns in Table 7), the controllers are able to steer
the translations toward the required attributes.

NLLB struggles to preserve source attributes:
Contrasting the colored “base” cell in Table 7 with
its uncolored counterpart, we see that NLLB does
have some notion of formality in the source sen-
tences, as source sentences with the correct for-
mality improves accuracy on the desired formality
(57.8 vs. 42.2% and 79.7 vs. 20.3%). However, the
signals in the input alone are insufficient for gen-
erating the correct formality. This is confirmed by
another zero-shot experiment when both the source
and target languages are new (Table 8). Here the
sources already contain the correct grammatical
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genders. Despite this, NLLB cannot fully utilize
the signals in the source, especially on the feminine
gender. Its accuracy (76.1-83.2%) still lags behind
the masculine class (87.0-90.4%). Both CG and
finetuning substantially improve the accuracy and
mostly close the gap between the two grammatical
classes. This shows both approaches strengthen the
source signals that are otherwise neglected.

7 Conclusion

To generalize attribute-controlled translation to
data-scarce conditions, we asked the question “how
transferable are attribute controllers on pretrained
multilingual translation model?”. We use a novel
classifier guidance method to extend a pretrained
NLLB-200 model for attribute control and contrast
its performance to finetuning-based control.

Our results led to the following recommenda-
tions for upgrading existing multilingual transla-
tion systems with attribute control capabilities: 1)
Given in-domain target sentences annotated with
attributes, even as few as the lower hundreds, fine-
tuning is the primary choice. 2) In case of distant
new target languages or strong domain mismatches
between the attribute-annotated data and test data,
decoding with classifier guidance is more promis-
ing. Otherwise finetuning is recommended. 3) In
case specific resource constraints preclude finetun-
ing or hosting multiple specialized variants of the
underlying model, we then recommend inference-
time control by classifier guidance. 4) In case the
underlying translation model is not massively mul-
tilingual, finetuning the model or training the con-
troller on multiple target languages is beneficial.

Limitations

More Fine-Grained Attributes Our classifier
guidance approach works with discrete labels, mak-
ing it not directly applicable to use-cases with more
fine-grained or continuous attributes. In particular,
although the gender classifier training incdlues a
gender-neutral class, in evaluation we were only
able to test two genders, limited by the availability
of test data. As more test datasets with fine-grained
attributes become available, our approach can be
further improved and validated for these use-cases.

Inference Speed Decoding speed is a main down-
side of our classifier guidance approach. This is a
result of multiple gradient-based updates of model
activations at each decoding time step. Despite

the promising zero-shot results, further speed-up is
necessary is make it realistic for deployed systems.
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A Dataset Statistics

A.1 OPUS-100 Data for Transformer-Base
The data overview is in Table 9. For tokenization,
we use the SentencePiece (Kudo and Richardson,

2018) model from NLLB-20011 (NLLB Team et al.,
2022). The model is trained to translate from and
into English.

Direction # Sentences # Tokens (en) # Tokens (X)

en-es 1,000,000 15,482,094 16,422,413
en-de 1,000,000 17,952,717 20,142,507
en-fr 1,000,000 21,495,343 26,634,530
en-hi 534,319 8,723,899 10,913,496
en-it 1,000,000 14,435,382 15,524,589
en-ko 1,000,000 11,290,102 9,552,148
en-pt 1,000,000 13,879,742 14,410,909
en-ru 1,000,000 16,638,782 19,630,699

Table 9: Overview of OPUS-100 data we used to train
the Transformer-base.

A.2 Details on Domain Mismatch Data

For the grammatical gender control experiments
with domain mismatch (§4.2), the training domain
differs from the test sets in both style and length.
An overview is shown in Table 10.

During training, an example tuple of (input, out-
put, attribute label) is: ("the actor finished her
work.", "La actriz terminó su trabajo.", 0: feminine)
("the actor finished his work.", "El actor terminó su
trabajo.", 1: masculine). The training sentences are
all artificial sentences following this simple subject-
verb-objective structure. This differs significantly
from the test sets with public speaking texts.

Split Style Avg. # output
words per sent.

Train artificial sentences 5.5
Test (supervised) TED talks 25.4
Test (new tgt lang.) TED talks 25.2
Test (new src & tgt lang.) TED talks 26.2

Table 10: Details on domain mismatch training setup.

B Training and Inference Details

We implemented our approaches in FAIRSEQ (Ott
et al., 2019) at https://github.com/dannigt/
attribute-controller-transfer.

B.1 Inference

Preprocessing For CoCoA-MT (Nadejde et al.,
2022), many test inputs contain multiple sentences.
When directly decoding, NLLB-200 (NLLB Team
et al., 2022) suffered from severe under-translation,

11https://github.com/facebookresearch/fairseq/
tree/nllb/#preparing-datasets-for-training
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where the output translation only contains one sen-
tence. We therefore split the input by sentence
boundaries and decode sentence by sentence.

Hyperparameters When decoding, we use a
beam size of 4 and length penalty of 1.0.

Evaluation To evaluate BLEU and COMET
scores, we concatenate the hypotheses and refer-
ences from different attributes. It is also the case
when reporting the multi-source results in Table 7.

B.2 Details on Finetuning

When finetuning NLLB-200, we use a batch size
of 16k target tokens. For bilingual systems, we
train for 30 updates. When training multilingually,
we train for 60 updates. We use a learning rate of
0.0001 with an inverse squared root schedule and
20 warmup steps. Dropout is set to 0.1.

B.3 Details on Classifier Guidance

Attribute Classifier Training The classifier op-
erates on meanpooled decoder hidden states and
consists of two feedforward layers with ReLU ac-
tivation in between. The first layer projects from
the 1024 Transformer hidden dimension to 256, the
second layer from 256 to C, the number of attribute
classes. In our experiments, C is 2 for formality
control (formal, informal) and 3 for gender control
(feminine, masculine, neutral)12.

We train the classifier on a frozen NLLB-200
600M model with an effective batch size of 32k
target tokens. The learning rate is 0.002 with an
inverse square root schedule and 20 warm-up steps.
We use the Adam (Kingma and Ba, 2015) opti-
mizer with betas of (0.9, 0.98). Dropout and label
smoothing are set at 0.1. For formality control, we
train the monolingual classifiers for 100 updates
and multilingual for 250 updates. For the gender
control, we train for 25 updates due to the small
dataset and simplicity of the training data.

Hyperparameters For the classifier guidance
hyperparameters, on the en→de training data
of CoCoA-MT, we searched among step size
[0.05, 0.1, 0.5], and number of iterations [3, 5]. We
used 5 iterations and 0.1 step size for formality con-
trol, and 5 iterations and 0.05 step size for gram-
matical gender control. We do not use KL regular-
ization and postnorm fusion as in Dathathri et al.

12As our test set only covers two genders, we only report
scores on two genders.

(2020), since they degraded performance in initial
experiments.

Decoding Speed Decoding with our approach
is slow due to the repeated gradient updates. For
instance on formality control, decoding on the test
sets of 600 sentences takes around 30 minutes.

C Details on Human Evaluation

We randomly sampled 16 source English sen-
tences containing second person pronouns from the
CoCoA-MT test set, and collected 5 translations
for each: from baseline NLLB-200, as well as from
CG (multi) and FT (multi) for both formalities13.
A native speaker rated the 80 hypotheses.

During the evaluation, we learned that there are
three levels of formality in Bengali, where: 1) the
lowest formality level is only used between very
close relations; 2) the next higher level is used
between families or acquaintances; 3) the high-
est level is used between unfamiliar persons or
those between higher social distances. We there-
fore asked the annotator to match each formality
category to one integer point. That is, 1, 2, and
3 correspond to very informal, informal, and for-
mal respectively. We also learned that the lowest
formality level is only used between very close
relations and therefore rare.

While scoring, the annotator was presented with
the English source sentences and their Bengali
translations together in random order, and asked to
score translation quality on a 5-point scale (1 being
the worst) and formality scores on a 3-point scale
(1 being the least formal).

D Comparison to Prior Works Trained on
Different Data Conditions

Here we compare our results to prior works that
used more relaxed data conditions than ours for the
zero-shot tasks. In Table 11, first four systems are
submissions to the unconstrained zero-shot track
of the IWSLT 2023 formality control shared task
(Agarwal et al., 2023). We compare to submissions
in the unconstrained track, as our models would fall
under this track due to the use of pretrained models.
The scores of other systems are from Table 48 of
Agarwal et al. (2023). We grayed out our COMET
scores, as we are unsure whether our evaluation
used the same underlying model as the organizers

13Due to time constraints, we could not include the combi-
nation of finetuning and classifier guidance in the evaluation.
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(we used wmt22-comet-da). Overall, our model’s
performance is comparable to the leading systems.

Formality BLEU COMET M-Acc

en→pt
Ours formal 40.3 85.3 100

informal 43.9 86.0 83
Wu et al. (2023) formal 45.4 77.4 100

informal 49.1 78.5 100
Bahar et al. (2023) formal 34.6 60.9 99

informal 42.4 67.9 64
Lee et al. (2023) formal 31.0 52.5 100

informal 19.9 24.9 68
Vakharia et al. (2023) formal 26.6 40.5 90

informal 28.4 42.5 58

en→ru
Ours formal 33.2 84.4 100

informal 33.0 84.4 93
Bahar et al. (2023) formal 35.4 61.7 99

informal 33.0 60.3 98
Wu et al. (2023) formal 33.7 58.0 100

informal 32.4 55.6 100
Lee et al. (2023) formal 25.8 44.5 100

informal 26.3 41.8 100
Vakharia et al. (2023) formal 18.4 -17.1 99

informal 14.9 -27.7 52
Vincent et al. (2023) formal unknown unknown 100

informal unknown unknown 99

Table 11: Comparison to prior works with different
data conditions.
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