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Abstract

Mainstream cross-lingual task-oriented dia-
logue (ToD) systems leverage the transfer learn-
ing paradigm by training a joint model for in-
tent recognition and slot-filling in English and
applying it, zero-shot, to other languages. We
address a gap in prior research, which often
overlooked the transfer to lower-resource collo-
quial varieties due to limited test data. Inspired
by prior work on English varieties, we craft
and manually evaluate perturbation rules that
transform German sentences into colloquial
forms and use them to synthesize test sets in
four ToD datasets. Our perturbation rules cover
18 distinct language phenomena, enabling us
to explore the impact of each perturbation on
slot and intent performance. Using these new
datasets, we conduct an experimental evalua-
tion across six different transformers. Here, we
demonstrate that when applied to colloquial va-
rieties, ToD systems maintain their intent recog-
nition performance, losing 6% (4.62 percentage
points) in accuracy on average. However, they
exhibit a significant drop in slot detection, with
a decrease of 31% (21 percentage points) in slot
F1 score. Our findings are further supported by
a transfer experiment from Standard American
English to synthetic Urban African American
Vernacular English.

1 Introduction

The usability of dialog systems heavily relies on
the ability to handle user inputs in multiple lan-
guages. Recent language models (LMs) have be-
come state-of-the-art tools to carry out the primary
task-oriented dialogue (ToD) problems, including
intent recognition and slot filling. What is more,
LMs leverage multilingual pre-training to facili-
tate transfer across languages. To achieve this, the
mainstream approach involves fine-tuning the LM
on a pivot language, commonly English, and subse-
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Figure 1: An illustrative example selected from xSID.
The top part displays the intact sentence with gold la-
bels, the bottom part shows the prediction for the per-
turbed sentence. The perturbations tun_imperative,
article_name, name_order are applied. There are er-
rors in predicting the intent and one of the two slots.

quently employing the LM in a zero-shot manner
to process target languages (Hu et al., 2020).

While this language transferring approach has
achieved impressive results for many language
pairs, its effectiveness is limited when it comes
to processing low-resource language varieties and
dialects (Hedderich et al., 2021). These varieties
are often underrepresented in the LM’s pre-training
data and may not align well with the characteristics
of the chosen pivot language. Our current under-
standing of how well modern LMs handle dialects
and the extent of disparity between standard lan-
guages and dialects remains limited. Therefore, it is
important to assess the performance gap in the first
place, as highlighted by Kantharuban et al. (2023)
to identify key directions for further development.

Processing (non-standardized) dialects brings
unique challenges: large volumes of writing such
as newspapers or fiction are rarely produced, and
access to conversational data in social media is lim-
ited. Besides, dialects lack unified spelling rules
(Millour and Fort, 2019) and exhibit a high degree
of variation over space and time (Dunn and Wong,
2022). Finally, dialects may additionally show a
significant rate of code-mixing compared to stan-
dard languages (Muysken et al., 2000).
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To tackle these challenges, recent studies have
introduced techniques that mimic dialectal mor-
phosyntactic variation through rule-based trans-
lation systems which perturb sentences into re-
spective dialect variants in German (Gerlach et al.,
2022) and English (Ziems et al., 2022). This ap-
proach is highly practical as it avoids the expense
of annotating new data while still effectively stress-
testing applications like question answering and
machine translation (Ziems et al., 2023). Build-
ing on this, we choose ToD as a task where we
expect a high level of linguistic variation in real-
life application settings (Trong et al., 2019; Aepli
et al., 2023). We experimentally evaluate how well
ToD systems handle dialectal data by simulating
dialectal and colloquial variations in English and
German to explore the following research ques-
tions (RQs). RQ 1: How does the LM performance
in intent recognition and slot filling change when
applied to synthetic dialectal data in both English
and German? RQ 2: Considering that each per-
turbation isolates a specific dialectal phenomenon,
which perturbations have the most significant ef-
fect? RQ 3: How do LMs differ in terms of robust-
ness to dialectal perturbations? Figure 1 illustrates
our approach.

To address these RQs, we contribute in the fol-
lowing ways: (i) We define and implement a set of
hand-crafted perturbation rules for translating from
Standard German to its spoken varieties (§3.2).
(ii) We systematically test a range of perturbations,
each representing distinct dialectal phenomena, in
two languages, to quantify their individual effect on
ToD performance (§5, RQ 1&2). (iii) We provide
an extensive analysis of joint intent recognition and
slot filling experiments using a diverse set of cross-
lingual encoders in two languages (§5, RQ 3).

We release the code for the perturbation rules
and the results of our experimental evaluation
for further uptake: github.com/mainlp/dialect-
ToD-robustness.

2 Related Work

Robustness of ToD systems. The evaluation of
Task-oriented Dialogue (ToD) systems’ robustness
aims to investigate the generalization capabilities of
LMs and their ability to adapt to domain shifts, with
a specific focus on English (Chang et al., 2021).
The robustness of ToD systems has been widely in-
vestigated using adversarial attacks, which involve
manipulating the gradients and weights of LMs to

alter their predictions (Cheng et al., 2019).
Nevertheless, white-box methods lack linguistic

awareness, making them not easily interpretable
(Zeng et al., 2021). In contrast, recent black-box
methods have emerged that aim to mimic language
variation and real-life noise, including speech arti-
facts and typos, with the primary objective of craft-
ing instances that deceive LMs (Lee et al., 2022;
Liu et al., 2021; Peng et al., 2021; Cho et al., 2022).

A related line of research focuses on developing
defenses against adversarial attacks and enhanc-
ing the robustness of ToD systems by employing
techniques such as data augmentations and incor-
porating regularization terms in the loss function
(Einolghozati et al., 2019; Sengupta et al., 2021).
NLP for dialects and non-standard varieties.
Previous efforts in processing dialects and non-
standard varieties have primarily focused on dif-
ferentiating between dialects and closely related
languages. Notably, the VarDial initiative (Gaman
et al., 2020; Chakravarthi et al., 2021; Aepli et al.,
2022, 2023) has conducted a series of evalua-
tion campaigns aimed at dialect identification and
discrimination between similar languages. Addi-
tional research directions in the field include part-
of-speech (POS) tagging (Hollenstein and Aepli,
2014; Zampieri et al., 2019), syntactic parsing
(Blodgett et al., 2018), low-resource intent iden-
tification and slot filling (Aepli et al., 2023). More-
over, machine translation techniques have been ap-
plied to re-write sentences from dialect to standard
language (Kchaou et al., 2022; Plüss et al., 2020;
Lambrecht et al., 2022). To overcome the lim-
ited availability of parallel training data, rule-based
perturbations simulating dialectal morphosyntactic
phenomena have been developed to generate syn-
thetic parallel sentence pairs (Gerlach et al., 2022).

The emergence of pre-trained LMs has shifted
the focus towards investigating disparities in rep-
resentation and downstream performance between
non-standard and standard languages. To this end,
LM diagnostic tools encompass a wide range of
techniques, including cloze tests (Zhang et al.,
2021) and contrastive evaluation via minimal pairs
(Demszky et al., 2021). Ziems et al. (2022, 2023)
have created a rule-based translation system that
converts English into various dialects. They use
this system to conduct stress tests on multiple down-
stream models and reveal performance disparities
between English dialects.

Methods to improve LMs’ robustness towards
dialects include integrating morphological informa-
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tion into LMs’ tokenizers through inflection per-
turbations (Tan et al., 2020a,b), manipulating the
parse tree of the source sentence to align with the
word order in the target dialect (Wang and Eisner,
2016; Wu et al., 2023), and character noise injec-
tion (Aepli and Sennrich, 2022). Using perturbed
data during LM pre-training or adapter training has
shown significant benefits for dialectal variants of
the GLUE tasks (Wang et al., 2018) specifically
designed to dialects (Held et al., 2023).

A related line of research concentrates on the
processing of spoken dialects, with a specific em-
phasis on dialectal speech to standard language
recognition (Samardžić et al., 2016; Plüss et al.,
2022) and spoken dialect identification (Zampieri
et al., 2019).

3 Perturbations Based on Dialect
Variations

In this section, we introduce perturbations that are
specifically motivated by dialectal variation. In En-
glish and German, these perturbations specifically
focus on altering the morphosyntactic structure of
the sentence to simulate dialects, while keeping the
semantics unchanged.

3.1 English Perturbations

We re-use a set of perturbations obtained from the
Multi-VALUE framework (Ziems et al., 2023),1

which translate text from Standard American En-
glish (SAE) to Urban African American Vernac-
ular English (UAAVE). This set comprises a to-
tal of 118 perturbations, covering morphosyntactic
phenomena present in UAAVE. The quality of the
perturbation-based translation system is evaluated
through prior human evaluation. These patterns
are documented in and sourced from the Electronic
World Atlas of Varieties of English (eWAVE, Ko-
rtmann et al., 2020), which lists 235 features from
75 English varieties, collected by 87 professional
linguists in 175 peer-reviewed publications.

3.2 German Perturbations

Aligned with the Multi-VALUE framework, we im-
plement a set of perturbations designed to translate
text from Standard German into non-standard va-
rieties. Since there is no resource detailing syn-
tactic variations in German varieties similar to
those for other languages such as English (Ko-
rtmann et al., 2020), North Germanic languages

1Usage terms at https://value-nlp.org/.

(Lundquist et al., 2019), creole and pidgin lan-
guages (Michaelis et al., 2013) or South Ameri-
can languages (Muysken et al., 2016), we review
over thirty linguistic works published in the last
decades.2 We select a set of morphosyntactic fea-
tures that include different grammatical areas and
features both regional and supraregional variation.
Similarly to the work by Ziems et al. (2022), our
feature set is meant to showcase different types of
variation rather than being exhaustive.

Table 1 presents an overview of the perturbations,
along with examples and pointers to relevant lin-
guistic literature for further reference.3 We group
the perturbations according to eWAVE’s category
definitions and de-facto category assignments of
similar English examples.4 Several of our rules
target grammatical areas that are not covered by
eWAVE/Multi-VALUE, sometimes in ways rele-
vant to the ToD context. For instance, we also
include changes to adpositions (relevant for label-
ing slots in queries relating to flight itineraries) and
personal names (pertinent for queries like calling a
contact or checking a birthday).

We include features that are common and un-
marked in colloquial German across all of the
German-speaking area (such as eliding the word-
final schwa in inflected verbs), as well as some
that are specific only to certain non-standard di-
alects (such as the choice of directive or locative
preposition). Some of these features cannot be eas-
ily placed on this scale of regional specificity, as
they might be licensed in more construction types
in some areas than in others (like the progressive
tense constructed with the preposition am; Auer,
2003). In total, we developed 18 perturbations that
cover a wide range of phenomena.

Implementation. Perturbation rules are imple-
mented as rule-based functions that modify input
sentences according to morphosyntax parses. For
part-of-speech (POS) tagging and dependency pars-
ing, we employ German SoTA models in spaCy
(Honnibal et al., 2020) and Stanza (Qi et al., 2020).
Noun inflection is handled using Derbi (Schmaltz,
2022), verb conjugation is conducted with Pattern-

2While German dialectology has traditionally focused
more on phonological/phonetic and lexical variation, we take
advantage of the popularity that dialect syntax studies have
gained in the past decades (cf. Glaser, 1997; Scheutz, 2005).

3For a general introduction to syntactic variation in collo-
quial varieties of German, see Fleischer (2019).

4For instance, our comparative feature resembles eWAVE
features 82 and 85.
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Category Perturbation Example: Before→ After Source

Noun Phrase
possession_von des Baums→ von dem Baum Bülow et al. (2021);
von construction instead of genitive the.GEN tree’s → of the.DAT tree Eichhoff (2000, map 77)

possession_pron Kafkas Werke→ Kafka seine Werke Bülow et al. (2021);
Dative with poss. pron. instead of genitive Kafka’s works→ Kafka.DAT his works Eichhoff (2000, map 77)

article_name Franz Kafka → der Franz Kafka Fleischer (2019);
Article before personal names Franz Kafka → the Franz Kafka Eichhoff (2000, map 76)

comparative größer als→ größer wie Jäger (2018)
Comparitives with wie or als wie bigger than

double_det ein so großer Baum→ ein so ein großer Baum Auer (2003)
Emphatic double article a such big tree→ a such a big tree

Discourse & Word Order
name_order Franz Kafka → Kafka Franz Auer (2003)
Swapped family and given names

denn Wie ist das Wetter? →Wie ist denn das Wetter? Fleischer (2019)
Obligatory particle denn in questions How is the weather? → How is PART the weather?

verb_clusters da sie das getan hat→ da sie das hat getan Bader and Schmid (2009)
Raised auxiliary/modal in 2-verb clusters because she it done had→ because she it had done ‘because she had done it’

Tense & Aspect
progressive ich koche Suppe→ ich bin Suppe am kochen Flick and Kuhmichel (2013);
Progressive construction with am I cook soup→ I am soup PREP cooking Fleischer (2019)

Adverbs & Prepositons
pronominal_adverbs davon weiß ich nichts→ da weiß ich nichts von Fleischer (2002)
Splitting of pronominal adverbs with da- of.this know I nothing→ there know I nothing of

direction nach München → auf München Merkle (1993, p. 185);
Directive preposition auf to Munich Elspaß and Möller

(2003–, entry 12/4g)

location in München → zu München Merkle (1993, p. 186)
Locative preposition zu in Munich

Negation
negative_concord ich sehe kein Haus→ ich sehe kein Haus nicht Fleischer (2019); Auer (2003)
Negative concord I see no house→ I see no house not ‘I don’t see any house’

Relativization
relative_pron der Stern, der funkelt→ der Stern, wo funkelt Moser (2023)
Relative marker wo the star REL sparkles

Complementation
es_hat es gibt noch Brot → es hat noch Brot König et al. (2015, p. 243)
Existential clause es hat it gives still bread→ it has still bread ‘there is still bread left’

Verb Morphology
tun_imperative räum auf → tu aufräumen Merkle (1993, p. 66)
Periphrastic imperatives with tun ‘do’ tidy.2SG.IMP up → do.2SG.IMP tidy.up.INF *

schwa_elision ich habe→ ich hab Keel (1980)
Schwa elision at the end of 1.SG.PRES verbs I have

Pronouns
clitic_es ist es→ ist’s Abraham (1996)
Enclitic form of es ‘it’ after inflected verbs is it

Table 1: Our collection of syntactic perturbations, sorted according to eWAVE’s categories (in bold face). We give
examples in German, with glosses in gray italics. *This feature, tun_imperative, is also inspired by systematic
variation we could observe between the Standard and Swiss German versions of one of the datasets we use, xSID
(van der Goot et al., 2021a; Aepli et al., 2023).
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de5 (De Smedt and Daelemans, 2012). We incor-
porate the list of first names from Nett et al. (2019).
Refer to Appendix A for examples of automatically
perturbed sentences.
Human evaluation. We create a human evalua-
tion dataset by manually labelling up to eight sen-
tences per perturbation from each dataset. As cer-
tain rules can only be applied to fewer than eight
sentences in some datasets, the human evaluation
dataset comprises 200 sentences in total.

These sentences are assessed for fluency on a
five-point Likert scale, where a score of 5 means
that perturbed sentences are highly fluent and nat-
ural, while a score of 1 indicates the opposite.
Appendix E presents the annotation guidelines.
The annotations are carried out by two native Ger-
man speakers with a background in computational
linguistics and significant exposure to diverse di-
alects.6

When evaluating the inter-annotator agreement
based on raw scores, the percentage of cases where
both annotators assign the same score is 53.51%
and the Pearson correlation coefficient is 0.51.
Overall, the scores provided by both annotators
average at 3.92 and 4.63. In 96 (48%) and 3 (1.5%)
cases, both annotators give a score of 5 and 1 to the
same sentence, respectively. Notably, the pertur-
bations verb_clusters shows significant disparity,
with the mean score assigned by one annotator be-
ing 1, while the other annotator assigned a mean
score of 5.7 Below is an example of a sentence
pair that the annotators judged with opposite scores
(1 vs. 5). A is for German, B is for the dialect re-
write. The fragment of the sentence affected with
the verb_clusters perturbation is underlined.
A Frag ob Pauline zu meinem Thanksgiving -

Ask if Pauline to my Thanksgiving -
Treffen kommen will .
gathering come.INF wants .

B Frag ob Pauline zu meinem Thanksgiving -
Ask if Pauline to my Thanksgiving -
Treffen will kommen .
gathering wants come.INF .

5digiasset.org/pattern-de
6One annotator is one of the authors. The second annotator

was hired and received fair compensation according to the
local employment regulations.

7This feature is regionally very specific (Elspaß and Möller,
2003–, entry 3/13abc). The annotator providing high rankings
is not from an area using this construction but was familiar
with relevant literature and examples beforehand. The other
annotator, unfamiliar until a pre-task explanation, gave lower
rankings.

Similar discrepancies are observed in other
perturbations such as pronominal_adverbs,
relative_pron, and name_order.

Additionally, we map the score to a binary scale
(where scores 1 and 2 were grouped as 0, and
scores 3, 4, and 5 were grouped as 1). The exact
match agreement becomes 91.89%. Cohen’s kappa
(McHugh, 2012) reaches a 0.61. Areas of disagree-
ment include verb_clusters and progressive.
These perturbations account for the majority of
the discrepancies, with 7 items and 4 items respec-
tively. The results indicate moderate to substantial
levels of agreement between annotators and shed
light on which perturbations tend to cause the most
disagreement. Since linguistic acceptability in the
context of language variation can be subjective, we
chose to keep all perturbations, even if there were
disagreements among annotators.

4 Methodology

We choose task-oriented dialogue systems as a task
where we expect a high level of linguistic variation
in real-life application settings. There is limited
research on whether these systems commonly en-
counter inputs from dialect speakers in real-world
applications (Bird, 2020; Nekoto et al., 2020). Nev-
ertheless, several works encourage the localization
of dialogue systems to dialect varieties. One com-
mon motivational aspect shared by these works is
the aim to encourage the use of dialects, with the
expectation of positively impacting the prestige of
the language (Trong et al., 2019; Aepli et al., 2023).

Datasets. Table 2 provides a brief description of
the ToD datasets for intent recognition and slot
filling. All of the datasets considered support zero-
shot cross-lingual setups by including English train-
ing and German development and test data. Except
for xSID, all datasets are further equipped with
German training data. In this study, we concentrate
on German and English, leaving other languages
for future work.

Method. We adopt a joint approach for intent
detection and slot filling, leveraging the implemen-
tation of MaChAmp (van der Goot et al., 2021b).
It uses an encoder and a separate decoder head for
each task, one for intent classification and one for
slot detection with a CRF layer on top. We use
the default settings, which include a learning rate
of 0.0001. We experiment with six encoder-based
multilingual LMs (Table 3). Each LM undergoes
training with five random seeds, and results are av-
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Label Source # Langs. Domain # Intents # Slots Train / dev / test DE tr? License

xSID van der Goot et al. (2021a)
Aepli et al. (2023)

15 General 16 33 43k / 300 / 500 CC BY-SA 4.0

MultiATIS++ Xu et al. (2020) 9 Aviasales 18 84 3.7k / 1.2k / 893 ✓ Apache 2.0
MASSIVE Bastianelli et al. (2020)

FitzGerald et al. (2023)
51 Virtual assistant,

smart home
60 55 11k / 2k / 3k ✓ Apache 2.0

MTOP Li et al. (2021) 6 Virtual assistant 117 78 16k / 1.8k/ 3.5k ✓ CC BY-SA 4.0

Table 2: The datasets, used for experiments. Key: # langs. is the number of languages included in the dataset.
# intents and # slots stands for the the number of intents and slots in the dataset. Train/dev/test is the number of
sentences in train, validation and test sets. DE tr? indicates whether training data in German is available.

Label HuggingFace ID (Wolf et al., 2020) Source # Params. Tr. data Dialect? License

mBERT bert-base-multilingual-cased Devlin et al. (2019) 177M Wiki ✓ Apache 2.0
XLM-R xlm-roberta-base Conneau et al. (2020) 279M CC MIT
RemBERT google/rembert Chung et al. (2020) 575M Wiki+CC Apache 2.0
mDeBERTa microsoft/mdeberta-v3-base He et al. (2021a,b) 276M CC MIT
DistilmBERT distilbert-base-multilingual-cased Sanh et al. (2019) 134M Wiki ✓ Apache 2.0
mMiniLM microsoft/Multilingual-MiniLM-L12-H384 Wang et al. (2020) 117M CC MIT

Table 3: The cross-lingual LMs used in the study. Key: Tr. data denotes pre-training datasets, where Wiki stands
for Wikipedia, CC stands for CommonCrawl (Wenzek et al., 2020). Dialect? indicates whether German dialect data
was explicitly included in the LM’s pre-training data. The dashed line separates the base-size LMs from the distilled
LMs. DistilmBERT is distilled from mBERT, mMiniLM is distilled from XLM-R.

eraged across all runs. LMs are trained on a single
NVIDIA A100 device.

Experimental setup. Evaluation metrics are ac-
curacy for intent recognition and the span F1 score
for slot filling, where both span and label must
match exactly. We explore three experimental se-
tups: (i) zero-shot setup: models are trained on
English training data; (ii) zero-shot setup with Ger-
man development data; (iii) fully supervised setup
(where available): models trained on German train-
ing data.

Model selection over epochs is based on its
performance on development data in English (i)
and German (ii, iii), without any access to labeled
UAAVE or German data during the training phase.

To assess the robustness of the ToD model, we
apply perturbations to generate synthetic UAAVE
and German dialect test data. We then use fine-
tuned models to make predictions on this perturbed
data. We evaluate the impact of these perturbations
by measuring the difference in performance before
and after the perturbation is applied. In addition,
following the research on adversarial attacks (Tsai
et al., 2019) we define the success rate of a per-
turbation as the number of instances that become
misclassified after the perturbation was applied.

5 Results

RQ 1: What is the impact of perturbed data on
performance? Table 4 and Table 6 (Appendix B)

present the intent recognition and slot filling test
results for zero-shot (i) German and English, re-
spectively, with and without perturbations. Ad-
ditionally, in Appendix B, Table 7 displays the
results for setup (ii), while Table 8 presents the
fully-supervised German setup (iii). The perfor-
mance scores align with earlier results reported in
the dataset papers and recent research (Aepli et al.,
2023). The perturbations are used in two scenar-
ios: (a) with 18 German and 118 English perturba-
tions applied individually and average performance
computed across them,8 (b) with all perturbations
applied simultaneously.

Table 4 shows the performance gap9 in zero-shot
evaluation on test sets before and after German per-
turbations are applied concerning the dataset and
the LM. The decrease in performance is minimal
for intent recognition accuracy, averaging at 0.33,
when individual perturbations are applied. How-
ever, it drops further by an average of 4.62 when
all perturbations are applied simultaneously. The
drop is more pronounced for slot filling, where

8While some of the syntactic features tend to co-occur,
e.g., the name_order swap is most commonly found in vari-
eties that also exhibit the article_name feature (Elspaß and
Möller, 2003–, entry 10/16ab). We nevertheless apply rules
individually in scenario (a), as the borders between feature
areas do not form perfect isoglosses. In the given example,
name swapping without any added article is attested in some
locations near the Belgian and Dutch borders (ibid.).

9All of the performance changes detailed in the following
are in percentage points.
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Intact Individual Perturbations All Perturbations
Intent Acc Slot F1 ∆ Intent Acc ∆ Slot F1 ∆ Intent Acc ∆ Slot F1

xSID mBERT 76.36 70.57 0.40 2.32 5.60 20.70
XLM-R 90.20 76.23 0.31 2.70 4.08 22.95
RemBERT 91.08 79.44 0.34 2.78 4.16 23.59
mDeBERTa 94.88 82.62 0.24 2.69 3.12 23.03
DistilmBERT 71.04 66.62 0.43 2.17 4.88 19.94
mMiniLM 72.16 69.29 0.34 2.25 3.56 22.36

MultiATIS++ mBERT 76.91 62.22 0.07 2.50 0.81 9.57
XLM-R 78.75 76.18 0.02 3.72 0.18 11.13
RemBERT 79.28 83.32 0.01 4.05 0.27 15.95
mDeBERTa 79.17 80.10 0.01 3.89 0.27 10.93
DistilmBERT 74.67 56.72 0.05 2.38 0.43 8.74
mMiniLM 74.65 68.49 0.00 3.12 0.25 9.21

MASSIVE mBERT 54.63 49.25 0.43 2.38 5.74 21.56
XLM-R 74.86 65.75 0.42 2.80 6.70 26.47
RemBERT 83.86 73.33 0.41 3.02 6.29 27.64
mDeBERTa 83.91 73.86 0.39 3.02 6.29 28.08
DistilmBERT 45.53 42.74 0.38 1.99 4.42 19.30
mMiniLM 58.14 54.57 0.30 2.44 5.34 23.02

MTOP mBERT 67.34 66.99 0.51 2.58 8.20 26.96
XLM-R 88.76 77.53 0.60 2.96 8.88 30.44
RemBERT 91.35 79.33 0.58 3.05 8.79 31.41
mDeBERTa 90.66 79.26 0.60 2.95 8.24 30.50
DistilmBERT 58.72 59.71 0.46 2.50 7.32 25.79
mMiniLM 75.89 70.53 0.52 2.79 7.17 29.13

Mean 76.37 69.36 0.33 2.79 4.62 21.60

Table 4: The overall results for intent recognition and slot filling on test sets in German in zero-shot setup (i)
and the gap in performance before and after dialect perturbations are applied (in percentage points). Intact (left):
performance on intact test sets. Individual perturbations (middle): 18 individual perturbations are applied and
average performance gap is computed across them. All perturbations (right): all perturbations applied simultaneously.
∆ denotes the difference between performance on intact and perturbed data. Performance on intact data consistently
surpasses that on perturbed data, leading to positive ∆ values. The results are averaged across five runs with varying
random initialization.

performance decreases by 2.79 Slot F1 after indi-
vidual perturbations and by 21.60 Slot F1 after the
simultaneous application of all perturbations.

In the evaluation for English (Table 6, Ap-
pendix B), we observe similar trends. The decline
in intent recognition is minimal, with average drops
of merely 0.10 up to 2.48 accuracy in the two con-
sidered scenarios. Conversely, the decline in slot
filling is more pronounced, with 9.87 and 49.37
F1 score on average for individual and combined
perturbations, respectively. The simultaneous appli-
cation of all perturbations affects the performance
more than applying individual perturbations.

Further experiments with setup (ii) show that
the choice between English or German develop-
ment data has no significant impact on the perfor-
mance on perturbed data (compare Table 4 with Ta-

ble 7, Appendix B). In particular, while zero-shot
downstream performance improves for all LMs
(e.g. mDeBERTa and RemBERT, show gains of
0.61 accuracy and 0.18 F1 score and 0.77 accuracy
and 2.36 F1 score, respectively), the impact of the
perturbations remains similar with comparable re-
sults to the results discussed earlier in the setup (ii)
(higher impact on slots than intents).

In the fully-supervised setup (iii) with fine-
tuning on German data (Table 8, Appendix B), we
observe an expected significant improvement in
performance across all three datasets, due to the
in-language training data. While the performance
drop is almost identical to the zero-shot set-up for
intent accuracy, the slot filling performance is con-
siderably more robust. Here, the average drop is
only 6.27 F1 when all perturbations are applied
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Figure 2: Intent prediction success rates on the per-
turbed German test set on MASSIVE with respect to
most impactful individual perturbations. The grey bars
denote the count of perturbed sentences, the colored
bars show the success rate. A logarithmic scale is used.

(compared to 21.60 in the zero-shot set-up). This
suggests that fine-tuning with in-language data im-
proves performance on both intact and perturbed
test sets.

To sum up, while LMs can still produce accurate
predictions on the sentence level after the sentence
is perturbed with dialectal variations (i.e., intent
recognition), their performance suffers particularly
on the word level (i.e., slot filling), and this be-
comes more pronounced as the sentence’s perturba-
tion increases. Fine-tuning with in-language data
improves overall performance and enhances sig-
nificantly the treatment of perturbed data. These
findings remain consistent across all four datasets
and the various LMs considered.
RQ 2: Which perturbations affect performance
the most? This part focuses on the zero-shot sce-
nario (i). First, we examine perturbations that re-
sult in a non-zero perturbation success rate, indi-
cating their ability to change the predicted intent.
Figure 2 illustrates the success rate of 12 individ-
ual perturbations on the German test set of MAS-
SIVE, compared with the count of perturbed sen-
tences. The six remaining perturbations do not
affect the performance and have zero success rate.
While all perturbations preserve semantics, those
with higher success rates induce a more substan-
tial shift in the representation space and effectively
fool LMs. The perturbations schwa_elision and
tun_imperative impact a similar number of sen-
tences, yet their success rates differ, with the lat-
ter exhibiting a higher success rate. This could
be attributed to the alteration in the number of
words in tun_imperative and the change in the
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Figure 3: The ∆ slot F1 score of the best performing
mDeBERTa with respect to perturbation category in
perturbed German test set in four datasets. ∆ denotes
the difference in F1 score between performance on intact
and perturbed data.

position of the main content word, shifting from
the first to the final position in the sentence (see
the example in Figure 1). The name_order per-
turbation exhibits the highest success rate, while
the negative_concord perturbation demonstrates
the lowest non-zero success rate. The analysis of
success rates in German and English across vari-
ous datasets (Figures 4 and 5, Appendix C) con-
firms that the frequency of perturbations differs
across datasets due to their design. However, the
success rates remain consistent. There are fre-
quent perturbations that have little impact, such
as location and direction in German (except
for MultiATIS++, see below), and zero_plural

in English. Some perturbations demonstrate con-
sistently stable success rates in all four datasets,
as observed in the case of progressive in English
and word_order in German. This could be linked
to the frequency of respective dialect phenomena
in the LM’s pre-training data, where rarely seen
dialect phenomena deceive it more effectively.

Figure 3 examines how the F1 score declines
after individual perturbations are applied. Here,
the perturbations are grouped according to eWAVE
categories, and mDeBERTa serves as the backbone
LM. Across datasets, the F1 score is mostly af-
fected by the three perturbations falling under the
Discourse & Word Order category, followed by
perturbations affecting Noun Phrases and Verb
Morphology. In turn, in English the Tense & As-
pect category stands out, followed by Pronouns
and Noun Phrases (Appendix D).

There are structural and domain-specific vari-
ations in performance across datasets. In xSID,

452



the Pronouns category experiences a significant
impact, indicating a higher frequency of the us-
age of es ‘it’ (shortened to ’s by our perturbations)
compared to other datasets. In MultiATIS++, the
Adverbs & Prepositions category is notably af-
fected. This category includes perturbations that
modify directive and locative prepositions, which
are commonly employed in MultiATIS++ due to
its specific domain (with queries like “What are
flights to X that also stop in Y?”).

RQ 3: How does the performance of LMs vary?
Table 4 shows that in the zero-shot setup mDe-
BERTa consistently outperforms other LMs, fol-
lowed closely by RemBERT. XLM-R and mBERT
also exhibit competitive performance, while Dis-
tilmBERT and mMiniLM tend to have lower scores.
There is a consistent drop in performance when di-
alect perturbations are applied, indicating that all
LMs are sensitive to dialectal variations. Figure 2
exhibits similar trends across all LMs, with mDe-
BERTa and RemBERT displaying comparatively
lower success rates for individual perturbations.
Conversely, distilled models, DistilmBERT and
mMiniLM, show higher success rates.

Our results suggest that mDeBERTa and Rem-
BERT are more robust to dialectal variations, out-
performing other LMs in both tasks across four
datasets. This aligns with previous cross-lingual
studies (Adelani et al., 2022; Malmasi et al., 2022),
where they outperformed other LMs and demon-
strated superior results in lower-resource settings.

Error analysis. Next, we focus on German for
error analysis. In intent recognition, LMs often con-
fuse semantically similar intents (PLAYMUSIC and
SEARCHCREATIVEWORK), or intents associated
with the same service, (ALARM/CANCEL_ALARM

and ALARM/SET_ALARM, xSID). These errors be-
come apparent when the LMs are tested on intact
data and become even more pronounced when
dialect perturbations are applied. Lastly, LMs
tested on perturbed data tend to misinterpret in-
tents that commonly share homonymous words
(BOOKRESTAURANT and RATEBOOK, xSID).

There are three primary errors in slot filling.
Firstly, the LMs incorrectly identify slot bound-
aries when perturbations impact word order. In
such cases, the LM tends to make errors in predict-
ing slot boundaries, as observed in instances like
“Merkel Angela” (B-PERSON I-PERSON) trans-
formed from “Angela Merkel”, where the LMs
often predict B-PERSON B-PERSON, splitting the

span inaccurately. Secondly, when the word order
is maintained, the LMs exhibit more mistakes in
predicting slot types. For instance, when the di-
rection perturbation is applied, the LMs frequently
assign incorrect slot types. Finally, when an extra
auxiliary verb is introduced, as in the case of the
progressive perturbation, LMs frequently assign
it a slot label.

6 Conclusion and Future Work

This project tests the robustness of task-oriented
dialogue systems (ToD) towards English and Ger-
man dialects. Our methodology involves applying
rule-based perturbations to translate ToD datasets
from Standard American English to Urban African
American Vernacular English, and from German to
its non-standard variety. To the best of our knowl-
edge, we are the first to design such perturbations
for German. Subsequently, we train multiple joined
ToD models, equipped with various Transformer-
based backbones, assessing their performance on
intact and perturbed data.

We conclude, that Re RQ 1: The impact of per-
turbed data on LM performance varies depending
on the type of perturbation and the task. In gen-
eral, we note a minor decrease in intent recogni-
tion but a notable drop in slot filling. Issues in
slot filling involve inaccuracies in boundary iden-
tification, mistakes in predicting slot types with
altered word order, and frequent misalignments of
slot labels with an extra verb. Re RQ 2: Across
languages, the performance drop varies by dataset
and LM, indicating domain and language-specific
patterns in response to phenomena-based pertur-
bations. Re RQ 3: There is no clear winner, but
mDeBERTa and RemBERT outperform other LMs
by gaining higher performance scores and being
more robust to dialectal variations.

Future work includes (i) extension to other lan-
guages with distinct dialectal variation; (ii) devel-
opment of fair evaluation approaches, that do not
favor standard languages but account for dialects;
(iii) incorporating phonological phenomena for a
deeper understanding of dialectal variations in writ-
ten and spoken forms.

Conducting similar experiments with other lan-
guages and dialects can help in understanding how
these models generalize across diverse linguistic
landscapes.
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Limitations

Focus on written text. Our study predominantly
focuses on written text, and we do not account
for phonological or lexical differences between the
standard language and non-standard varieties. Our
emphasis is primarily on syntactic differences, and
as such, we acknowledge that our analysis may not
fully capture the complete spectrum of linguistic
nuances present in spoken language variation.
Choice of LMs. Our choice of LMs is inherently
limited; we do not use auto-regressive or sequence-
to-sequence language models for the sake of com-
pute time.
German perturbations. The selected German per-
turbations do not perfectly capture any particular
German dialect, but they are based on prevalent pat-
terns found in a selection of dialects and colloquial
varieties.
Design of perturbations. The perturbation rules,
borrowed from Ziems et al. (2023) for English and
developed by us for German, specifically target
syntactic phenomena, excluding orthographic and
lexical variations.
Focus on zero-shot settings. In our approach, the
primary focus is on zero-shot settings, where di-
alect data is intentionally excluded from the train-
ing process to prevent any potential leakage. This
choice allows us to follow a practical scenario
where the model can handle diverse dialects with-
out the need for collecting specific dialect data dur-
ing training. However, deviating from the zero-shot
setting could potentially yield models that are more
robust to direct perturbation. In such cases, the up-
per bound for evaluating robustness would involve
incorporating dialect training data, providing an
alternative perspective to the zero-shot approach.

Ethical considerations

Human assessment. This work involves human
assessment of synthetically generated data. Two
annotators were involved. One annotator is one of
the authors. The second annotator was hired and
received fair compensation according to the local
employment regulations.
Perturbation rules. Our software allows automat-
ically applying changes to German sentences that
simulate dialectal and colloquial variation. Our
selection of perturbation rules is not exhaustive
enough to simulate any one dialect and is taken to
be representative of the breadth of variation in the
German dialect landscape. Because of these restric-

tions, we find it unlikely that our system could be
used for the mockery and parody of any dialects or
registers. We release the code for perturbations for
research purposes only and expressly forbid usage
for mockery or parody of any dialects or registers.
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A Examples of perturbed sentences

Perturbation Sentence → Perturbed sentence

Noun Phrase
possession_von Welcher Ort steht in der Erinnerung für das

Abendessen des Schachclubs ?
Welcher Ort steht in der Erinnerung für das
Abendessen vom Schachclub ?

‘What’s the location of the Chess Club dinner
reminder?’

possesion_pron Wann ist Robin Williams Geburtstag ? Wann ist Robin William sein Geburtstag ?
‘What is Robin William’s birthday?’

article_name Email an Natalie zu ihrem Geburtstag . Email an die Natalie zu ihrem Geburtstag .
‘Email Natalie for her birthday.’

comparative Wird es morgen heißer als 25 Grad Celsius ? Wird es morgen heißer wie 25 Grad Celsius ?
‘Will it be hotter than 25°C?’

double_det Ich möchte noch ein so lustiges Lied hören Ich möchte noch ein so ein lustiges Lied hören
‘I want to hear another song this funny’

Discourse & Word Order
name_order Ruf stattdessen Gloria Burgess an Ruf stattdessen Burgess Gloria an

‘Call Gloria Burgess instead’
denn Wie lange geht meine [sic] Timer noch ? Wie lange geht denn meine Timer noch ?

‘How much time is left on my timer?’
verb_clusters Zeige alle Erinnerungen an , die mit Familie zu

tun haben .
Zeige alle Erinnerungen an , die mit Familie
haben zu tun .

‘Show all family reminders’
Tense & Aspect
progressive Ich höre Jazz . Ich bin Jazz am hören .

‘I listen to jazz.’
Adverbs & Prepositions
pronominal_adverbs Stelle dafür einen Timer . Stelle da einen Timer für .

‘Set a timer for this.’
direction Berechne eine Route nach Hamburg . Berechne eine Route auf Hamburg .

‘Calculate the route to Hamburg.’
location Was kostet der Bodentransport in Denver ? Was kostet der Bodentransport zu Denver ?

‘How much is ground transportation in Den-
ver?’

Negation
negative_concord Nimm heute keine Anrufe an . Nimm heute keine Anrufe nicht an .

‘Don’t take any calls today.’
Relativization
relative_pron Freunde , die jetzt online sind Freunde , wo jetzt online sind

‘Friends who are online right now’
Complementation
es_hat Sende Andre die neuesten IT Themen die es

gibt
Sende Andre die neuesten IT Themen die es
hat .

Verb Morphology
tun_imperativ Erinnere mich an notwendige veranstaltungen . Tu mich an notwendige veranstaltungen erin-

nern .
‘Remind me of necessary events.’

schwa_elision Welche Erinnerungen habe ich für meinen Chef
?

Welche Erinnerungen hab’ ich für meinen
Chef ?

‘What reminders do I have for my boss?’
Pronouns
clitic_es Wird es für die Party am Samstag sonnig ? Wird’s für die Party am Samstag sonnig ?

‘Will it be sunny for the party on Saturday?’

Table 5: Examples of automatically perturbed sentences from the task-orieneted datasets used in this study.
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B Performance in joint intent recognition and slot filling

B.1 Performance on perturbed English test sets

Intact Individual Perturbations All Perturbations
Intent Acc Slot F1 ∆ Intent Acc ∆ Slot F1 ∆ Intent Acc ∆ Slot F1

xSID mBERT 99.04 95.28 0.09 10.34 2.32 57.14
XLM-R 99.20 95.93 0.11 9.94 1.96 57.66
RemBERT 99.12 96.11 0.04 9.90 1.32 57.68
mDeBERTa 99.04 96.00 0.07 9.96 1.68 58.01
DistilmBERT 99.00 94.52 0.09 10.19 2.36 56.61
mMiniLM 99.24 95.20 0.06 9.74 1.84 58.11

MultiATIS++ mBERT 79.69 93.00 0.00 10.98 0.04 45.46
XLM-R 79.75 92.99 0.00 10.82 0.18 45.30
RemBERT 79.73 93.31 0.00 11.04 0.18 45.59
mDeBERTa 79.84 92.93 0.00 10.76 -0.07 46.31
DistilmBERT 79.78 92.98 0.00 10.99 0.07 45.43
mMiniLM 75.39 90.76 0.00 10.79 -0.04 44.24

MASSIVE mBERT 87.95 81.92 0.14 14.08 4.93 44.50
XLM-R 89.11 82.79 0.17 13.78 3.88 44.42
RemBERT 89.25 83.10 0.08 14.21 3.57 44.82
mDeBERTa 89.59 82.99 0.24 14.32 2.68 44.64
DistilmBERT 87.11 80.65 0.27 14.17 5.20 43.61
mMiniLM 84.77 79.91 0.15 13.65 4.21 43.14

MTOP mBERT 96.40 89.14 0.18 4.54 4.83 50.58
XLM-R 96.65 89.78 0.10 4.58 3.16 50.46
RemBERT 97.15 89.83 0.13 4.52 4.17 50.44
mDeBERTa 96.71 89.24 0.11 4.43 3.07 49.98
DistilmBERT 96.01 88.53 0.19 4.56 4.52 50.19
mMiniLM 93.17 88.84 0.18 4.53 3.45 50.47

Mean 90.53 89.82 0.10 9.87 2.48 49.37

Table 6: The overall results for intent recognition and slot filling on test sets in English and the gap in performance
before and after UAAVE perturbations are applied. Intact (left): performance on intact test sets. Individual
perturbations (middle): 118 individual perturbations are applied and average performance gap is computed across
them. All perturbations (right): all perturbations applied simultaneously. ∆ denotes the difference between
performance on intact and perturbed data. Performance on intact data consistently surpasses that on perturbed data,
leading to positive ∆ values. The results are averaged across five runs with varying random initialization.
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B.2 Performance with German development set on perturbed German test sets

Intact Individual Perturbations All Perturbations
Intent Acc Slot F1 ∆ Intent Acc ∆ Slot F1 ∆ Intent Acc ∆ Slot F1

xSID mBERT 78.72 71.81 0.43 2.47 6.12 21.28
XLM-R 91.08 78.19 0.26 2.76 3.44 23.46
RemBERT 94.88 83.12 0.39 2.78 5.20 23.76
mDeBERTa 96.88 83.08 0.27 2.73 3.28 23.15
DistilmBERT 75.88 66.33 0.58 2.23 6.24 19.78
mMiniLM 72.32 70.51 0.31 2.39 2.84 22.64

MultiATIS++ mBERT 76.89 62.73 0.05 2.57 0.56 9.46
XLM-R 79.08 78.49 0.02 3.88 0.27 11.52
RemBERT 79.24 83.82 0.02 4.11 0.36 11.03
mDeBERTa 78.84 80.12 -0.01 3.89 -0.02 10.90
DistilmBERT 74.98 57.41 0.05 2.45 0.31 8.92
mMiniLM 74.42 69.17 0.00 3.17 0.16 9.50

MASSIVE mBERT 55.65 50.41 0.43 2.37 5.76 21.63
XLM-R 75.10 65.55 0.42 2.80 6.75 26.42
RemBERT 83.83 73.29 0.40 3.00 6.17 27.51
mDeBERTa 84.05 73.83 0.40 3.04 6.43 28.03
DistilmBERT 47.20 42.68 0.32 2.01 4.38 19.10
mMiniLM 57.91 54.72 0.29 2.44 5.11 23.13

MTOP mBERT 69.17 67.59 0.60 2.57 9.30 26.89
XLM-R 88.40 77.84 0.59 2.95 8.70 30.57
RemBERT 91.73 79.69 0.58 3.05 8.82 31.35
mDeBERTa 91.24 79.78 0.59 2.97 8.19 30.70
DistilmBERT 60.21 59.73 0.45 2.46 7.22 25.13
mMiniLM 76.14 70.60 0.52 2.77 7.13 29.12

Mean 77.24 70.02 0.33 2.83 4.70 21.46

Table 7: The overall results for intent recognition and slot filling on test sets in German and the gap in performance
before and after dialect perturbations are applied. Setup (ii): English train set is used for training, German
development set is used for model selection. Intact (left): performance on intact test sets. Individual perturbations
(middle): 18 individual perturbations are applied and average performance gap is computed across them. All
perturbations (right): all perturbations applied simultaneously. ∆ denotes the difference between performance on
intact and perturbed data. Performance on intact data consistently surpasses that on perturbed data, leading to
positive ∆ values. The results are averaged across five runs with varying random initialization.
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B.3 Performance on perturbed German test sets in fine-tuning setup

Intact Individual Perturbations All Perturbations
Intent Acc Slot F1 ∆ Intent Acc ∆ Slot F1 ∆ Intent Acc ∆ Slot F1

MultiATIS++ mBERT 79.17 92.66 0.01 5.05 0.33 4.24
XLM-R 79.17 92.56 0.01 4.97 0.33 3.09
RemBERT 79.22 92.33 0.01 4.97 0.33 3.52
mDeBERTa 79.46 92.55 0.01 4.99 0.33 3.08
DistilmBERT 79.28 92.12 0.01 5.09 0.33 5.44
mMiniLM 75.70 89.00 0.00 4.71 0.11 8.27

MASSIVE mBERT 84.79 77.38 0.37 3.01 6.22 6.98
XLM-R 86.73 78.83 0.34 3.06 5.78 6.95
RemBERT 87.22 80.05 0.33 3.17 5.71 6.98
mDeBERTa 87.19 79.62 0.35 3.12 5.95 6.96
DistilmBERT 83.25 76.60 0.35 2.98 5.68 7.13
mMiniLM 80.09 76.43 0.33 2.99 5.48 6.99

MTOP mBERT 94.64 83.74 0.49 3.04 7.46 7.36
XLM-R 95.71 84.37 0.48 3.07 7.43 6.95
RemBERT 95.98 84.19 0.49 3.10 7.86 7.27
mDeBERTa 95.62 84.55 0.48 3.07 7.86 6.96
DistilmBERT 93.94 82.05 0.50 3.02 7.63 7.35
mMiniLM 89.78 82.77 0.55 3.03 8.48 7.36

Mean 85.94 84.54 0.28 3.69 4.63 6.27

Table 8: The overall results for intent recognition and slot filling on test sets in German and the gap in performance
before and after dialect perturbations are applied. Setup (iii): German train set is used for training; German
development set is used for model selection. Intact (left): performance on intact test sets. Individual perturbations
(middle): 18 individual perturbations are applied and average performance gap is computed across them. All
perturbations (right): all perturbations applied simultaneously. ∆ denotes the difference between performance on
intact and perturbed data. Performance on intact data consistently surpasses that on perturbed data, leading to
positive ∆ values. The results are averaged across five runs with varying random initialization.
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C Success rate

C.1 Success rate of English perturbations
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Figure 4: The success rates in intent prediction on the perturbed English tests sets with respect to individual
perturbations. The grey bars represent the perturbation frequency (i.e., the count of altered sentences), while the
colored bars indicate the success rate (i.e., the number of misclassified sentences after applying the perturbation). A
logarithmic scale is utilized for improved clarity.
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C.2 Success rate of German perturbations

tu
n_

im
pe

ra
tiv

e

de
nn

sc
hw

a_
eli

sio
n

na
me_

or
de

r

pr
og

re
ss

ive

10

100
148 mBERT

XLM-R
RemBERT
mDeBERTa
mDistilBERT
mMiniLM

(a) xSID

sc
hw

a_
eli

sio
n

tu
n_

im
pe

ra
tiv

e
de

nn
ar

tic
le_

na
me

na
me_

or
de

r
pr

og
re

ss
ive

cli
tic

_e
s

po
ss

es
sio

n_
vo

n
dir

ec
tio

n
ve

rb
_c

lus
te

rs
loc

at
ion

ne
ga

tiv
e_

co
nc

or
d

10

100

905 mBERT
XLM-R
RemBERT
mDeBERTa
mDistilBERT
mMiniLM

(b) MASSIVE

loc
at

ion

sc
hw

a_
eli

sio
n

tu
n_

im
pe

ra
tiv

e

pr
og

re
ss

ive

10

100

555 mBERT
XLM-R
RemBERT
mDeBERTa
mDistilBERT
mMiniLM

(c) MultiATIS++

de
nn

ar
tic

le_
na

me
na

me_
or

de
r

tu
n_

im
pe

ra
tiv

e
sc

hw
a_

eli
sio

n
dir

ec
tio

n
cli

tic
_e

s
pr

og
re

ss
ive

ve
rb

_c
lus

te
rs

po
ss

es
sio

n_
vo

n
re

lat
ive

_p
ro

n
po

ss
es

sio
n_

pr
on

10

100

870 mBERT
XLM-R
RemBERT
mDeBERTa
mDistilBERT
mMiniLM

(d) MTOP

Figure 5: The success rates in intent prediction on the perturbed German tests sets with respect to individual
perturbations. The grey bars represent the perturbation frequency (i.e., the count of altered sentences), while the
colored bars indicate the success rate (i.e., the number of misclassified sentences after applying the perturbation). A
logarithmic scale is utilized for improved clarity.
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D Evaluation of performance drop

D.1 Performance drop in English
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Figure 6: The ∆ F1 with respect to perturbation category in perturbed English test sets.

466



D.2 Performance drop in German
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Figure 7: The ∆ F1 with respect to perturbation category in perturbed German test sets.
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E Human evaluation guidelines

Sentence Pair Assessment
You’ll be given a pair of sentences. One is in standard German, and the other is a re-write in dialect or
colloquial German. A is for German sentences, B is for dialect re-writes.

Your job is to rate the naturalness and fluency of the re-write on a scale of one to five. Does the re-write
sound like something you could say? A score of one indicates that the re-write sounds unnatural, while a
score of five means that the re-write is fluent and completely acceptable. Trust your gut feeling and don’t
overthink it. If you’re unsure about the score, choose the “idk” option (I don’t know). Feel free to add
comments if necessary.
Example

A Ich muss Papa jetzt anrufen .
B Ich muss den Papa jetzt anrufen .

1 - bad 2 3 4 5 - great
Comments (free form):

The information from your evaluation will only be used for research.
Thank you for your time and effort!
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