
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 1: Long Papers, pages 469–486

March 17-22, 2024 c©2024 Association for Computational Linguistics

PEARL: Prompting Large Language Models to
Plan and Execute Actions Over Long Documents

Simeng Sun1∗ Yang Liu2 Shuohang Wang2

Dan Iter2 Chenguang Zhu2 Mohit Iyyer1
University of Massachusetts Amherst1 Microsoft Research2

{simengsun, miyyer}@umass.edu
{yaliu10,shuohang.wang,iterdan,chezhu}@microsoft.com

Abstract

Strategies such as chain-of-thought prompting
improve the performance of large language
models (LLMs) on complex reasoning tasks
by decomposing input examples into intermedi-
ate steps. However, it remains unclear how
to apply such methods to reason over long
input documents, in which both the decom-
position and the output of each intermediate
step are non-trivial to obtain. In this work,
we propose PEARL, a prompting framework
to improve reasoning over long documents,
which consists of three stages: action mining,
plan formulation, and plan execution. More
specifically, given a question about a long
document, PEARL decomposes the question
into a sequence of actions (e.g., SUMMARIZE,
FIND_EVENT, FIND_RELATION) and then exe-
cutes them over the document to obtain the an-
swer. Each stage of PEARL is implemented via
zero-shot or few-shot prompting of LLMs (in
our work, GPT-4) with minimal human input.
We evaluate PEARL on a challenging subset
of the QuALITY dataset, which contains ques-
tions that require complex reasoning over long
narrative texts. PEARL outperforms zero-shot
and chain-of-thought prompting on this dataset,
and ablation experiments show that each stage
of PEARL is critical to its performance. Overall,
PEARL is a first step towards leveraging LLMs
to reason over long documents.1

1 Introduction

Performing complex reasoning over long input doc-
uments often requires forming high-level abstrac-
tions of the text (e.g., plots and themes in a narra-
tive) and then conducting a variety of inferences
on top of those abstractions (Graesser et al., 1994).
Consider the following question about the story
“Breakaway” from the QuaLITY dataset (Pang
et al., 2022):

∗Work partially done during an internship at Microsoft.
1We release our code at https://github.com/

SimengSun/pearl

Mine helpful actions from training set questions
DEFINE(X), COMPARE(X,Y), FIND_EMOTION(X),...

Action Mining

Execute the plan step-by-step
Plan Execution

open_conv = "In the initial conversation, Phil
Conover is excited about his upcoming mission
to be the first man to see the other side of
the moon"

Given a question, generate plan of mined actions
Plan Generation

Question: What part of the final scene best connects to the
story's opening conversation?
1.open_conv = FIND_ELEMENT(CTX,"opening conver..")

2.final_scene = SUMMARIZE_X(CTX, "final_scene")

3.reflection = FIND_RELATION(init_conv, final_scene)

Figure 1: High-level overview of our framework PEARL.
Each stage in PEARL is achieved via zero-shot or few-
shot prompting of an LLM (in our work, GPT-4). We
also provide example outputs from each stage.

What part of the final scene best connects to the
story’s opening conversation?

To answer this question, we need to gather and
synthesize information from across the story, which
motivates decomposing the question into a plan of
actions, as in:

1. Identify all participants in initial conversation.
2. Summarize the initial conversation.
3. Summarize events and themes of final scene.
4. Summarize roles of conversation participants

in final scene.
5. Identify and rank connections between conver-

sation and final scene.

Each action in the above plan varies in complexity,
from simple lookup-style actions (Step 1) to more
challenging query-focused summarization (Steps
2-4) and conceptual linking (Step 5) actions that
require deep narrative understanding.

Given the rapidly advancing capabilities of large
language models (LLMs), how can we use them
to answer questions like these? While we could
directly prompt LLMs to generate the answer, prior

469

https://github.com/SimengSun/pearl
https://github.com/SimengSun/pearl

work on simpler reasoning-based tasks shows that
this method is inferior to chain-of-thought prompt-
ing (Wei et al., 2022, CoT), which encourages the
LLM to provide step-by-step explanations and in-
termediate outputs before producing the answer.
Unfortunately, CoT is not well-suited for tasks in-
volving complex reasoning over long input docu-
ments, as both the decomposition of the original
question and the intermediate outputs of each step
are non-trivial to obtain, as in the above example.

Given the difficulty of obtaining plans and in-
termediate explanations for long documents, one
potential solution is to delegate this task to smaller
executable modules instead of forcing the LLM to
come up with all of them at once. In this work,
we introduce PEARL, a framework that combines
Planning with Executable Actions for Reasoning
over Long documents. Each stage of PEARL —
action mining, plan decomposition, and plan exe-
cution — is implemented by applying zero-shot or
few-shot prompting to an LLM. The stages (Fig-
ure 1) can concisely be described as follows:

1. Action mining: An LLM is prompted to come
up with simple actions that can help solve ques-
tions from an input training dataset. Unlike
predefined “toolboxes” in methods such as Tool-
former (Schick et al., 2023) or ReACT (Yao
et al., 2023b), the action set in PEARL is also
generated by an LLM.

2. Plan generation: Given an input test question,
an LLM generates an executable plan consisting
of a series of actions selected from the action
set produced in the previous stage. The plan
is formatted as a simple program in which the
execution result of one action can serve as an
argument to future actions, which enables com-
plex composition.

3. Plan execution: The LLM executes the plan
action-by-action via a prompt template that in-
cludes an action and the long-form input doc-
ument. Note that this is the only stage that in-
cludes the document, as the other stages operate
over just questions.

We demonstrate PEARL’s effectiveness on a chal-
lenging subset of QuALITY (Pang et al., 2022), a
reading comprehension dataset that contains ques-
tions about long-form articles. While QuALITY is
originally a multiple-choice dataset, we reformu-
late it into a generation task: given a question and

an article, an LLM is asked to generate a free-form
answer. As a proxy for measuring answer correct-
ness, we adopt a similar approach to Wang et al.
(2020) by asking the LLM to map its generated an-
swer to one of the multiple choice options, which
allows us to compute its accuracy.

Prompting LLMs with PEARL yields more ac-
curate and comprehensive answers than those gen-
erated by directly prompting the LLM to answer
the question, particularly for questions that require
reasoning over the full long document. This result
is particularly impressive given the potential for er-
ror propagation in the PEARL framework: as each
stage is implemented via an LLM, errors in plan
formulation or execution can significantly affect
the output answer. To further verify the integrity of
the plans, we perform human evaluation by asking
annotators to provide feedback and ratings; anno-
tators generally find the plans to be reasonable,
although a small percentage contain unnecessary
actions or omit critical actions. Overall, we hope
PEARL further opens the door towards using LLMs
for complex reasoning over long documents.

2 Related work

Our work builds on recent LLM prompting re-
search and also connects to work on reasoning
over long documents. Before describing PEARL,
we first survey related papers to contextualize our
work within this fast-moving field.

Prompting methods: Recently, the capabilities
of large language models (Brown et al., 2020;
Zhang et al., 2022; Touvron et al., 2023) have sig-
nificantly increased as a result of learning from
instructions or feedback (Stiennon et al., 2022;
Ouyang et al., 2022; Chung et al., 2022) to bet-
ter align their outputs to human preferences. When
provided with well-crafted prompts, such as chain-
of-thought (Wei et al., 2022) explanations, these
state-of-the-art models exhibit impressive reason-
ing abilities. A plethora of new prompting tech-
niques (Table 1) has been recently introduced to un-
lock more capabilities of LLMs via leveraging ex-
teral tools (Chen et al., 2022; Schick et al., 2023; Lu
et al., 2023), problem decomposition (Press et al.,
2022; Dua et al., 2022; Khot et al., 2023; Yao et al.,
2023b), self-reflection and self-refinement (Huang
et al., 2022; Shinn et al., 2023; Madaan et al., 2023;
Kim et al., 2023), planning (Yao et al., 2023a;
Wang et al., 2023a; Long, 2023), and other tech-
niques (Yoran et al., 2023; Wang et al., 2023b;

470

Prompting Methods
Explicit

plan
Iterative

prompting
Does not rely on

external tools
Long

documents

Chain-of-Thought (Wei et al., 2022) ✗ ✗ ✓ ✗

Program-of-Thought (Chen et al., 2022) ✗ ✗ ✗ ✗

Self-Ask (Press et al., 2022) ✗ ✓ ✗ ✗

Toolformer (Schick et al., 2023) ✗ ✗ ✗ ✗

ReAct (Yao et al., 2023b) ✗ ✓ ✗ ✗

Plan-and-Solve (Wang et al., 2023a) ✓ ✗ ✓ ✗

PEARL (this work) ✓ ✓ ✓ ✓

Table 1: Comparison of PEARL to other recently-proposed prompting techniques. PEARL is the only one designed
for and evaluated on tasks that require complex reasoning over long documents.

Zhou et al., 2023).

Reasoning over long documents: Large lan-
guage models have showcased remarkable reason-
ing capabilities (Huang and Chang, 2022), includ-
ing mathematical reasoning (Cobbe et al., 2021),
commonsense reasoning (Talmor et al., 2019), and
symbolic reasoning (Nye et al., 2021). Most of
these tasks do not involve long context inputs,
and thus they are able to benefit from few-shot
in-context CoT prompting. In this paper, we pri-
marily focus on tasks that contain long input con-
texts (Kočiský et al., 2018; Dasigi et al., 2021;
Shaham et al., 2022; Sun et al., 2022), specifically
generative question answering based on long input
articles. To address the absence of reliable eval-
uation for long-form QA (Krishna et al., 2021),
Stelmakh et al. (2022) proposes automatic met-
rics for evaluating the correctness of the answer,
whereas in this work, we use LLM-based evalu-
ation by taking advantage of the multiple-choice
setup of existing QA dataset. Prior to the shift to
prompting-based methods, approaches including
contrastive learning-based sequence-level objec-
tives (Caciularu et al., 2022), iterative hierarchical
attention (Sun et al., 2021), and joint modeling of
machine reading and answer generation (Su et al.,
2022) have been employed to enhance long-context
question answering.

3 PEARL: Planning and Executing
Actions for Reasoning over Long
Documents

We are interested in using LLMs to solve tasks that
require complex reasoning over long documents.2

In this paper, we focus on the task of answering
questions about long-form narratives. Most prompt-
ing strategies that aim to improve the reasoning

2As there is no consensus on what is “long”, we consider
it to mean documents of several thousands of tokens in length.

Prompt Sketch for Action Mining
Seed actions:
{Human-written seed set of actions}
SUMMARIZE(CTX):Provides a general summary about given CTX
FIND_REASON(CTX, X): Find cause of X in given CTX

Instructions and demonstrations:
{Natural language instructions}

{Human-written few-shot demonstrations}

Given a question about a long document and the seed
action set, come up with new actions that could help to
answer the question...

Output:
FIND_MISSION(CTX, X) : Find the mission of character X
from the input context CTX...

Input question:
{Question from training set}
What is the alien's mission?

Figure 2: Prompt sketch for action mining. It comprises
human-written seed actions set and instructions, as well
as question for which LLM will extract action(s) from.
Finally, we also present an example mined action. More
details can be found in the Appendix E.

abilities of LLMs (e.g., CoT) are not applicable
to this task due to the length and complexity of
the input document. In this section, we specify
our PEARL framework, which consists of three
LLM-implemented stages that mine actions from a
training corpus, formulate plans to answer held-out
questions, and then execute the resulting plans to
obtain answers.

3.1 Action mining

In many prior prompting techniques such as Re-
ACT and Toolformer, the LLM is able to query
external APIs (e.g., Wikipedia search or a calcu-
lator) to solve a given task. Unlike these works,
which assume a predefined action space, PEARL

mines actions directly from data of similar distribu-
tion (in our case, training set questions of QuAL-
ITY). As shown by prior research (Graesser et al.,
1994), answering complex queries over long doc-

471

{Natural language instructions}

{Human-written and model-generated few-shot demonstrations}

Prompt Sketch for Plan Generation

Input question:

Output:

Mined actions:
{Mined actions from previous stage}
FIND_EVENT(CTX, X): Find the event involving X from input
SUMMARIZE(CTX, X): Provide a summary about X given input

Instructions and demonstrations:

Given a question about a long document and the list of
mined actions, come up with a plan for addressing the
question below ...

{Question from evaluation set}
Why does Simon look for a bottle of aspirin?

1. aspirin_event = FIND_EVENT(CTX,"look for...") : Find
and summarize the event where...
2. aspirin_reason = FIND_BEHAVIOR_REASON(CTX,
aspirin_event): Find the reason why ...

Figure 3: Prompt sketch for plan generation. In the
prompt, we include the list of actions mined from previ-
ous stage in-context, natural language detailing the task,
and few-shot examples guiding the plan generation.

uments requires specific reasoning techniques; as
further evidence, Xu et al. (2022) demonstrate the
presence of various discourse structures in good an-
swers to long-form questions on Reddit. Learning
dataset-specific actions enables PEARL to scale to
different domains and tasks, as user queries may
differ considerably in terms of complexity. More-
over, mining actions from training set can reduce
human efforts in designing new actions. In this
work, we define an “action” as a basic unit for long
document reasoning. To obtain these actions, we
first manually create a small set of seed actions to
use as demonstrations.3 Then, as shown in Figure 2,
given an example question, we feed it along with
the seed actions and instructions to the LLM to
generate more task-specific actions. Each ACTION

is formatted as a programmatic function with input
arguments and is followed by a model-generated
function definition in natural language. Below is
an example action generated by the LLM:

ANALYZE(CTX, X, Y) # Analyze
the relationship, attitude, or feelings be-
tween X and Y given the input context
CTX

After a full pass over example questions in the
training data, we obtain a final set of actions and
their corresponding definitions which are then in-
corporated into the prompt of the next stage after

3See prompt for QuALITY action mining in Appendix E

Prompt Sketch for Plan Execution
Long input document:
Phil Conover pulled the zipper of his flight
suit up the front of his ...

aspirin_event = "In the beginning of the story, Simon, a
private investigator, was looking for ..."

{Argument value assignment}

{One-sentence explanation}
Find the reason behind Simon's behavior of looking ...

FIND_BEHAVIOR_REASON(CTX, aspirin_event)
{Action of current step}

FIND_BEHAVIOR_REASON(CTX, X): Find the reason behind
the behavior X given the input CTX

{Mined action and its definition}

Instructions:

Output:
...he is suffering from a severe hangover due to
excessive consumption of Marzenbräu beer during ...

Figure 4: Prompt sketch for plan execution. This prompt
contains multiple {placeholders} that will be filled with
output from previous stages.

model-based filtering and simplification (more de-
tails about filtering in Section 4.1).

3.2 Plan generation

A plan serves as the guiding framework or outline
for answering complex questions that may involve
multi-step reasoning and/or global understanding
of long documents. Given a question, as shown in
Figure 3, we prompt an LLM to generate a plan
based on the previously-mined action set. The plan
is formatted as a program (Gao et al., 2022), and
can be thought of as a more flexible generaliza-
tion of the program for summarization (Saha et al.,
2023). Each step of the plan is formatted as

output = ACTION(arg1, arg2,
. . .),

where the output variable stores the result of the
current ACTION , and the arguments can be (1) the
input document, (2) a string, or (3) an output vari-
able from previous steps of the plan. When gener-
ating the plan, we do not show the LLM the entire
document as input, which provides ample space for
incorporating few-shot in-context examples. Sim-
ilar to the seed actions in the previous stage, we
provide a seed set of plans and allow the model to
generate more demonstrations automatically, which
we provide more details in Section 3.4.

3.3 Plan execution

In the previous stage, the LLM generates a plan that
serves as a blueprint for producing a response. To

472

execute each step in the plan, we prompt the LLM
with a template filled with output from previous
stages. Concretely, as shown in Figure 4, to execute
the action FIND_BEHAVIOR_REASON, the model fills
in the prompt template with (1) the planned action
and definition, (2) current action with specific input
argument (e.g., aspirin_event) , (3) assignment
of argument name with output from previous stage
(e.g., aspirin_event = “in the beginning of

the story, ...”), and (4) a one-sentence instruc-
tion for the current step, all of which are generated
by LLM. As the long article is involved in this stage,
the prompt is executed in a zero-shot manner.

3.4 Self-correction and self-refinement
LLM-generated plans can have two major issues:
(1) they can be syntactically-invalid, which pre-
vents execution; and (2) they can semantically ir-
relevant to the question. To address these issues,
we prompt the LLM to “debug” its own generated
plans via self-correction and self-refinement, in-
spired by Reflexion Shinn et al. (2023).

Self-correction of syntax errors: Given a held-
out question, we first generate a plan via an LLM
and then pass it into a simple parser4 that returns
relevant error messages when the plan does not
conform to the defined format. Then, we feed the
LLM the question, plan, and error messages, and
we ask it to correct the errors in the plan, repeating
the process until the parser returns no errors.5

Self-refinement of demonstrations: Since we
use LLM-generated plans from training questions
as few-shot demonstrations (Section 3.2), it is im-
portant for these plans to be semantically meaning-
ful. To ensure the quality of these demonstrations,
we validate them by executing the plan and veri-
fying whether they output the correct answer (see
Section 4.1). If the answer is wrong, we pass the
plan to the LLM for further self-refinement and re-
peat until the execution result is correct; only then
do we include the plan as a demonstration.

4 Experiments

Dataset selection: We focus on the QuALITY
QA dataset (Pang et al., 2022), which is a multiple-

4The simple parser checks the format of the plan, and
returns errors such as No ’=’ found in one of the actions, etc.

5It is possible for the LLM to fail to generate a
syntactically-valid plan even after multiple retries. In such
cases, we revert to the zero-shot baseline (i.e., without PEARL).
This happens for only 4 out of 1K examples in our experiments,
so it is not a major issue.

{Question}

Free-from
Answer

{Question}
{Options}

Free-form
Answer

LLM

Answer:
A/B/C/D

LLM + PEARL

Figure 5: Generic illustration of our evaluation setup.
Given the article and question, we prompt an LLM with
PEARL to generate a long-form answer, which is later
mapped to one of QuALITY’s multiple-choice options
by the LLM itself.

choice QA task in the SCROLLS benchmark (Sha-
ham et al., 2022). While we would love to ex-
periment on more datasets, this area remains un-
explored: QuALITY is the only known dataset
that has verified human annotations on whether
the usage of long contexts is critical to answer-
ing a question. Other QA datasets such as Natu-
ralQuestions (Kwiatkowski et al., 2019) and Nar-
rativeQA (Kočiský et al., 2018), which take long
documents as inputs, are not relevant for our work
as the vast majority of answers can be located by
retrieving short excerpts without processing long-
range dependencies within the context.

In total, we extract a dataset of 1K examples
from QuALITY divided into two splits, one of
which requires long context understanding to an-
swer and the other of which doesn’t. Each QuAL-
ITY question contains a human-annotated score of
how much context is required to answer it, which
ranges from 1 (only a sentence or two of context is
needed) to 4 (most or all of the passage for context
is needed). The two splits are (1) Long, which con-
sists of 330 examples from the QuALITY dev set
and 368 examples from training set marked with a
context score ≥ 3, and (2) Short, which has 302
examples from the dev set that do not require long
contexts to answer (context score < 3). The latter
is a control dataset to make sure our methods do not
overly worsen performance on simpler questions.

Evaluation: While QuALITY is a multiple-
choice dataset, we reframe it into a generative
task in which an LLM does not have access to
the choices and must instead generate a long-form

473

QUALITY
LONG

QUALITY
SHORT

ALL p-val

PROMPTING METHODS
GPT-4 zero-shot 64.3 79.1 68.8 -
GPT-3.5 zero-shot (text-davinci-003) 45.5 56.3 48.8 0.000
GPT-4 zero-shot chain-of-thought 65.9 77.2 69.3 0.766
GPT-4 PEARL 70.9 77.8 73.0 0.005

Ablations of GPT-4 PEARL
w/o plan execution 67.3 77.2 70.3 0.295
w/o self-refinement of plan demonstrations 67.0 78.8 70.6 0.245

Table 2: We present baseline and PEARL as well as ablation results on our generative subset of QuALITY questions.
Long denotes the split where the questions require reasoning over long contexts to answer accurately. As we only
evaluate on a subset, we also provide p-values to verify statistical significance against the zero-shot GPT-4 baseline.

answer. We do this for two reasons: (1) transform-
ing the task to a novel setting reduces the risk of
data leakage, and (2) the generative task better re-
sembles the usage of LLMs in real world. In our
generative setup, we automatically map the long-
form answer generated by the models back to one
of the choices with an LLM to evaluate the ac-
curacy. We provide a generic illustration of the
evaluation process in Figure 5. In Appendix C, we
confirm through human evaluation that GPT-4, the
model we test, demonstrates considerable—but not
perfect—agreement with human annotators for the
answer mapping stage. The accuracy of mapped
answers serves as a proxy for assessing the correct-
ness of the provided answer.

4.1 Experimental setup

As each of the stages in PEARL has critical hyperpa-
rameters and implementation details, we describe
our specific configurations here.

Action mining: We provide an LLM with seven
seed actions and two in-context examples to demon-
strate the required format for generating new ac-
tions.6 We collect new actions by passing all train-
ing set questions into the model, excluding those
questions in our evaluation set. Ultimately, we ob-
tain 407 actions and corresponding definitions, of
which several are duplicates or overly specific, and
in total exceeds GPT-4’s maximum context window
of 8K tokens. We thus instruct GPT-4 to simplify
and abstract over existing actions to reduce the
total number of actions. After repeating this pro-

6We present the prompt template in Appendix E

Short Long Longer
Required context

50

55

60

65

70

75

80

M
ap

pe
d

A
ns

w
er

 A
cc

ur
ac

y

GPT-4 zero-shot
GPT-4 PEARL

Figure 6: Accuracy by the amount of required context
to answer,8as annotated by humans in QuALITY.

cess twice,7 the number of actions is reduced to 81,
forming the final action set for PEARL.

4.2 Baselines

As existing sophisticated prompting methods re-
quire few-shot examples in-context, which is not
feasible when long document is involved, we com-
pare PEARL with simple zero-shot baselines (GPT-
4 (OpenAI, 2023) and GPT-3.5 (Ouyang et al.,
2022)), where we directly prompt the model to pro-
vide a detailed free-form answer. Additionally, we
also evaluate zero-shot CoT prompting for GPT-4
by adding “Let’s think step-by-step,” to the prompt.

7After one round, the actions reduced to ∼140, and after
four rounds to ∼20. We provide ablations on the number of
actions in Section 5.

8The short, long, and longer splits correspond to average
annotation scores on the amount of required context [1, 3), [3,
3.5), and [3.5, 4), respectively.

474

1 20 80 140
Number of Actions

64

66

68

70
A

cc
ur

ac
y

QuALITY Long

Figure 7: PEARL accuracy given in-context action sets
of various sizes. Having too few or too many actions
impairs the performance.

5 Main results

We discover that PEARL significantly outperforms
competing prompting methods on questions that
require reasoning over long contexts, which demon-
strates the utility of the planning module. We also
observe a small drop in accuracy on questions that
require only short contexts, possibly because the
plans end up over-complicating what is a simple
reasoning process. In this section, we dig deeper
into the main results of our experiments, which are
presented in Table 2.

PEARL improves accuracy on long-document
QA: Overall, PEARL’s accuracy is higher than
that of all competing methods, particularly for the
QuALITY split annotated by humans as requiring
long contexts to answer (Long). Furthermore, we
observe in Figure 6 that for questions marked by
QuALITY workers as requiring the longest possi-
ble context, PEARL improves substantially com-
pared to the zero-shot GPT-4 baseline (72.4% vs
61.9%). Our method’s slightly diminished perfor-
mance on the short split is likely due to both “over-
thinking” these simpler questions, as well as er-
ror propagation from plan execution steps as high-
lighted in Section 6. Finally, we point out that all
methods achieve higher accuracies on the Short
split compared to the Long split, indicating the
challenging nature of this set of questions.

Number of actions impacts performance: In
Figure 7, we show that the size of the action set is
an important factor in PEARL’s performance. With
just a single action (i.e., EXECUTE a free-form nat-
ural language instruction),9 PEARL’s accuracy on
the Long subset drops to 64%. With too many ac-

9We additionally preserve the CONCAT action in this set-
ting due to its necessity when aggregating execution results.

Count GPT-4
PEARL

GPT-4
zero-shot

Why/reason 316 0.79∗ 0.71∗

Person 216 0.75∗ 0.66∗

Event 199 0.69 0.68
Not/except 118 0.70∗ 0.53∗

Table 3: Accuracy by reasoning types. ∗ denotes statis-
tically significant improvement with p-val < 0.005. We
provide other reasoning types in Appendix A.

tions (140 in the plot), its accuracy also degrades,
likely because the action space is too fine-grained
for the model to properly execute all actions. We
note that the optimal number of actions likely dif-
fers from task to task, so it is an important hyper-
parameter to consider when tuning PEARL.

Action execution is necessary: Do we actually
need to execute the generated plans to answer these
questions? Feeding just the generated plan to the
model along with the question (minus any execu-
tion results) may still encourage the LLM to follow
the plan’s reasoning steps and generate a better
answer. However, we observe that removing the
execution results from the model’s input reduces
absolute accuracy by around 3 points, which sug-
gests that it is important to perform multiple passes
over the document to execute each action before
answering the original question. With that said, we
do observe a modest improvement over the GPT-4
zero-shot and CoT baselines (∼ 2 absolute points),
which suggests that the plan itself is also valuable.

Self-refinement improves performance: To re-
duce human input, the majority of the plan genera-
tion demonstrations are generated by the LLM with
self-refinement. We observe that self-refinement is
critical to performance: without it, the overall ac-
curacy drops nearly 3 absolute points (ablations in
Table 2), which highlights the importance of high-
quality few-shot examples for plan generation.

6 Analysis

In this section, we analyze the behavior of PEARL

by diving into the composition of its generated
plans, its most preferred actions, and what types of
questions it improves most on. We also offer a qual-
itative error analysis as well as a human evaluation
on the correctness of the generated plans.

Plan statistics: Plans are roughly 4 actions long
on average, with around 3.4 unique actions per

475

CONCAT

FIND_CHARACTER

FIND_ELEMENT

IDENTIFY_ELEMENT

FIND_EVENT

FIND_BEHAVIOR_REASON

FIND_RELATION

FIND_EMOTION

FIND_DETAILS

COMPARE
0

250

500

750

1000
Fr

eq
ue

nc
y

Top-10 used actions

Figure 8: Top-10 most frequently used actions by
PEARL.

plan. The most commonly used actions are shown
in Figure 8. Apart from the string concatenation
action CONCAT, the most frequently used action is
FIND_CHARACTER, which can be convenient for un-
derstanding long literary text. Other less often used
actions cover both those that can transfer across
domains, e.g., COMPARE, and those specific to nar-
rative understanding, e.g., FIND_EMOTION.

Accuracy by reasoning types: Since QuALITY
questions require different reasoning strategies to
solve, what types of reasoning does PEARL help
improve the most? To this end, we further eval-
uate questions based on the type of reasoning re-
quired to answer them.10 Table 5 shows that PEARL

significantly improves three reasoning types: why
questions (reasoning about a cause), person ques-
tions (reasoning about the person(s) involved in an
event), and not/except questions (e.g., “which of
the following is not a reason for...”).

PEARL is significantly slower than zero-
shot prompting: The improved performance of
PEARL comes at the cost of longer running time
and cost: PEARL requires 4.4 times more tokens in
the prompt, and it needs to generate 1.3 times more
tokens owing to the intermediate steps.11

Specific examples where PEARL helps: To bet-
ter understand PEARL, we qualitatively analyze
40 examples for which zero-shot GPT-4 gener-
ates incorrect answers while PEARL answers cor-
rectly. This analysis reveals two key advantages of
PEARL. First, while zero-shot prompting is reason-
ably good at finding salient information from the

10We prompt GPT-4 with the definition of each reasoning
type presented in the Appendix (Pang et al., 2022) and ask it
to label each question with up to two reasoning types.

11These multiples were estimated from a small run of 30
examples.

input document, its generative answers tend to be
based only on local context around this informa-
tion. For instance, when asked about the number
of wives the character “Dan Merrol” has, the base-
line successfully identifies six names that appear
to be Dan’s wives. However, PEARL takes into ac-
count the revelation that these names “were actually

memories from the brain donors whose parts were used to

reconstruct his brain” and thus correctly reasons that
Dan only has one wife. Second, PEARL generates
more detailed and thorough answers. For instance,
given the question “Why is Kumaon a good region for

potential forest preservation?”, the zero-shot answer
considers only one aspect of the reason, whereas
PEARL elaborates on multiple aspects, allowing
PEARL’s answer to be mapped to the correct op-
tion (“All other choices”), while the zero-shot answer
maps to the option that describes the single aspect.

Where does PEARL go wrong? We additionally
examine 40 examples for which PEARL answers in-
correctly, and group the errors into three categories
(detailed examples in Appendix A Table 12):

• True negatives: Questions for which PEARL’s
generative answer is mapped to the wrong op-
tion. This category can be further divided into
two subcategories: (1) cases where the plan has
critical issues, and (2) cases where the plan is
satisfactory but the intermediate execution pro-
duces incorrect output. Out of the 40 examples,
29 are true negatives, with 7 plan errors and 22
execution errors.

• False negatives: Questions for which PEARL’s
generative answers are correct but incorrectly
mapped to the wrong option. This kind of error is
unavoidable as we use LLM for automatic answer
mapping. Out of the 40 examples, 5 are false
negatives.

• Other: Some QuALITY questions are heavily
dependent on the options; that is, the correct an-
swer can only be determined after examining all
the options. For instance, Table 12 presents a
question asking who would enjoy the story the
most of the given options. Although PEARL of-
fers an answer based on the story’s genre—which
is not incorrect—it is not as accurate as the gold
label. Furthermore, there are instances where the
model’s free-form answers lack sufficient details
and can thus be mapped to more than one option
or no options at all. We classify these responses
as a separate category. Out of 40 examples, 6 fall

476

Human annot. category # of plans

Unnecessary steps 15
Steps can be merged 2
Plan misses information 3
Plan may lead to incorrect answer 4
Plan needs slight edit 7

Table 4: Human annotation aggregated by error types.

into this Other category.

Human evaluation of model-generated plans:
The quality of plans generated by PEARL is critical,
as they serve as the basis for the plan execution
stage. To gain further insight on the quality of
these plans, we perform a human evaluation by hir-
ing annotators on Upwork12 to provide feedback
on the generated plans.13 Concretely, we ask an-
notators to assess (1) the correctness of the plans
(binary choice), assuming error-free execution at
each step, and (2) provide free-form feedback on
any flaws or potential improvements. On average,
annotators regard over 97% of all plans as correct,
with over 94% confidence, although these num-
bers are inflated because the annotators do not have
access to the long story when making these judg-
ments. More interestingly, after aggregating their
feedback over common themes (more details in Ta-
ble 4 Appendix A), we find that the primary issue
with existing plans is the presence of unnecessary
steps (10% of the total annotated plans). Annota-
tors also notice that GPT-4 can be inattentive to
subtle details while generating plans. For exam-
ple, given the question “Do you think it would be
fun to live in the universe in which this story takes
place?”, the model decides to “evaluate the pros
and cons of living in the universe based on the fea-
tures found in the input article”. However, human
annotator argues that “just because something is
positive doesn’t necessarily mean it is “fun”. Any
pros on the list might outweigh the dangers noted,
resulting in an incorrect answer of ’yes’...".

7 Conclusion

In this work, we introduce PEARL, a framework for
tackling complex reasoning over long documents.
To answer a question, PEARL first proposes a plan
based on a set of actions mined from a training
set, and then it executes the plan step by step via
prompting itself with a template filled with output

12We pay the annotators at the rate of $25/h.
13We provide a few examples in Appendix F.

from previous stages. We demonstrate the effective-
ness of PEARL on a challenging subset of QuAL-
ITY. Experiments and analysis show that prompt-
ing GPT-4 with PEARL yields more accurate and
comprehensive answers than zero-shot and chain-
of-thought prompting, and human annotators judge
the generated plans to be reasonable.

Limitations

While PEARL shows promising results for long doc-
ument reasoning, there are several limitations to our
approach. Like other prompting methods, PEARL

is susceptible to generating misinformation or hal-
lucinations. It is also more time-consuming and
computationally costly than the baseline approach
of directly prompting an LLM to answer the ques-
tion. Moreover, PEARL may over-complicate sim-
ple questions that only need superficial reasoning
over long-form narratives. Due to our limited bud-
get and the cost of API access to proprietary LLMs,
we did not stress test the framework with extensive
variations in the prompt aside from the ablations in
the paper. Finally, PEARL is still bounded by the
maximum context window size of the LLMs, and
we have not tested it on less powerful LLMs. Over-
all, prompting on document-level with continuous
dependencies is still an under-explored area, and
we hope our work spur future research in this space
(e.g., new datasets, modules, stage refinements).

Ethics Statement

PEARL relies heavily on closed-source large lan-
guage models, which while tuned to align with hu-
man preferences, are still susceptible to generating
hallucination and misinformation. The documenta-
tion of these models is opaque, and it is difficult to
know to what extent the copyrighted data is used
during pre-training. We use these models for purely
research purposes. We hope our method can shed
light on mitigating similar issues when an LLM
needs to process long document. Finally, human
annotators are paid hourly, and the evaluation pro-
cess was deemed exempt from IRB review.

Acknowledgements

We thank the anonymous reviewers and UMass
NLP group for the thoughtful comments on the
draft of this paper. This project was partially sup-
ported by awards IIS-1955567 and IIS-2046248
from the National Science Foundation (NSF).

477

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Avi Caciularu, Ido Dagan, Jacob Goldberger, and Ar-
man Cohan. 2022. Long context question answering
via supervised contrastive learning. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2872–2879,
Seattle, United States. Association for Computational
Linguistics.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,
Noah A. Smith, and Matt Gardner. 2021. A dataset
of information-seeking questions and answers an-
chored in research papers. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 4599–4610, On-
line. Association for Computational Linguistics.

Dheeru Dua, Shivanshu Gupta, Sameer Singh, and Matt
Gardner. 2022. Successive prompting for decom-
posing complex questions. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1251–1265, Abu

Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. arXiv preprint arXiv:2211.10435.

Arthur C Graesser, Murray Singer, and Tom Trabasso.
1994. Constructing inferences during narrative text
comprehension. Psychological review, 101(3):371.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve. arXiv
preprint arXiv:2210.11610.

Jie Huang and Kevin Chen-Chuan Chang. 2022. To-
wards reasoning in large language models: A survey.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu,
Kyle Richardson, Peter Clark, and Ashish Sabharwal.
2023. Decomposed prompting: A modular approach
for solving complex tasks.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491.

Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris
Dyer, Karl Moritz Hermann, Gábor Melis, and Ed-
ward Grefenstette. 2018. The NarrativeQA reading
comprehension challenge. Transactions of the Asso-
ciation for Computational Linguistics, 6:317–328.

Kalpesh Krishna, Aurko Roy, and Mohit Iyyer. 2021.
Hurdles to progress in long-form question answering.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4940–4957, Online. Association for Computa-
tional Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Jieyi Long. 2023. Large language model guided tree-of-
thought.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and Jian-
feng Gao. 2023. Chameleon: Plug-and-play compo-
sitional reasoning with large language models. arXiv
preprint arXiv:2304.09842.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Sean Welleck, Bodhisattwa Prasad Majumder,

478

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2022.naacl-main.207
https://doi.org/10.18653/v1/2022.naacl-main.207
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2210.11416
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://aclanthology.org/2022.emnlp-main.81
https://aclanthology.org/2022.emnlp-main.81
http://arxiv.org/abs/2212.10403
http://arxiv.org/abs/2212.10403
http://arxiv.org/abs/2210.02406
http://arxiv.org/abs/2210.02406
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.18653/v1/2021.naacl-main.393
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
http://arxiv.org/abs/2305.08291
http://arxiv.org/abs/2305.08291

Shashank Gupta, Amir Yazdanbakhsh, and Peter
Clark. 2023. Self-refine: Iterative refinement with
self-feedback.

Maxwell Nye, Michael Henry Tessler, Joshua B. Tenen-
baum, and Brenden M. Lake. 2021. Improving coher-
ence and consistency in neural sequence models with
dual-system, neuro-symbolic reasoning. In Advances
in Neural Information Processing Systems.

OpenAI. 2023. Gpt-4 technical report.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi,
Nikita Nangia, Jason Phang, Angelica Chen, Vishakh
Padmakumar, Johnny Ma, Jana Thompson, He He,
and Samuel Bowman. 2022. QuALITY: Question
answering with long input texts, yes! In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 5336–5358,
Seattle, United States. Association for Computational
Linguistics.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models.

Swarnadeep Saha, Shiyue Zhang, Peter Hase, and Mo-
hit Bansal. 2023. Summarization programs: Inter-
pretable abstractive summarization with neural mod-
ular trees. In The Eleventh International Conference
on Learning Representations.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori
Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong,
Mor Geva, Jonathan Berant, and Omer Levy. 2022.
SCROLLS: Standardized CompaRison over long lan-
guage sequences. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 12007–12021, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Noah Shinn, Beck Labash, and Ashwin Gopinath.
2023. Reflexion: an autonomous agent with dy-
namic memory and self-reflection. arXiv preprint
arXiv:2303.11366.

Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-
Wei Chang. 2022. ASQA: Factoid questions meet
long-form answers. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 8273–8288, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M.
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul Christiano. 2022. Learning
to summarize from human feedback.

Dan Su, Xiaoguang Li, Jindi Zhang, Lifeng Shang, Xin
Jiang, Qun Liu, and Pascale Fung. 2022. Read before
generate! faithful long form question answering with
machine reading. In Findings of the Association for
Computational Linguistics: ACL 2022, pages 744–
756, Dublin, Ireland. Association for Computational
Linguistics.

Haitian Sun, William Cohen, and Ruslan Salakhutdinov.
2022. ConditionalQA: A complex reading compre-
hension dataset with conditional answers. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 3627–3637, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Haitian Sun, William W. Cohen, and Ruslan Salakhutdi-
nov. 2021. Iterative hierarchical attention for answer-
ing complex questions over long documents.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Alex Wang, Kyunghyun Cho, and Mike Lewis. 2020.
Asking and answering questions to evaluate the fac-
tual consistency of summaries. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5008–5020, Online. Asso-
ciation for Computational Linguistics.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu,
Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
2023a. Plan-and-solve prompting: Improving zero-
shot chain-of-thought reasoning by large language
models.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,

479

http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
https://openreview.net/forum?id=uyKk_avJ-p4
https://openreview.net/forum?id=uyKk_avJ-p4
https://openreview.net/forum?id=uyKk_avJ-p4
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
https://aclanthology.org/2022.naacl-main.391
https://aclanthology.org/2022.naacl-main.391
http://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2210.03350
https://openreview.net/forum?id=ooxDOe7ZtBe
https://openreview.net/forum?id=ooxDOe7ZtBe
https://openreview.net/forum?id=ooxDOe7ZtBe
https://aclanthology.org/2022.emnlp-main.823
https://aclanthology.org/2022.emnlp-main.823
https://aclanthology.org/2022.emnlp-main.566
https://aclanthology.org/2022.emnlp-main.566
http://arxiv.org/abs/2009.01325
http://arxiv.org/abs/2009.01325
https://doi.org/10.18653/v1/2022.findings-acl.61
https://doi.org/10.18653/v1/2022.findings-acl.61
https://doi.org/10.18653/v1/2022.findings-acl.61
https://doi.org/10.18653/v1/2022.acl-long.253
https://doi.org/10.18653/v1/2022.acl-long.253
http://arxiv.org/abs/2106.00200
http://arxiv.org/abs/2106.00200
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/2020.acl-main.450
https://doi.org/10.18653/v1/2020.acl-main.450
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2305.04091
http://arxiv.org/abs/2305.04091

and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Fangyuan Xu, Junyi Jessy Li, and Eunsol Choi. 2022.
How do we answer complex questions: Discourse
structure of long-form answers. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
3556–3572, Dublin, Ireland. Association for Compu-
tational Linguistics.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023a. Tree of thoughts: Deliberate
problem solving with large language models.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao.
2023b. React: Synergizing reasoning and acting
in language models. In The Eleventh International
Conference on Learning Representations.

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel
Deutch, and Jonathan Berant. 2023. Answering
questions by meta-reasoning over multiple chains
of thought. arXiv preprint arXiv:2304.13007.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations.

A Supplementary details of analysis

B GPT-4 Multiple-choice setup
performance

While our primary focus is on the generative QA
setup in the main text, we provide GPT-4’s perfor-
mance under the standard multiple-choice setup
here in the Appendix. On the entire QuALITY dev
set, GPT-4 achieves an accuracy of 84.4%. For the
1000 challenging question set, GPT-4 reaches an
accuracy of 78.7%, nearly 10 points higher than the

Count GPT-4
PEARL

GPT-4
zero-shot

Description 320 0.73 0.73
Why/reason 316 0.79∗ 0.71∗

Symbolism/interpretation 262 0.73 0.70
Person 216 0.75∗ 0.66∗

Event 199 0.69 0.68
Not/except 118 0.70∗ 0.53∗

How/method 100 0.74 0.73
Relation 89 0.71 0.65
Entity 74 0.64 0.68
Numeric 49 0.67 0.78
Location 32 0.59 0.59
What if 21 0.71 0.76
Object 14 0.64 0.64
Duration 18 0.78 0.89
Finish the sentence 10 0.9 0.8

Table 5: Accuracy by reasoning types. ∗ denotes statis-
tically significant improvement with p-val < 0.005.

GPT-4 zero-shot generative baseline. This result
suggests that there is still room for improvement in
GPT-4’s generative answers. We also observe that
GPT-4 is sensitive to the ordering of the provided
options. We further evaluate GPT-4 with three shuf-
fled versions of the options (swap A and D, B and
C; swap A and C, B and D; swap A and B, C and
D). While the overall accuracy of these versions
remains similar, the questions that are consistently
answered correctly across all four option orderings
drop to 68.7%. This result raises the question of
whether GPT-4 truly “understands” the question
and further motivates the generative QA setup.

C Verify Accuracy of Answer Mapping

As demonstrated in Section 6, the mapping stage is
not always reliable. To understand the frequency of
mapping errors, we conduct a small-scale human
answer mapping study. We recruit three profession-
als on Upwork. We randomly select 50 questions
and ask annotators to read PEARL output and then
map it to one of the provided options. On average,
annotators agree with ∼83% of GPT-4 mappings,
with inter-annotator agreement on four-class set-
tings of κ = 0.677. For questions where annotators
disagree with each other or do not concur with
GPT-4, they tend to be those that can be mapped to
than one option or none of the options. We believe
this level of accuracy is decent enough to let GPT-4
perform the mapping step for evaluation.

480

https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.18653/v1/2022.acl-long.249
https://doi.org/10.18653/v1/2022.acl-long.249
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.10601
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

Err. Category Question Model Generated Plan or Answer Explanation

True Negative
- Error in Plan
(17.5%)

Does the tone of the passage
shift at all, and if it does, how
does it shift?

(Plan) ... 3. tone_shift = COM-
PARE(CTX, tone_initial, tone_final,
“tone”) : Compare the initial and fi-
nal tones of the passage to determine
if there is a shift...

Since the plan only compares the ini-
tial and final tone, the final answer fails
to capture the changes in between, thus
leads to an incorrect answer.

True Negative
- Error in Exec.
(55%)

How many adult characters have
speaking roles?

(Answer) In the input article, there
are 3 adult characters with speaking
roles...

The correct answer involves two char-
acters, whereas PEARL’s response mis-
takenly includes an additional name.
The plan for this question is reason-
able, but the problem stems from the
execution of individual steps.

False Negative
(12.5%)

Does the story have a good end-
ing? (Answer: Unclear, the
story ends as Evelyn enters a
dangerous situation)

(Answer) ...However, the ending of
the story is somewhat ambiguous and
leaves several questions unanswered.
For instance, it is unclear whether Eve-
lyn will be able to successfully com-
plete her mission ...

In this example, the model output is
correct, but is mapped to an incorrect
distractor option, which contains direct
contradictions with the model output.

Other
(15%)

Who would most likely enjoy
this story, of the following op-
tions?

(Answer) The target audience of the
input article is science fiction enthusi-
asts, particularly those who enjoy sto-
ries about space exploration, alien en-
counters...

The model output is not necessarily
wrong in the absence of options. How-
ever, when provided with options dur-
ing mapping stage, one of the other
options is clearly better.

Table 6: Examples of errors exhibited by PEARL answers.

D Can PEARL benefit from more
human-written examples?

While we have employed self-refinement and exe-
cuted the model-generated plan to ensure the qual-
ity of ICL demonstrations, it is natural to ask if we
can further improve PEARL by incorporating more
quality-assured human-written examples. There-
fore, we evaluate an alternative version of PEARL

in which the in-context examples for plan genera-
tion are replaced with 11 human-written examples.
This variant achieves 70.3, 76.8, and 72.3 on the
long split, the short split, and the total evaluation
data, respectively. These results suggest that addi-
tional human input may not be necessary to achieve
strong results.

E Prompts and templates used in PEARL

F Human feedbacks on model-generated
plan

481

Prompt for Action Mining

[Actions]
- CONCAT(S1, S2, ...) : Concatenate the input S1, S2, ...
- EXTRACT(CTX, X) : Extract the exact wording that X is referring to from input CTX.
- FIND_X(CTX, X): Find and summarize all relevant information about X in the input CTX.
- FIND_REASON(CTX, X) : Find and summarize the cause or reason of X given input CTX.
- FIND_MORAL(CTX) : Find the intended lesson or moral of the input CTX.
- SUMMARIZE(CTX): Provides a general summary about the given CTX.
- SUMMARIZE_X(CTX, X) : Provides a summary about X given the provided input CTX.

[Instructions]
Suppose you are given a question about an article as well as a list of actions that you can execute to solve the question (shown
above). You can imagine the actions as functions in a program, where you have input arguments and output. The output of an
action can be fed as input to another action. The output of the final action will be the answer to the given question. Suppose you
haven’t read the article yet, please present a sequence of actions that you would use to answer the question.

Here are a few examples:

Question:
What is the “space cafard” that Si describes?

My new actions:
- COMPREHEND(CTX, X) : Provide a detailed comprehension of X given the input CTX.

My sequence of actions:
1. snippet = EXTRACT(CTX, "space cafard") : Extract the exact wording regarding "space cafard" from the input CTX.
2. ans = COMPREHEND(CTX, X) : Provide a detailed comprehension of the input X given the input CTX.

Question:
Why did the author write the article?

My new actions:
- None

My sequence of actions:
1. moral = FIND_MORAL(CTX) : Find the intended lesson or moral of the input CTX.

Your answer must follow the following rules: 1. The present sequence should be minimal, i.e., no unnecessary actions. 2. The
sequence of actions should be specific and cover every detail about the question. 3. The sequence of actions should use as many
as existing actions as possible. 4. It is fine to create new actions, however, the created new actions should be maximally reusable
and generalizable to other reading comprehension questions. 5. The arguments should cover all the details of the given question.

[Question]
{Question}

[Answer]
Now please provide the plan for the above question.
Your answer should follow the format:

My new actions (if any):
- my_new_action_1(here goes the arguments) : [one-sentence explanation]
- my_new_action_2(here goes the arguments) : [one-sentence explanation]
...

My sequence of actions:
1. output_1 = action_1(here goes the arguments) : [one-sentence explanation]
2. output_2 = action_2(here goes the arguments) : [one-sentence explanation]
...

Table 7: Prompt for action mining. {Question} indicates the placeholder for filling in training set question. In this
stage, we only care about the new actions proposed by the model.

482

Mined Actions after reducing number of actions with LLM

ANALYZE(CTX, X, Y) # Analyze the relationship, attitude, or feelings between X and Y, or the character, language, tone, or
symbolism of X given the input CTX.
COMPARE(CTX, X, Y, Z) # Compare X and Y in the context of Z, considering aspects such as abilities, assets, attractiveness,
behavior, concerns, contributions, cultures, events, experiences, feelings, ...
COMPREHEND(CTX, X) # Provide a detailed comprehension of X given the input CTX.
CONCAT(S1, S2, ...)
DEFINE(CTX, X) # Provide the definition of X given the input CTX.
DESCRIBE(CTX, X, Y) # Provide a description of X in terms of Y, such as character, genre, or introduction given the input
CTX.
EVALUATE(CTX, X, Y) # Evaluate aspects such as feeling, outcome, performance, personalities, risk, or truth of X in relation
to Y given the input CTX.
EXCEPT(CTX, LIST) # Find the item that is not mentioned in the input CTX but is present in the given..
EXPLAIN_PROCESS(CTX, X) # Provide a detailed explanation of the process X given the input CTX.
FIND_BARRIERS_CAUSES(CTX, X) # Find and summarize the remaining barriers or causes related to X given the input CTX.
FIND_BEHAVIOR_REASON(CTX, X) # Find the reason behind the behavior X given the input CTX.
FIND_BENEFIT(CTX, X) # Find the direct benefit of X given the input CTX.
FIND_BEST(CTX, X, Y) # Find the best X in the context of Y given the input CTX.
FIND_CHARACTER(CTX, X) # Find and summarize the character traits, transformation, and changes of X given the input
CTX.
FIND_COMMON(CTX, X, Y, Z) # Find the common ground, characteristics, or commonalities between X, Y, and Z given the
input CTX.
FIND_CONDITION(CTX, X, Y) # Find the condition, outcome, or consequences related to X and Y given the input CTX.
FIND_CONFLICT_CONCERN(CTX, X, Y) # Find the conflict, concern, or disagreement between X and Y given the input
CTX.
FIND_CONSISTENCY(CTX, X) # Determine if X is consistent throughout the input CTX.
FIND_DECISION(CTX, X) # Find the decision, factor, or event that influenced X’s decision in the input CTX.
FIND_DESCRIPTION(CTX, X) # Find all descriptions, characteristics, or words that describe X given the input CTX.
FIND_DETAILS(CTX) # Find all the details about a topic (e.g., contract, city-state) discussed in the input CTX.
FIND_DIALOGUE(CTX, X, Y) # Find the dialogue between X and Y in the input CTX.
FIND_DIFFICULTY_DANGER(CTX, X) # Find the most difficult aspect, challenge, or danger faced by X in the given input
CTX.
FIND_ELEMENT(CTX, X, Y) # Find the element X related to Y given the input CTX. This function can cover message, method,
metrics, mismatch, mission, mistake, most likely, motif, motivation, nationalities, negative critique, negative effect, next event,
normal, objective, obstacles, ...
FIND_EMOTION(CTX, X, Y) # Find the emotion or feeling X feels towards Y given the input CTX.
FIND_ENDING(CTX, X) # Find the ending or conclusion of X’s story or the input CTX.
FIND_EVENT(CTX, X) # Find the event involving X in the input CTX (e.g., betrayal, change, climax).
FIND_EVIDENCE_EXAMPLE(CTX, X) # Find evidence or an example supporting X given the input CTX.
FIND_EXCEPTION(CTX, X, Y, Z) # Find the exception or characteristic that is not common among X, Y, and Z given the input
CTX.
FIND_EXPECTATION(CTX, X) # Find the expectation, assumption, or impact about X given the input CTX.
FIND_EXPLANATION(CTX, X) # Find the most likely explanation, critique, or doubt for X given the input CTX.
FIND_FACT_FALSE(CTX, X) # Find a definite fact or false statement about X given the input CTX.
FIND_FEARS_DISTRACTIONS(CTX, X) # Find the fears, concerns, or distractions of X given the input CTX.
FIND_FEATURES(CTX, X) # Find all the features that X cares about given the input CTX.
FIND_FIRST_INSTANCE(CTX, X) # Find the first instance of X happening in the input CTX.
FIND_FLAW(CTX, X) # Find the greatest flaw of X given the input CTX.
FIND_FOCUS(CTX, X) # Find the person or object that is focused on the most in the input CTX, given a list of X.
FIND_FORESHADOW(CTX, X, Y) # Find the instance where X foreshadows Y in the input CTX.
FIND_FUTURE(CTX, X) # Find the future, predicted outcome, or action of X given the input CTX.
FIND_GRIEVANCE(CTX, X) # Find and summarize the grievance X has against something or someone in the input CTX.
FIND_HALO_EFFECT(CTX, X) # Find and summarize one halo effect of X given the input CTX.
FIND_HUMBLENESS(CTX, X) # Find the instances of humbleness presented by X in the input CTX.
FIND_HYPOTHETICAL(CTX, X) # Find the hypothetical outcome or consequence of X given input CTX.
FIND_IMAGINATION(CTX, X) # Find and summarize how X imagines something in the input CTX.
FIND_IMPACT(CTX, X, Y) # Find the event or experience that had the strongest impact on X’s Y given the input CTX.
...

Table 8: A subset of mined actions from training set questions.

483

Prompt for Generating Plan

[Actions]
ANALYZE(CTX, X, Y) # Analyze the relationship, attitude, or feelings between X and Y, or the character, language, tone, or
symbolism of X given the input CTX.
COMPARE(CTX, X, Y, Z) # Compare X and Y in the context of Z, considering aspects such as abilities, assets, attractiveness,
behavior, concerns, contributions, cultures, events, experiences, feelings, focus, intelligence, irony, nationalities, performance,
praise, reactions, reviews, secretiveness, time periods, treatment, truth, or worlds given the input CTX.
COMPREHEND(CTX, X) # Provide a detailed comprehension of X given the input CTX.
CONCAT(S1, S2, ...)
DEFINE(CTX, X) # Provide the definition of X given the input CTX.
DESCRIBE(CTX, X, Y) # Provide a description of X in terms of Y, such as character, genre, or introduction given the input
CTX.
EVALUATE(CTX, X, Y) # Evaluate aspects such as feeling, outcome, performance, personalities, risk, or truth of X in relation
to Y given the input CTX.
...
{List of Actions as shown in Table 8}

[Instructions]
Suppose you are given a question about an article, as well as a list of potential actions (shown above) that you can execute to
solve the question . You can imagine the actions as functions in a program, where you have input arguments and output. The
output of an action can be fed as input to another action. Please present a sequence of actions that you would use to answer the
question after you read the article. The sequence of actions should be specific and cover all the details about the question. Please
prioritize using the actions presented in the list above. If you need to add new actions, please follow the format below. Please
assign the output of each action with a distinct name, which can be passed into other actions as argument. Think twice before
you provide your answer. Make sure your answer is valid, clear, and easy to understand. Keep the answer simple and remove
any unnecessary steps. Do not use list comprehension or dictionary comprehension. Keep each action minimally simple. If a
question is unanswerable (e.g., requires options), collect as much information as possible from the input such that it will be
answerable when provided with options. Your answer should follow the format:
”’
New actions:
- new_action_1(arguments) : [one-sentence general explanation] or "-None" if there no need to add new actions
- new_action_2(arguments) : [one-sentence general explanation] or "-None" if there no need to add new actions

1. output_1 = action_1(here goes arguments) : [one-sentence explanation]
2. output_2 = action_2(here goes arguments) : [one-sentence explanation]
...
”’

The following are a few examples

Question: "How do Ross and Mehta view Brown’s acquisition of the magazine?"

Answer:
New actions:
- FIND_OPINION(CTX, X, Y) : Find the opinion of X about Y given the input CTX

1. ross = FIND_CHARACTER(CTX, "Ross") : Identify who Ross is in the input article
2. mehta = FIND_CHARACTER(CTX, "Mehta") : Identify who Mehta is in the input article
3. brown = FIND_CHARACTER(CTX, "Brown") : Identify who Brown is in the input article
4. magazine_acquisition = FIND_EVENT(CTX, "Brown’s acquisition of the magazine") : Find the event of Brown’s acquisition
of the magazine in the input article
5. ross_opinion = FIND_OPINION(CTX, ross, magazine_acquisition) : Find the opinion of Ross about Brown’s acquisition of
the magazine
6. mehta_opinion = FIND_OPINION(CTX, mehta, magazine_acquisition) : Find the opinion of Mehta about Brown’s acquisition
of the magazine
7. ans = CONCAT(ross_opinion, mehta_opinion) : Combine the opinions of Ross and Mehta on Brown’s acquisition of the
magazine to form the final answer
... {more few-shot examples} ...

[Question]
Now you are given a question about an article:
{question}
Please provide a plan (sequence of actions) that can arrive to the answer after reading the article. As the corresponding options
are not provided for the question, when the question is not answerable without the options, simply collect as much information
as possible from the input such that it will be answerable with the options. Make sure the plan you generate is valid and faithful
to the question.

[Answer]

Table 9: Prompt for generating plan given a question, which is filled in the placeholder {question}.

484

Prompt for Executing Single Step of the Plan

Article
{Long document}
End of Article
—
Please read the above text first, and then follow the instructions below.

[Instructions]

{Mined action and corresponding definition of current step. Example shown below.}
FIND_EMOTION(CTX, X, Y) # Find the emotion or feeling X feels towards Y given the input CTX.

{Current step in the plan generated in the previous stage. Example shown below.}
kolin_opinion = FIND_EMOTION(CTX, kolin, “becoming a tree”)

{Value assignment of input argument(s)}
X = “In the story, Kolin is a steward from the Planetary State of Haurtoz who is part of a scouting party sent to explore a planet
after their ship, the Peace State, is damaged. Kolin is unhappy with the oppressive regime on Haurtoz and dreams of escaping it.
While exploring the planet, he encounters a tree named Ashlew, which is actually a man who has transformed into a tree. Ashlew
tells Kolin about the Life, a powerful entity on the planet that can help individuals change their form...{Output from previous
step.}”
Y = “becoming a tree”

[Answer]
{A brief description of current step.}
(Find the emotion or feeling Kolin has towards becoming a tree himself in the input article)

Table 10: Prompt for executing a step in a plan. Prompt of this step is a template with placeholders which will be
filled with the output from previous step(s).

Prompt for Answer Mapping

Relevant information for answering the question:

{Generative answer output by PEARL.}

Question: {question}
{Options}

Read the relevant information about the article and answer the question by selecting the best option above. Only one of them is
correct.

Answer (select from A, B, C, D):

Table 11: Prompt for mapping generative answer to provided options

485

Question & Options Plan Human feedback

What was Mrs. Jamieson’s biggest
problem in the story?
A: She did not understand the Stinson
Effect
B: She had to raise her son alone
C: She was just able to make ends meet
D: She had to hide her scar

1. mrs_jamieson = IDEN-
TIFY_ELEMENT(CTX, "Mrs. Jamieson") :
Identify who Mrs. Jamieson is in the input
article
2. mrs_jamieson_problems =
FIND_ELEMENT (CTX, "problems",
mrs_jamieson) : Find and list all the
problems faced by Mrs. Jamieson in the
story
3. biggest_problem = FIND_BEST(CTX,
"problem", mrs_jamieson_problems) : Find
the biggest problem faced by Mrs. Jamieson
in the story
4. ans = CONCAT(mrs_jamieson, biggest
_problem) : Combine Mrs. Jamieson and her
biggest problem to form the final answer

Steps 2 & 3 can be combined
into one. mrs_jamieson_biggest
_problems = FIND_ELEMENT
(CTX, "biggest problem",
mrs_jamieson): Finds the
biggest problem faced by Mrs.
Jamieson in the story

Which class was the least intense?
A: Kung Fu
B: Tai Chi
C: Aikido
D: Brazilian Jujitsu

1. classes = FIND_DETAILS(CTX) : Find
all the details about the classes and their in-
tensity levels mentioned in the input article
2. least_intense_class =
FIND_LEAST_DESCRIBING_WORD
(classes, “intense”) : Find the class that is
least intense in the given input CTX
3. ans = CONCAT (least_intense_class,
classes) : Combine the least intense class
and the intensity levels of all classes to form
the final answer

Adding the details for the other
classes is unnecessary since the
question is looking for a single
answer, the least intensive class.

Do the Terrans ever come close to win-
ning the battle within the story?
A: No, they continually lose
B: They win the whole battle with less
casualties
C: Yes, by the surprise squadron Eve-
lyn leads
D: Yes, by Evelyn cloning soldiers into
battle

1. terrans = IDENTIFY_ELEMENT(CTX,
"Terrans") : Identify who the Terrans are in
the input article
2. battle = FIND_EVENT(CTX, "battle") :
Find and summarize the battle event within
the story in the input article
3. terrans_battle = FIND_RELATION(CTX,
terrans, battle) : Find and summarize the Ter-
rans’ involvement in the battle from the input
article
4. terrans_close_win = FIND_CONDITION
(CTX, "Terrans", "close to winning") : Find
the condition or events where the Terrans
come close to winning the battle in the in-
put article
5. ans = CONCAT(terrans_battle, ter-
rans_close_win) : Combine the Terrans’ in-
volvement in the battle and the events where
they come close to winning to form the final
answer

Step 2 and 3 can be combined:
Find and summarize the Terrans’
battle event within the story in
the input article

What level of depth does the author
provide on the subjects they use to
make their case?
A: Language is really the only thing
covered in any depth
B: A broad, but not very deep assess-
ment
C: They provide the reader with deeper
arguments about the monetary system
and striking tendencies than anything
else
D: They provide deep, explanatory
statistics to most arguments

1. author = IDENTIFY_ELEMENT(CTX,
"author") : Identify the author of the article
2. subjects = FIND_ELEMENT(CTX, "sub-
jects", author) : Find and list all the subjects
the author uses to make their case in the input
article
3. depth_analysis = ANALYZE(CTX, sub-
jects, author) : Analyze the level of depth the
author provides on the subjects they use to
make their case in the input article
4. ans = CONCAT(subjects, depth_analysis) :
Combine the subjects and the depth analysis
to form the final answer for comparing with
the options

Very good plan.

Table 12: Example human feedback from annotators on PEARL-generated plans.

486

