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Abstract

Speech disfluency modeling is the bottleneck
for both speech therapy and language learning.
However, there is no effective AI solution to
systematically tackle this problem. We solid-
ify the concept of disfluent speech and disflu-
ent speech modeling. We then present Hier-
archical Unconstrained Disfluency Modeling
(H-UDM) approach, the hierarchical extension
of Lian et al. (2023c) that addresses both dis-
fluency transcription and detection to eliminate
the need for extensive manual annotation. Our
experimental findings serve as clear evidence
of the effectiveness and reliability of the meth-
ods we have introduced, encompassing both
transcription and detection tasks.

1 Introduction

Spoken language disfluency1 modeling is the core
technology in speech therapy and language learn-
ing. According to NIDCD (2016), an estimated
17.9 million adults and 1.4 percent of children in
the U.S. suffer from chronic communication and
speech disorders. Currently, hospitals have to in-
vest substantial resources in hiring speech and lan-
guage pathologists (SLPs) to manually analyze and
provide feedback. More importantly, the cost is not
affordable for low-income families. Kids’ speech
disorders also have a significant connection to the
language learning market. According to a report
by VCL (2021), the English language learning mar-
ket will reach an estimated value of 54.8 billion by
2025. Unfortunately, there is not an AI tool that
can effectively automate this problem.

In current research community, there is not a uni-
fied definition for disfluent speech, as mentioned
in Lian et al. (2023c). As such, we solidify the
definition of disfluent speech as any form of speech
characterized by abnormal patterns such as repe-
tition, replacement, and irregular pauses, as sum-
marized in Lian et al. (2023c). Within the domain

1disfluency is interchangable with dysfluency

of disfluent speech modeling, research efforts are
conducted both on the speech side and the language
side. Whenever disfluent speech transcription is
given (such as human transcription in Figure 1), the
problem can be tackled by LLMs (OpenAI et al.,
2023). However, such transcription is not available
and current best ASR systems such as Radford et al.
(2023) tend to recognize them as perfect speech.
Thus, we argue that the bottleneck lies in the speech
side rather than in language.

Unfortunately, there is also no established defini-
tion for the problem of speech disfluency modeling.
We formally define that speech disfluency model-
ing is to detect all types of disfluencies at both the
word and phoneme levels while also providing a
time-stamp for each type of disfluency. In other
words, disfluency modeling should be hierarchical
and time-accurate. Previous research has mainly
focused on a small aspect of this problem.

Researchers started by focusing on spotting stut-
tering using end-to-end methods. They manually
tagged each utterance and developed the classifi-
cation model at the utterance level (Kourkounakis
et al., 2021; Alharbi et al., 2017, 2020; Jouaiti and
Dautenhahn, 2022). Later on, things got detailed
with frame-level stutter detection (Harvill et al.,
2022; Shonibare et al., 2022). However, end-to-
end methods have their limitations. First, stuttering
is just one aspect of disfluency. Current end-to-end
models struggle to handle other forms of disfluency
effectively. Second, manually labeling data for
these methods is a lot of work and not practical for
larger-scale projects. Lastly, disfluency modeling
depends on the specific text being spoken, a factor
that has been overlooked in previous research, as
pointed out in Lian et al. (2023c).

It is typically intuitive to consider speech tran-
scription that offers disfluency-specific represen-
tations. For a long time, the mainstream of re-
searchers in speech transcription has been focused
on word-level automatic speech recognition (ASR),
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Figure 1: Hierarchical Unconstrained disfluency Modeling(H-UDM) consists of Transcription module and Detection
module. Both word-level and phoneme-level disfluencies are detected and localized. Here is an example of aphasia
speech. The reference text is "You wish to know all about my grandfather," while the real/human transcription differs
significantly from the reference. Whisper (Radford et al., 2023) recognizes it as perfect speech, while H-UDM is
able to capture most of the disfluency patterns. An audio sample of this can be found here2.

which has been further scaled. However, The most
advanced word transcription models currently avail-
able (Radford et al., 2023; Zhang et al., 2023;
Pratap et al., 2023; Aghajanyan et al., 2023; Lian
et al., 2023a) can only transcribe certain obvious
word-level disfluency patterns, such as word rep-
etition or replacement. However, the majority of
disfluencies occur at the phoneme-level or subword-
level, making them challenging for any ASR sys-
tem to explicitly detect. Kouzelis et al. (2023)
introduced a neural forced aligner that incorpo-
rates time accuracy and sensitivity to silence. This
aligner employs a weighted finite-state transducer
(WFST) to capture disfluency patterns like repeti-
tion. However, it fails on openset disfluency mod-
eling (Lian et al., 2023c).

The Unconstrained Disfluency Model (UDM)
introduced in (Lian et al., 2023c) was devised to
address the aforementioned challenges comprehen-
sively. UDM seamlessly integrates both transcrip-
tion and detection modules within a unified frame-
work. Within the UDM framework, non-monotonic
alignments are acquired through dynamic align-
ment search, forming the foundation for subsequent
template matching algorithms aimed at detecting
various disfluency types. Specifically, distinct tem-
plates are tailored for each disfluency category,
encompassing replacements, insertions, deletions,

blocks, and repetitions. Additionally, VCTK++
dataset was introduced to further enhance model
performance. In the present study, we extend the
capabilities of UDM by incorporating a monotonic-
ity constraint. While non-monotonic alignment is
essential for effective disfluency modeling, our ex-
periments demonstrate that the integration of a sim-
ple Connectionist Temporal Classification (CTC)
module alongside a phoneme classifier can enhance
non-monotonicity. Furthermore, we introduce the
Unconstrained Recursive Forced Aligner (URFA),
which employs an iterative process to generate both
phoneme alignments (1D) and 2D alignments with
weak text supervision. This recursive modeling sig-
nificantly enhances detection robustness. Our pro-
posed method, termed Hierarchical Unconstrained
Disfluency Modeling (H-UDM), attains state-of-
the-art performance in real aphasia speech disflu-
ency detection.

2 Transcription Module

Our transcription module consists of two core parts:
(1) Unconstrained Recursive Forced Aligner, which
generates phonetic transcriptions (2D-Alignment),
and (2) Text Refresher which takes both Whisper

2Fig.1 Audio samples. (1) Aphasia Speech Sample:
https://shorturl.at/eTWY1. (2) Template speech
samples: https://shorturl.at/bszVX
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Figure 2: Unconstrained Recursive Forced Aligner consists of three basic modules: UFA, 2D alignment Search,
Smoothed Re-segmentation. In the first iteration (Zero-order), the entire utterance is taken and 2D alignment is
generated. Starting at 2nd iteration (1st-order), the disfluent speech is segmented at word level and each segment is
processed separately and then combined to generate the final 2D alignment for detection.

output and 2D-Alignment to generate word tran-
scription, as shown in Fig. 1.

2.1 Unconstrained Recursive Forced Aligner

The bottleneck for disfluent speech alignment is
that the real text transcription is unknown, which
is significantly different from the reference text, as
shown in Fig. 1. However, disfluency detection
relies on the reference text. Traditional speech-text
aligners (McAuliffe et al., 2017; Kim et al., 2021;
Li et al., 2022) assume that the reference text is
the same as the real text transcription, and thus
they only work for normal fluent speech. Let’s look
at a simple example. If the reference text is "K
AE Y (Cat)" and the actual speech (real text tran-
scription) is "K AE K AE T (Ca-Cat)," then the
alignment from traditional aligners will all be "K
AE T" as monotonicity is enforced, which is not
accurate. For disfluent speech detection, deriving
non-monotonic speech-text alignment is required,
and this is achieved through the Unconstrained
Forced Aligner (UFA) (Lian et al., 2023c). As
disfluency detection depends on the reference text,
we also introduce 2D-Alignment to align the non-
monotonic phoneme alignment with the reference
text. Additionally, we deploy our alignment meth-
ods recursively, re-segmenting the utterance based
on the 2D-Alignment to refine 2D-Alignment itself.
The entire paradigm is illustrated in Fig. 2. Each
sub-module is detailed in the following.

2.1.1 UFA

The Unconstrained Forced Aligner (UFA) (Lian
et al., 2023c) operates by predicting alignments
with the guidance of weak text supervision. Ini-
tially, the speech segment undergoes encoding by
the WavLM (Chen et al., 2022) encoder, which
generates latent representations. Subsequently, a
conformer module (Gulati et al., 2020) is employed
to predict both alignment and boundary informa-
tion. The alignment and boundary targets used
in UFA are derived from the Montreal Forced
Aligner (MFA) (McAuliffe et al., 2017). During
the inference stage, there is no requirement for
text input, rendering the alignment process truly
"unconstrained." To perform phoneme classifica-
tion, UFA simply applies two linear layers. For
the phoneme classifier, UFA optimizes the soft-
max cross-entropy objective, while logistic regres-
sion is utilized for boundary prediction. Notably,
we found through experimentation that introduc-
ing an additional Connectionist Temporal Clas-
sification (CTC) constraint (Graves et al., 2006)
(monotonicity) can enhance the robustness of our
non-monotonic alignment. It’s important to em-
phasize that CTC is solely involved in the training
stage. For more in-depth model details, please refer
to Lian et al. (2023c).

Dynamic Alignment Search We adopt the align-
ment search methodology proposed by Lian et al.
(2023c). It is essential to note that, in the con-
text of disfluency modeling, the alignment must
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be non-monotonic. This stands in stark contrast to
traditional forced aligners, which typically enforce
monotonic alignment based on supervised signals
such as text. However, in our case, text supervision
is complicated by the substantial divergence be-
tween the real transcription and the reference text.
Consequently, the reference text becomes an unreli-
able source for alignment. The process of decoding
the alignment sequence from the emission matrix
can be accomplished through various methods. In
our approach, we follow the methodology outlined
in Lian et al. (2023c) and apply the boundary-aware
Viterbi algorithm for decoding. It is worth noting
that the modified Viterbi algorithm introduces a
computational complexity of O(tN2), where N
represents the vocabulary size and t denotes the
number of time steps. Given that, in practice, t is
typically much larger than N , this computational
complexity remains within acceptable bounds. The
inclusion of boundary information proves invalu-
able in handling the ambiguity introduced, particu-
larly by silence. In addition, we trained a phoneme
autoregressive language model using the VCTK
corpus (Yamagishi et al., 2019). Nevertheless, we
did not observe a significant improvement in per-
formance. Therefore, we opted to adhere to the
approach outlined in Lian et al. (2023c) and con-
tinued to utilize the bi-gram model. For a more
comprehensive understanding of the search algo-
rithm, please refer to Lian et al. (2023c).

2.1.2 2D-Alignment Modeling
The concept of 2D-Alignment was initially intro-
duced in Lian et al. (2023c). The underlying idea
revolves around a fundamental question: how ac-
curately does the forced alignment correspond to
the reference text? The 2D-Alignment was devised
as a metric to assess this alignment. Specifically,
the 2D-Alignment represents the temporal align-
ment between the actual spoken text by the speaker
(ground truth text) and the disfluent alignment gen-
erated by the dynamic alignment search module. In
the work presented in Lian et al. (2023c), this 2D
alignment was computed by performing element-
wise multiplication between the reference phoneme
embeddings and the forced alignment phoneme
embeddings. It is important to note that this 2D-
Alignment is inherently non-monotonic. However,
this approach has significant limitations. Through
real speech testing, we observed that in the pres-
ence of noise, the noise can become erroneously
aligned with parts of the reference text, which is

not desirable. Additionally, using phonemes as
the primary units for disfluency modeling may not
be optimal. For example, there may be minimal
phonetic distinctions between certain phonemes,
such as ’AH’ and ’AO,’ in terms of verbal pronun-
ciation. Nonetheless, in both non-monotonic align-
ment and 2D-Alignment, they are treated as distinct
phonemes and are considered uncorrelated. De-
spite these limitations, we still retained the ground
truth 2D-Alignment for template matching algo-
rithms. This ground truth 2D-Alignment, known
as 2D-Alignment-DTW, is always monotonic in na-
ture. In the following section, we will delve into
our strategies for addressing the aforementioned
challenges.

2D-Alignment  Search Smoothed Re-segmentation

Forced Alignment

Ref Text

UFA

For Detection!

2D-Alignment 2D-Alignment-DTW

For Next Iteration!

Figure 3: 2D-Alignment Modeling

Smoothed Re-segmentation and Recursive
Alignment The generation of non-monotonic
alignment inherently introduces variances that can
lead to misdetection. To address this issue, we
propose segmenting the disfluent speech by word
boundaries and generating alignment for each seg-
ment, potentially mitigating the problem. For in-
stance, consider the case illustrated in Fig. 1 and
Fig. 2, where the sequence [AO L Pause AH B]
actually corresponds to the word "all." Another
source of variance arises when individuals utter
sequences like "AH, AO, AY," which may indi-
cate the repetition of the phoneme "AH." However,
our 2D alignment treats them as distinct phonemes,
failing to detect the repetition, which poses a signif-
icant challenge. To tackle this issue, we introduce
a phoneme smoothing technique. Specifically, at
each time step, we calculate the cosine similarity of
phoneme embeddings for both 2D-Alignment and
2D-Alignment-DTW. If the similarity falls within a
predefined threshold, we merge the 2D-Alignment
into 2D-Alignment-DTW, as demonstrated in the
final figure of Fig. 3. This process yields a mono-
tonic 2D alignment, allowing us to identify word

542



boundaries by simply locating each word along the
"ref text" axis. These segmented results serve as
input for 1st-order Unconstrained Forced Aligner
(URFA), as depicted in Fig. 2. In 1st-order URFA,
we compute a 2D-Alignment for each segment and
subsequently concatenate them. This iterative ap-
proach can be extended to 2nd-order URFA, 3rd-
order URFA, and beyond. It is important to note
that the smoothed monotonic 2D-Alignment is ex-
clusively used for segmentation purposes, while
the original non-monotonic 2D-Alignment remains
in use for detection. This recursive aligner yields
improved word boundary detection, as exempli-
fied in Fig. 2, where the boundaries obtained in
1st-order alignment outperform those of zero-order
alignment in capturing disfluencies.

2.2 ASR Scalability

Figure 4: Scaling law for ASR under various conditions.
(i) Perfect ASR (p-ASR); (ii) Imperfect ASR(i-ASR);
(iii) Overall ASR(o-ASR)

Recent advances in spoken language process-
ing (Pratap et al., 2023; Aghajanyan et al., 2023;
Zhang et al., 2023; Lian et al., 2023a) indicate the
effectiveness of scaling laws concerning data and
model scale. The limit of scaling has not been
reached yet. However, the scaling law for ASR
is most effective for normal or perfect speech (p-
ASR in Fig.4). In real-life settings, things are very
different for imperfect speech, such as disfluent
speech. Due to the power of language modeling
in ASR systems, most imperfect speech is treated
as perfect speech, leading to a significant perfor-
mance drop for imperfect ASR (i-ASR in Fig.4).
The overall ASR (o-ASR in Fig. 4), which includes
both parts, should also follow the same trend. Lian
et al. (2023c) introduced the text refresher to in-
troduce imperfections for disfluent speech in an
attempt to avoid the aforementioned problems. The

solutions are intuitive. Of all imperfections (disflu-
encies) at the word level, insertions and deletions
are the hardest to detect. However, this can be eas-
ily observed on the 2D-Alignment introduced in
the previous section. In the 2D-Alignment, we also
have 2D-Alignment-DTW as a reference. If the
2D-Alignment does not align with any reference
words, then it is likely an insertion, and if the word
from the ASR system is redundant in comparison to
the 2D-Alignment phoneme sequence, it is likely a
deletion. It is important to note that URFA also gen-
erates word transcriptions. However, based on our
findings, it exhibits inferior performance in word-
level disfluency detection compared to the "text
refresher." Therefore, we have chosen to employ
URFA exclusively for phonetic-level disfluency de-
tection

2.3 Transcription Module Evaluation
2.3.1 Duration-Aware Phonetic Transcription
We follow (Lian et al., 2023c) for phonetic tran-
scription evaluation. Here, we provide more in-
sights for each evaluation metric. First, the tran-
scribed phonemes must be intelligible at the seg-
ment level, which is evaluated by the phoneme er-
ror rate (PER). Second, the transcribed phonemes
must be intelligible at the frame-level, which is
evaluated by frame-level Micro F1 Score and
Macro F1 Score (sklearn F1). Third, the tran-
scribed phonemes must be intelligible at both the
segment and frame levels, which is evaluated by
the combination of the above metrics. This is also
known as dPER (Lian et al., 2023c). In more de-
tail, dPER is the duration-aware extension of PER.
For each operation to be counted, we consider the
duration for it.

2.3.2 Duration-Aware Imperfect Word
Transcription

Disfluent speech is imperfect speech. Traditional
ASR systems are typically evaluated by how well
the hypothesis matches the ground truth text. In
disfluent settings, ASR systems are evaluated based
on how well the hypothesis matches the imperfect
targets. We start by following (Lian et al., 2023c) to
adopt the imperfect word error rate (i-WER) where
the disfluent (imperfect) targets are labeled by hu-
mans. In our proposed method, we also employ
segment-level imperfect ASR evaluation, similar
to dPER vs PER, where duration is also considered.
In detail, we calculate the Intersection over Union
(IoU) between our predicted time boundaries from
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URFA and the ground truth boundaries from hu-
man annotations. If the IoU is greater than 0.5, the
disfluency is identified as detected. We also report
the F1 score for this matching evaluation, referred
to as the Matching Score (MS).

3 Detection Module

The reason we adopt a separate design for the de-
tection and transcription modules is that an end-to-
end modeling approach for the detection system is
not reliable. The transcription module provides us
with disfluency-aware representations to optimize
the detection module. Here, we can still design
learning-based methods (Harvill et al., 2022; Shon-
ibare et al., 2022; Alharbi et al., 2017, 2020) to
predict the detection results; however, we don’t
have human labels for disfluencies, which might
be considered for future work. Instead, we have
developed a smart label-free system that simply
employs the template matching algorithm for each
type of disfluency. Template matching is efficient
and reliable, eliminating the need for human anno-
tation. We have designed disfluency templates for
both word and phoneme levels. These disfluencies
include Phonetic Errors (Missing, Deletion, Re-
placement), Repetition, and Irregular Pause. Our
methods also cover word-level disfluencies, includ-
ing Missing, Insertion, Replacement, and Repeti-
tion. The following section details them.

3.1 Phonetic-Level disfluency Detection

We follow the approach outlined in (Lian et al.,
2023c) for designing disfluency templates. Instead
of directly handling the alignment from dynamic
alignment search, we also consider alignment data
from the URFA module. We repeat the processes
described in (Lian et al., 2023c). In Figure 1-
Template, when examining alignments in normal
speech, we observe perfect alignment between the
two representations. However, closer examination
reveals distinctive patterns within these alignments.
If we notice a significant drop in alignment-2D-
DTW without any overlap in the corresponding row,
this signals the presence of a missing phoneme,
as depicted in Fig 1-Template-(b). When a row
in alignment-2D-DTW intersects with multiple
columns in alignment-2D and contains repeated
phonemes, it indicates a repetition, as illustrated
in Figure 1-template-(d). Conversely, if a row in
alignment-2D-DTW aligns with alignment-2D and
simultaneously matches the surrounding column

in alignment-2D, this signifies an insertion, as ex-
emplified in Figure 1-template(c). When a row in
alignment-2D-DTW fails to overlap with any hor-
izontal regions in alignment-2D but does overlap
with a single vertical block in alignment-2D, it is
categorized as a replacement, as demonstrated in
Figure 1-template(e). Lastly, any pauses occurring
within a complete sentence are recognized as irreg-
ular pauses, as shown in Figure 1-template(f).

3.2 Word-level disfluency Detection
We followed the same processes for detecting word-
level disfluencies as we did for phoneme-level dis-
fluencies. In line with Lian et al. (2023c), nei-
ther duration nor silence were taken into consid-
eration. It’s important to note that, unlike Lian
et al. (2023c), we select the best results from either
URFA or the text refresher. We adhere to the eval-
uation framework proposed by Lian et al. (2023c)
for assessing hierarchical disfluency. To provide a
more detailed evaluation, we utilize F1 scores and
matching scores that consider temporal labels.

4 Experiments

4.1 Datasets and Pre-processing
VCTK (Yamagishi et al., 2019) We utilize
VCTK for training the UFA module. We follow
the train/test split methodology outlined in Lian
et al. (2022d,b, 2023d, 2022c).

VCTK++ (Lian et al., 2023c) It is a disfluency-
aware simulated speech based on VCTK (Yamag-
ishi et al., 2019). Three types of disfluencies are
introduced: repetitions, prolongations, and blocks.
For repetitions and prolongations, phonemes are
randomly selected and prolonged or repeated for a
random duration. These operations are performed
in the temporal domain (waveform). VCTK++ is
utilized for training the UFA.

Buckeye (Pitt et al., 2005) It includes substantial
segments of disfluent speech that have been metic-
ulously annotated with precise time markings. To
create our training and testing subsets, we adhere
to the methodology outlined in (Lian et al., 2023c).
Buckeye serves as our primary resource for both
training the UFA module and conducting Phonetic
Transcription Evaluation.

Disorded Speech We utilize the same corpus
as Lian et al. (2023c). Collaborating with speech-
language pathologists (SLPs), we personally anno-
tate the hierarchical disfluencies. However, since
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Method WavLM Size Training Data Micro F1 (%, ↑) Macro F1 (%, ↑) dPER (%, ↓) PER (%, ↓) Micro F1 (%, ↑) Macro F1 (%, ↑) dPER (%, ↓) PER (%, ↓)

Buckeye Test Set VCTK++ Test Set
WavLM-CTC-VAD Large None 50.1 47.3 86.9 12.0 48.8 45.7 88.0 8.2
WavLM-CTC-MFA Large None 49.8 28.7 53.9 12.0 47.6 26.0 54.2 8.2
UFA Base VCTK 68.9 55.6 53.3 15.0 78.8 59.5 53.4 11.0
UFA Base VCTK+Buckeye 65.9 51.6 63.6 16.3 75.2 56.0 60.0 11.8
UFA Large VCTK+Buckeye 70.3 55.0 46.2 13.3 80.7 66.4 45.8 11.0
UFA Large VCTK 71.3 60.0 46.0 11.9 81.7 72.0 44.0 10.5

– Boundary-aware Large VCTK 68.9 52.0 49.9 12.8 78.4 62.9 47.8 10.7
+ CTC Large VCTK 68.9 52.0 49.9 10.2 78.4 62.9 47.8 7.8

UFA Large VCTK++ 73.5 64.0 41.0 11.5 93.6 90.8 38.0 9.2
– Boundary-aware Large VCTK++ 71.0 63.7 44.3 12.2 91.1 90.0 42.1 9.6
+ CTC Large VCTK++ 77.2 68.7 40.3 9.5 92.0 90.9 39.8 6.4

Table 1: Phonetic Transcription Evaluation

this segment consists of only 20 minutes of apha-
sia/dyslexia speech, it is exclusively employed for
inference purposes. It’s important to note that, due
to privacy considerations, this particular dataset
will not be publicly shared. Please be aware that
in the future, we will continue to collect more data
from both hospitals and K-5 schools on a larger
scale.

4.2 Phonetic Transcription Experiments

Lian et al. (2023c) conducted phonetic experiments
on several tasks. First, two baselines were at-
tempted. One is named WavLM-CTC-VAD, where
VAD introduces silence into the WavLM-CTC
alignment. The other is WavLM-CTC-MFA, where
phoneme labels from WavLM-CTC(HugginFace-
WavLM, 2022) are set as MFA (McAuliffe et al.,
2017) targets. Results from Lian et al. (2023c) in-
dicate that UFA outperforms the baselines under
various settings (Buckeye test set and VCTK++ test
set). In this work, we explore the role of monotonic-
ity that was introduced. Specifically, we applied the
CTC constraint to latent embeddings in the UFA
module. An additional phoneme recognition mod-
ule was applied to introduce such monotonicity.
The intuition behind introducing this monotonicity
is that the learned phonetic alignment still jumps up
and down for disfluent speech and is unstable(Lian
et al., 2023c). In this module, we only train UFA
without any recursive learning, which will be intro-
duced later on. It is worth noting that UFA remains
constant throughout the recursive process. There-
fore, our evaluation focuses solely on the alignment
produced by UFA rather than that of URFA, as the
latter is directly proportional to the former. Pho-
netic transcription results are shown in the Table.1.

iWER(%, ↓)
URFA Config Zero-order 1st-order 2nd-order 3rd-order
Whisper-Large 11.3 - - -
+Text Refresher 9.7 9.4 9.2 9.2

+VCTK++ 9.2 9.0 8.7 8.7
+CTC 8.8 8.6 8.4 8.4

Table 2: Word Transcription Evaluation

4.3 Imperfect Word Transcription
Experiments

We present results from Whisper (Radford et al.,
2023) and zero-order text refresher from (Lian
et al., 2023c). In these settings, we conduct re-
cursive word transcription modeling in multiple or-
ders. The recursive process involves the following
steps: The default UDM (Lian et al., 2023c) pro-
vides zero-order results. After the initial smoothed
segmentation, we perform a 2D alignment search
and further smoothed segmentation at the segment
level. This yields 1st-order word segmentation and
1st-order word transcription. Additionally, we can
use the 1st-order 2D-Alignment to guide the text
refresher, which also provides us with 1st-order
word transcription. We select the better of the two
as the final 1st-order transcription, which is used
as our final predictions. By repeating this process,
we obtain 2nd-order word transcriptions, 3rd-order
word transcriptions, and so on. For word segmenta-
tion evaluation, we utilize WhisperX (Bain et al.,
2023), which provides timing information for each
word. The results are detailed in Table 2 for word
transcription evaluation and Table 3 for word seg-
mentation evaluation. We also include disfluent
speech segmentation results in the appendix A.

MS(%, ↑)
URFA Config Zero-order 1st-order 2nd-order 3rd-order
Whisper-X 42.1 - - -
Ours 77.4 79.4 81.2 81.4

Table 3: Word Segmentation Evaluation
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4.4 disfluency Detection

We select UFA-VCTK and UFA-VCTK++ as the
default phoneme transcriber, as they exhibit the
best phonetic transcription performance, as demon-
strated in Table 1. In this study, we also aim to
investigate whether the proposed recursive infer-
ence algorithm can enhance disfluency detection.
It’s important to note that the representations used
for disfluency detection are always based on the 2D-
Alignment, but with different orders of computa-
tions, including 1st-order, 2nd-order, and 3rd-order.
The results are presented in Table 4 and Table 5.
MS refers to the "Matching Score," as explained in
Section 2.3.2.

4.5 Results and Discussion

4.5.1 Transcription Analysis

In the phonetic results presented in Table 1,
UFA with VCTK/VCTK++ consistently out-
performs the other baseline settings. There-
fore, we only introduce monotonicity (CTC) to
UFA+VCTK/VCTK++. Ultimately, the inclusion
of CTC significantly enhances performance across
all metrics. Regarding word transcription results,
as shown in Table 2, we observe two aspects. First,
when examining the default setting (Lian et al.,
2023c), which corresponds to the zero-order set-
ting, we can see that CTC improves zero-order
transcription results. Second, when we further ex-
plore recursive inference experiments, the results
for the (n+ 1)th order are consistently better than
those for the nth order. It’s worth noting that CTC,
which introduces monotonicity, further boosts per-
formance. We have not yet explored scaling results,
and we are unsure if this could yield a better scaling
curve as shown in Fig.4. We leave this as a topic for
future work. We refrained from investigating addi-
tional iterations, as performance tends to approach
saturation. This observation aligns with the find-
ings from Fig. 2, where, after the 1st-order URFA
iteration, the detection of disfluent word boundaries
surpasses that achieved in the zero-order iteration.
This conclusion also holds true for disfluent word
segmentation results, as reported in Table 3. No-
tably, our methods outperform those ofBain et al.
(2023) by a significant margin. Furthermore, we
provide more examples in Appendix A to illustrate
its effectiveness.

URFA Settings F1 (%, ↑) MS (%, ↑) Human F1 (%, ↑) Human MS (%, ↑)

UFA-VCTK 62.4 55.2 90.4 85.6

UFA-VCTK++ 64.5 60.2 90.6 86.0

+CTC 65.0 60.4 90.5 86.2

+1st-order 65.6 61.0 90.6 86.0

+2nd-order 67.0 62.7 90.6 86.0

+3rd-order 67.2 62.8 90.7 86.2

Table 4: Phonetic disfluency Detection Evaluation

4.5.2 disfluency Analysis
We examine both phonetic-level and word-level
dysfluencies in Table 4 and Table 5, respectively.
It is evident that the introduction of CTC mono-
tonicity consistently enhances performance at both
levels. Additionally, when we consider recursive
modeling, we can observe progressively improved
performance as we increase the number of orders.
However, it also reaches a point of saturation when
we include further recursions.

Methods F1 (%, ↑) Human F1 (%, ↑)
Whisper-Large 64.0 86.4

+Text Refresher(VCTK) 66.8 88.0
+Text Refresher(VCTK++) 68.4 89.1

+CTC 68.8 89.2
+1st-order 70.1 89.1
+2nd-order 73.0 89.3
+3rd-order 73.1 89.3

Table 5: Word disfluency Detection Evaluation

5 Limitations

We propose a hierarchical unconstrained dysflu-
ency modeling (H-UDM), which is an extension
of UDM (Lian et al., 2023c). H-UDM introduces
CTC monotonicity, and the incorporation of re-
cursive modeling significantly enhances both tran-
scription and disfluency detection results by a sub-
stantial margin. However, there are still several
limitations to consider. First, the results on dis-
ordered speech are not as satisfactory. This sug-
gests that the inference-only algorithm, the tem-
plate matching algorithm, may not be sufficient
for advanced disfluency modeling. It remains es-
sential to develop end-to-end methods to address
this challenge, which, however, presents its own
set of difficulties. Second, the current closed-set
disfluency classification only includes five types
of disfluencies: replacement, insertion, repetition,
block, and deletion. However, in an open-domain
disfluency modeling system, there are many other
complex disfluency patterns, such as syllable swap-
ping and false starts. Designing specific templates
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for each type of disfluency is impractical. Third,
phoneme units may not be the optimal choice for
modeling disfluency. For instance, there may not
be significant acoustic differences between "AH"
and "AA," yet H-UDM treats them as two distinct
phonemes. Although this is partially alleviated by
smoothed segmentation, the improvement is lim-
ited. Therefore, it is worth exploring alternative
speech units, such as articulatory units (Lian et al.,
2022a, 2023b; Wu et al., 2023b,a), to enhance align-
ment modeling.
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A Appendix

Human Data Annotation For all disordered speech (aphaisa and dylexia), our co-workers work together
to manually label the dysfluencies: types of dysfluency and its time stamp at both word and phoneme level.
As the dysfluency patterns are straightforward to observe, each utterance is labelled by only one person.

Word Segmentation Examples

GT denotes ground truth. Some samples might have multiple ground truths denoted as GT1, GT2, etc.

Figure 5: Segmentation-(Dyslexia Sample: Giving those who observe him)

Figure 6: Segmentation-(Dyslexia Sample: But he always answered banana oil.)
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Figure 7: Segmentation-(Dyslexia Sample: We have often urged him)

Figure 8: Segmentation-(Aphasia Sample: Usually several buttons missing.)

Figure 9: Segmentation-(My stutter sample: Please call stella.)
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