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Abstract

Graphs provide a natural, intuitive, and holis-
tic means to capture relationships between
different text elements in Natural Language
Processing (NLP) such as words, sentences,
and documents. Recent advancements in the
field of Graph Machine Learning (GML) have
led to the development of numerous mod-
els to process text for various natural lan-
guage applications, including but not limited
to short-text classification, document classifica-
tion, and others. At the heart of GML mod-
els, specifically those based on Graph Neu-
ral Networks (GNNs), lies the message pass-
ing operation which has shown to be an es-
sential component for strong empirical perfor-
mance in NLP. However, the number of mes-
sage passing steps (often known as the radius)
is fixed for all the nodes in existing GML mod-
els for NLP. Fixing the radius poses a funda-
mental restriction as nodes exhibit diverse prop-
erties and varying amounts of informative lo-
cal structures in the input graph. This paper
presents GAINER, a novel framework called
Graph mAchine learnIng with Node-spEcific
Radius, aimed at graph-based NLP. We pro-
pose non-neural and novel neural approaches
built on the core ideas of GAINER. Through
rigorous experimentation, we demonstrate the
efficacy of GAINER in popular NLP tasks.

1 Introduction

Graphs present a natural, intuitive, and holistic rep-
resentation for understanding the interactions that
exist among different text elements, such as words,
sentences, and documents. The use of graphs pro-
vides a wide array of options for effectively repre-
senting and tackling different problems in Natural
Language Processing (NLP). For instance, world-
level, sentence-level, and document-level graphs
capture various aspects of text datasets. Recent
breakthroughs in Graph Machine Learning (GML),
notably driven by the progress made in Graph Neu-
ral Networks (GNNs) (Wu et al., 2022, 2021; Ma

and Tang, 2020), have led to the development of
numerous models tailored for processing text. Di-
verse NLP applications span a wide range (Liu and
Wu, 2022), including but not limited to short-text
classification and document classification

At the core of GNNs, the message passing oper-
ation (Gilmer et al., 2017) plays a pivotal role in
achieving remarkable success in NLP (Wu et al.,
2023). However, in popular GNN models, the
number of message passing steps, often known
as the radius, is predetermined and remains fixed
for every node in the input graph. For instance,
in a three-hop GNN, each node gathers informa-
tion from nodes that are within a three-hop radius.
Fixing the number of hops (i.e. radius) poses a
fundamental restriction as nodes exhibit diverse
properties and varying amounts of informative lo-
cal structures in the input graph. In an intuitive
sense, nodes with poor connectivity tend to derive
greater advantages from a higher radius, whereas
well-connected nodes may require only a limited
radius. A GNN with a very small radius may not
propagate enough information, resulting in lim-
ited smoothing effects for certain nodes. On the
other hand, a GNN with a very large radius may
oversmooth the information (Rusch et al., 2023),
leading to reduced node-specific characteristics.

The prevalent approach in GNNs for NLP re-
search, including very recent publications (Liu
et al., 2023; Zheng et al., 2022), involves the ap-
plication of a 2-layer Graph Convolutional Net-
work (Kipf and Welling, 2017). While this method
performs adequately for nodes with strong con-
nections, it struggles with nodes having limited
or weak connections, such as low-degree nodes
connected to other low-degree nodes.

Inspired by the aforementioned fundamental lim-
itations of existing GML models in graph NLP, our
work makes the following contributions:

• We propose GAINER, a novel framework
called Graph mAchine learnIng with Node-
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spEcific Radius, aimed at graph NLP (Please
see Figure 1 and Section 4).

• We propose novel approaches aimed at graph
NLP, comprising Simple-GAINER (a non-
neural approach) and Neural-GAINER, built
upon the core idea of GAINER (Please see
Sections 4.3 and 4.6).

• We demonstrate the adaptability of GAINER
and its efficacy in a wide range of tasks includ-
ing short-text classication, document classifi-
cation on text attributed graphs, and document
coherence assessment. Our methods achieve
statistically significant results on 5 of the 6
datasets evaluated (Please see Section 5).

2 Related Work

We divide the related work into three subsections.

2.1 Graph Machine Learning (GML)

The prevailing trend in machine learning models
for graph-structured inputs involves the learning of
representations for graph nodes (Hamilton, 2020).
Many of these models are built upon GNNs (Wu
et al., 2022; Ma and Tang, 2020) and message pass-
ing neural networks (Gilmer et al., 2017). GNNs
such as graph convolutional networks (Kipf and
Welling, 2017), Graph Sample and AGgregatE
(Hamilton et al., 2017), graph attention networks
(Veličković et al., 2018), and graph isomorphism
networks (Xu et al., 2019) have gained immense
popularity in the field. Simplified graph convolu-
tion (Wu et al., 2019) offers an effective linearised
model for GML that eliminates non-linear activa-
tions found in vanilla GCNs. This development
has inspired the emergence of linear graph convo-
lutions in the current literature (Zhu and Koniusz,
2021; Huang et al., 2021; Abu-El-Haija et al., 2021;
Wang et al., 2021b; Zhang et al., 2021, 2022b).

2.2 Relevant Breakthroughs in GNNs

Decoupled GNNs, characterised by the separation
of the message passing operation and the feature
transformation operation, have emerged as effec-
tive models in GML tasks (Dong et al., 2021; Chien
et al., 2021; Chen et al., 2020; Bojchevski et al.,
2020; Klicpera et al., 2019). These models have re-
cently showcased competitive performances, high-
lighting the effectiveness of decoupling the two key
operations.

Adaptive GNNs, equipped with gate/attention
mechanisms or reinforcement learning, have been
suggested by numerous learning-based approaches
to dynamically aggregate information for each in-
dividual node (Huang et al., 2023; Ma et al., 2021;
Spinelli et al., 2021; Miao et al., 2021; Lai et al.,
2020). However, these methods bring about in-
creased training complexity and a lack of inter-
pretability, thus constraining their applicability.

Our proposed method merges the strengths of
decoupled and adaptive approaches, offering a
blend of simplicity and adaptability tailored to task-
specific applications.

2.3 GNNs in NLP

The presence of graph structures in a wide range
of NLP problems has sparked a surge of interest in
utilising GNNs as a promising approach to tackle
several NLP tasks effectively (Liu and Wu, 2022).
GNNs were initially employed on syntactic depen-
dency trees to learn syntax-aware latent feature
representations for words in sentences. Graph Con-
volutional Networks (GCNs) were used specifically
to enhance the performance of tasks like Seman-
tic Role Labeling (Marcheggiani and Titov, 2017)
and Machine Translation (Bastings et al., 2017). In
subsequent developments, GNNs have been suc-
cessfully employed in a range of NLP tasks beyond
their initial applications, including relation extrac-
tion (Xu and Choi, 2022; Nguyen et al., 2022),
question answering (Wang et al., 2023; Zhang et al.,
2022a), knowledge graphs (Li et al., 2023b), sum-
marisation (Qiu and Cohen, 2022; Chen et al.,
2022), and many more. Among the numerous pub-
lications, there exists a subset of works that specifi-
cally address tasks involving graphs in the context
of text classification and document processing (Liu
et al., 2023; Li et al., 2023a; Zheng et al., 2022).

In most of the existing literature on GNNs in
NLP, a 2-layer GCN is commonly employed, which
may work well for nodes with strong connections
but falls short in effectively handling nodes with
weak connections in the graph (e.g., low degree
nodes connected to other low degree nodes). Our
proposed idea of employing a node-specific radius
is specifically tailored to tackle nodes characterised
by a weak or inadequate connectivity structure. In
this study, we investigate text classification and
document processing tasks as illustrative examples
and leave other tasks for future work.
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3 Preliminaries

We present notation to introduce the method and
discuss problems studied in the paper.

3.1 Notations Used

We first delve into the notations used in this work,
to establish a common understanding of the sym-
bols and terminology used throughout the paper.

Input Graph: Let G = (V,E) be an input
undirected graph where V = {1, 2, · · · , n} is a
set of n nodes and E ⊆ V × V is a set of edges.
Let Ã ∈ {0, 1}n×n be the adjacency matrix of
G with self-loops, i.e., Ãv,v = 1 for all v ∈ V .
Note that Ãv,u = 1 if and only if there exists an
edge betwneen v ∈ V and u ∈ V . Let ∆ be a
diagonal matrix consisting of the node degrees, i.e.,
∆v,v =

∑n
u=1 Ãv,u and zero entries elsewhere. We

assign the symbol A to represent the symmetrically
normalised adjacency matrix A = ∆−1

2 Ã∆−1
2 .

Node Features: Each node v ∈ V is associated
with a d−dimensional input feature vector xv ∈
Rd. The matrix X(0) = [x1 · · ·xn]

T ∈ Rn×d de-
notes the input feature matrix. The superscript 0 in
X(0) signifies that the features utilised in the GML
model are not treated as hidden features but are
instead directly incorporated as input.

3.2 Graph Convolutional Network (GCN)

Many problem instances in Graph NLP are ap-
proached through the popular GCN model (Kipf
and Welling, 2017) as a go-to solution, capitalising
on its ability to integrate the graph G and the in-
put node features X(0). Leveraging an aggregation
process, the GCN model merges the features of a
node with the features of its neighbours, enabling
the creation of smoother node representations. The
process of an L- layer GCN can be defined as

X(l+1) = η
(
AX(l)W(l)

)
, l = 0, · · · , L− 1,

(1)
where η(·) is the activation function and W(l) is a
layer-specific trainable weight matrix at layer l.

3.3 Example Contexts

Within the scope of this paper, we analyse notewor-
thy NLP problems, drawing attention to the nodes
and edges of the input graph G = (V,E), and the
node features X(0) exploited by GNNs in NLP.

1) Short Text Classification: Based on recent
research (Zheng et al., 2022; Wang et al., 2021a),

graphs have played a crucial role in improving clas-
sification of short texts. Nodes of the input graph
could represent words in short texts, in which case
the input node features could be pre-trained word
embeddings, e.g., GloVe (Pennington et al., 2014).
Edges in such a graph could capture relationships
between words that have notable co-occurrences
in a large corpus, quantified by metrics such as
point-wise mutual information.

2) Document Classification in Text Attributed
Graphs: In the domain of text attributed graphs,
the customary practice involves using nodes to rep-
resent documents for node classification purposes
(He et al., 2023; Zhang et al., 2018). The input
node features capture specific characteristics of the
documents, such as their title and abstract, encoded
by embeddings (either pre-trained, trainable, or
hand-crafted). Citation links between documents,
acting as undirected edges, naturally connect two
similar documents and are utilised by GNNs.

3) Document Coherence Assessment: An al-
ternative way to model the structural similarity of
documents is by analysing the sentences within
them (Guinaudeau and Strube, 2013), which has
particularly been valuable for coherence assess-
ment. Sentences are represented by nodes, and
node features are obtained through pre-trained em-
beddings of language models. The existence of an
edge between two structurally similar sentences is
determined by the strong semantic relations among
the nouns in those sentences (Liu et al., 2023).

4 Proposed Framework: GAINER

In the aformentioned examples, the existing liter-
ature employs an L-layer GCN, which considers
L-hop information around each node to propagate
and smooth information across edges. The num-
ber of layers L, is considered a hyperparameter,
and empirical results suggest that setting L = 2
yields the best performance in most cases. Fig-
ure 1 visually illustrates the primary contribution
of GAINER and highlights the distinctions from
2-layer GCNs, that are commonly used.

4.1 Motivation

While the approach proves effective for well-
connected nodes, such as (i) high-degree nodes, or
(ii) low-degree nodes with high-degree neighbours,
it falls short when it comes to poorly connected
nodes, such as low-degree nodes connected to other
low-degree nodes. Furthermore, as the value of
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Figure 1: (Best seen in colour) Illustrating the difference between existing 2-layer GCNs and the proposed GAINER.
The graph is the same in all the four images. In the first and third images, the node of interest is indexed by 1, while
in the second and fourth images, it is the node with index 2. A GCN with only 2 layers might not capture information
from a sufficient number of hops, leading to an inadequate representation of poorly-connected nodes (first image).
By examining the second image, we can see that a well-connected node possesses a 2-hop neighborhood that
spans a significant portion of the graph. Adding more GCN layers can lead to excessive smoothing, resulting in
highly similar representations for the majority of nodes. Third and fourth images illustrate that by incorporating
a node-specific radius, GAINER can flexibly adjust the degree of smoothing, leading to larger radii for poorly
connected nodes (e.g., green nodes around 1) and smaller radii for well-connected nodes (e.g., blue nodes around 2).

L increases, the hidden representations of well-
connected nodes become excessively smoothed,
resulting in oversmoothing (Rusch et al., 2023).

Our proposed approach to address this tradeoff
revolves around the introduction of a node-specific
radius, represented as r(v, τ), as a replacement
for the conventional number of layers L in GCNs.
This radius is assigned to each node v ∈ V , and is
complemented by a threshold value τ > 0. This
motivates our framework referred to as GAINER 1

(Graph machIne learnIng with Node-spEcific Ra-
dius), which forms the basis of our approaches.

4.2 Simplifying the GCN Process

An essential finding in the GCN process, as de-
scribed by Equation 1, is that when the activation
function η(·) is the identity function and W(l) are
identity matrices for l = 1, · · · , L−1, the resulting
model is the simplified graph convolution (SGC)
model (Wu et al., 2019) given by

X(L) = ALX(0)W(0). (2)

SGC has emprically shown to be highly compet-
itive in terms of accuracy and offers substantial
training speed improvements over GCN across var-
ious datasets, including NLP datasets. It is impor-
tant to note that in Equation 2, the notation AL

represents the matrix A raised to the power of L.

1The acronym GAINER, can also stand for Graph Artificial
Intelligence with Node-Exclusive Radius.

4.3 Simple-GAINER (SGR)
The essence of GAINER becomes evident when we
examine Equation 2 on a per-node basis, replacing
L with r(v, τ) for each node v ∈ V in the graph:

X(r(v,τ))
v = [Ar(v,τ)X(0)W(0)]v. (3)

Equation 3 employs the notation [M]v to repre-
sent the specific row of matrix M indexed by v.
The model that emerges from this approach is re-
ferred to as Simple-GAINER, abbreviated as SGR.
In clear contexts, sv is used to represent the par-
ticular row indexed by the vertex v in the matrix
Ar(v,τ)X(0), indicated as sv = [Ar(v,τ)X(0)]v.

4.4 Significance of the Threshold
We are driven by the intuition of assigning a small
value of r(v, τ) to well-connected nodes, while
providing poorly-connected nodes a larger value,
thereby extracting the maximum value from the
graph structure G. Additionally, we aim for the
final smoothed features, sv, of each node to re-
main close to the original input features of the node
X

(0)
v = xv, to prevent excessive smoothing. The

threshold τ is selected with the precise intention of
ensuring that ||sv −xv||2 does not exceed τ , where
|| · ||2 represents the l2 norm.

4.5 Selecting the Node-specific Radius
The value r(v, τ) is chosen so that ||sv−xv||2 ≤ τ
for all v ∈ V . Mathematically,

r(v, τ) = min{l : ||AlX(0)]v − xv||2 ≤ τ} (4)
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The threshold τ , acting as a task-specific hyper-
parameter, empowers us to meticulously tailor the
level of smoothing to meet the task’s requirements.

4.6 Neural-GAINER (NGR)
A central query we set out to investigate was
whether we could formulate a neural counterpart of
SGR, taking into account that GCN acts as the neu-
ral counterpart of SGC. One significant obstacle in
this formulation is determining how to incorporate
layer-specific weight matrices in Equation 1 when
nodes possess highly varying radii. Nevertheless,
by sharing the same weight matrix, say W, across
all nodes and their radii, we introduce a novel GNN
architecture known as Neural-GAINER, abbrevi-
ated as NGR. The process of NGR on a per-node
basis is as follows:

X(l+1)
v = η

(
[AX(l)W]v

)
, l = 0, · · · , r(v, τ)−1.

(5)
The unrolling of Equation 5 allows the GNN to han-
dle information at different radii, similar to the flex-
ibility of recurrent neural networks (RNNs) which
enables them to handle variable-size inputs. Unlike
an RNN, our NGR aggregates node features from l
hops away at every layer l, a unique characteristic
that distinguishes the two architectures.

4.7 Computational Complexity Analysis
Let R be the maximum radius r(v, τ) of all the
nodes v ∈ V of the input graph G = (V,E) and
m = |E| be the number of edges in G. The time
complexity of the key step of GAINER, i.e., com-
puting node-specific radii is O(Rmd) where d is
the number of input features. The time complexity
of training and inference of SGR is O(nd2) time
where n = |V | is the number of nodes in G and
those of NGR is O(Rnd2).

5 Experiments

In this section, we empirically validate GAINER’s
efficacy by conducting extensive experiments
including baseline comparison, training time-
accuracy tradeoff, memory consumption, sensitiv-
ity analyses, etc. The accuracy comparisons are
shown in the main text while the other experiments
are in the appendix. The tasks considered are

1. Inductive short-text classification,

2. Document classification on attributed graphs,

3. Document coherence assessment.

We have utilised an NVIDIA Titan RTX GPU for
training all the models. The training specifics are
described in the appropriate subsection dedicated to
the given task. Additional details regarding graph
construction procedures, datasets, baselines, hyper-
parameters, and more are given in the appendix
following the references.

5.1 Task 1: Inductive Short Text Classification

Short text classification (STC) is a crucial task that
has been extensively studied in various NLP ap-
plications, including news tagging, efficient infor-
mation retrieval, sentiment analysis, and query in-
tent classification. In recent times, GNNs have
demonstrated remarkable performance in STC by
effectively exploiting relevant relational side infor-
mation through message passing along edges. Re-
cent observations (Zheng et al., 2022; Yang et al.,
2021b; Ding et al., 2020) highlight that the major-
ity of models used in this context are transductive
models, which lack the ability to handle new texts
without undergoing retraining.

5.1.1 Experimental Setup
Progressing towards a more rigourous and practical
challenge, we enter the realm of inductive STC,
which involves classifying texts that are unseen
or unobserved during model training. We adopt
the experimental setup of a previous study (Zheng
et al., 2022), which addresses inductive short text
classification through SimpleSTC by employing a
graph structure with words as nodes. We replace
the 2-layer GNN on the word graph in SimpleSTC
by our GAINER (i.e., SGR, NGR) models.

5.1.2 Model and Training Details
The connection between two words in the word
graph is determined by their local co-occurrence
statistics, calculated using point-wise mutual infor-
mation. Our proposed GAINER methods utilise
pre-trained word embeddings as node features to
smooth and refine the embeddings across the word
graph. Short text embeddings are obtained by ag-
gregating node embeddings of the words within the
texts, and we predict the class for each short text
by training with the cross-entropy loss given by

L = −
N∑

i=1

(yi)
T log(ŷi),

where N is the number of training instances, yi ∈
{0, 1}C is a one-hot vector of length C that in-
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Table 1: Performance Comparison of Different Models on Inductive Short-text Classification.

Dataset → Twitter MR Snippets TagMyNews

Model ↓ Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

TFIDF+SVM 57.76(1.59) 56.53(1.95) 54.66(0.68) 54.06(0.44) 64.21(1.17) 63.81(0.89) 34.16(1.80) 32.87(1.26)

LDA+SVM 52.71(1.72) 49.08(3.36) 51.86(1.28) 50.98(1.58) 30.16(2.01) 28.71(1.85) 21.45(4.67) 18.19(1.81)

WideMLP 57.60(2.49) 56.51(3.53) 53.12(1.97) 51.41(4.28) 49.55(1.28) 48.69(1.25) 24.79(0.78) 23.97(0.95)

BERT-AVG 50.52(3.61) 47.33(4.17) 50.46(1.68) 48.10(2.95) 66.35(0.46) 65.83(0.88) 62.27(1.61) 56.91(1.00)

BERT-CLS 50.29(0.38) 36.32(4.62) 50.16(0.33) 35.61(1.63) 42.08(10.05) 38.37(10.91) 38.14(5.42) 29.13(4.41)

TLGNN 54.40(3.02) 45.29(8.23) 52.44(1.68) 46.88(7.14) 59.88(2.03) 59.21(2.16) 34.70(1.16) 31.25(1.17)

TextING 61.82(2.19) 60.77(2.44) 58.73(1.02) 58.30(1.26) 76.26(1.20) 75.70(1.41) 60.76(1.35) 57.22(1.27)

HyperGAT 56.12(4.81) 49.92(11.67) 51.59(0.35) 44.81(4.23) 34.91(0.81) 34.80(0.85) 24.43(4.39) 17.77(3.00)

HGAT-inductive 54.88(1.74) 52.51(2.23) 52.21(2.10) 48.48(7.11) 62.56(1.33) 61.98(1.36) OOM OOM

SimpleSTC 62.19(1.56) 62.01(1.59) 62.27(1.11) 62.14(1.12) 80.96(1.69) 80.56(2.01) 67.17(1.27) 63.34(1.38)

SimpleSTC-SGC 61.87(1.39) 62.06(1.48) 61.85(0.99) 61.97(1.04) 80.21(1.73) 80.42(1.76) 66.95(1.22) 62.86(1.45)

SGR (Ours) 62.45(1.13) 62.49(1.10) 62.68(0.66) 62.69(0.71) 81.16(1.24) 81.12(1.37) 67.51(0.72) 63.63(0.98)

NGR (Ours) 62.37(1.31) 62.78(1.26) 62.63(0.82) 62.92(0.83) 81.44(1.48) 81.86(1.80) 67.48(1.00) 63.89(1.11)

dicates the true class for instance i, and the pre-
dicted class probabilities for instance i across the
C classes are contained in ŷi ∈ [0, 1]C .

5.1.3 Experimental Results
In line with previous studies (Zheng et al., 2022;
Yang et al., 2021b; Wang et al., 2021a), we remove
duplicate texts to ensure fair testing conditions, and
then tokenize each sentence while eliminating stop
words. To form training and validation sets, we
closely follow prior work (Zheng et al., 2022) and
randomly pick 20 labeled samples from each class
individually. The remaining samples are allocated
to the test set, following the same approach as a
previous study (Zheng et al., 2022).

The metrics used for comparison are micro-
averaged accuracy and macro-averaged F1 score
(F1), averaged over five runs on the testing sets,
to provide a comprehensive assessment of model
performance. We present the experimental findings
in Table 1, and for more details on the hyperparam-
eters, description of each baseline, and additional
experiments, please refer to the Appendix.

Observations: Based on the table, it is clear
that our proposed SGR and NGR methods excel in
utilising the word graph structure to its potential,
surpassing GNN-based methods with hop size fixed
across all nodes.

5.2 Task 2: Document Classification on Text
Attributed Graphs

A Text-attributed Graph (TAG) represents a graph
structure where nodes correspond to documents, ci-

tations between documents serve as edges, and tex-
tual attributes such as title and abstract are used to
build node features (Yang et al., 2021a; Zhang et al.,
2018). The combination of textual attributes and
graph topology provides a rich vein of information,
enhancing representation learning in important ar-
eas such as text classification, recommendation
systems, social media analysis, and information
retrieval. Recent research has seen a growing in-
terest in integrating language models and GNNs
to learn node representations in TAGs (He et al.,
2023; Zhao et al., 2023).

5.2.1 Experimental Setup

In our study, we make use of the Cora and PubMed
datasets, which were provided with titles and ab-
stracts in a recent study (He et al., 2023). We
closely follow the experimental setup of the study
including the LM-based pipeline proposed. We
replace the 3-layer GCN in the study with our pro-
posed GAINER methods.

5.2.2 Training Details

The node features consist of three distinct compo-
nents: (i) a fine-tuned language model represen-
tation of the text sequence (title and abstract), (ii)
a fine-tuned language model representation of the
explanation generated by a large language model
(LLM), such as ChatGPT, and (iii) the highest-
ranked predictions of the document class provided
by the LLM (He et al., 2023). The training of our
proposed GAINER approaches, SGR and NGR, is
performed using the aformentioned node features.
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Table 2: Document Classification with LLM features.

Models Cora PubMed

GCN 89.35± 0.59 94.31 ± 0.43
SAGE 89.90 ± 1.11 96.18 ± 0.53
GAT 89.39 ± 1.40 96.04 ± 0.47
SGC 89.27 ± 0.82 94.37 ± 0.41

SGR(Ours) 89.48 ± 0.54 96.13 ± 0.39
NGR (Ours) 89.93 ± 1.02 96.21 ± 0.48

A cross-entropy loss function is used to train the
models L = −∑N

i=1(yi)
T log(ŷi).

5.2.3 Experimental Results
In line with the previous study (He et al., 2023),
the ratio we used for splitting the datasets was
0.6/0.2/0.2, where 60% of the data was allocated
for training, 20% for validation, and 20% for test-
ing. Additionally, we utilised random seeds to
ensure the reproducibility of our experiments, en-
abling the consistent evaluation of our proposed
methods on the respective datasets. The metric
used for comparison is classification accuracy over
5 different runs with random seeds.

The experimental findings are presented in Ta-
ble 2. For more details on the hyperparameters,
description of each baseline, and additional experi-
ments, please refer to the Appendix.

We have also conducted experiments on the pop-
ular Cora and PubMed datasets with bag-of-words
node features with commonly used splits (Kipf and
Welling, 2017). The results are shown in Table 3.

Observations: Our proposed methods outper-
form common baselines like GCN, SAGE, GAT,
SGC when utilising widely used bag-of-word node
features, as shown in Table 3. These results are
significant because traditional shallow bag-of-word
features are widely used but lack the informative-
ness of LLM features, as highlighted in Table 2.
LLM features provide richer features, emphasising
the potential of our approach. We believe GAINER
effectively utilises the graph structure, especially
when node features offer limited information, mak-
ing our method particularly valuable.

5.3 Task 3: Document Coherence Assessment

The concept of textual coherence involves creating
a sense of flow and logical progression between sen-
tences, ensuring they are not disjointed or randomly
ordered, but instead well-connected and organised

Table 3: Document Classification with shallow Bag-of-
words as node features. See Section 5.2 for details

Type Models Cora PubMed

Coupled
GCN 81.8±0.5 79.3±0.7
GAT 83.0±0.7 79.0±0.3

SAGE 80.7± 0.5 78.0±0.4
JK-Net 81.8±0.5 78.8±0.7

Decoupled

APPNP 83.3±0.5 80.1±0.2
AP-GCN 83.4±0.3 79.7±0.3
PPRGo 82.4±0.2 80.0±0.4

DAGNN 84.4±0.6 80.9±0.5

Linear

MLP 61.1±0.6 72.7±0.6
SGC 81.0±0.2 78.9±0.5
SIGN 82.1±0.3 79.5±0.5
S2GC 82.7±0.3 79.9±0.3

Ours SGR 84.1±0.6 81.1±0.6
NGR 84.6±0.5 81.4±0.4

(McNamara et al., 2010). Coherence plays a piv-
otal role in determining the quality of a text and has
found extensive application in various downstream
tasks such as summarisation, dialogue generation,
machine translation, and document-level text gen-
eration. Recently, graph-based techniques have
been developed to connect structurally similar doc-
uments, driven by the hypothesis that documents
sharing similar connection structures demonstrate
comparable levels of coherence.

5.3.1 Experimental Setup

Our approach closely follows the setup of a re-
cent study (Liu et al., 2023), wherein the proposed
StructSim models regards sentences and documents
as nodes within a graph. The presence of strong se-
mantic relations between nouns in sentences guides
the formation of edges, while pre-trained language
models are employed to extract node features. We
replace the 2-layer GCN in the proposed StructSim
model by our SGR and NGR methods.

5.3.2 Model and Training Details

The training corpus is used to construct a graph,
which is then employed to train SGR and NGR.
During the evaluation phase, new and unseen docu-
ments are introduced into the graph, and the model
weights are employed to predict the coherence lev-
els of these documents (inductive setting). A cross-
entropy loss function is used to train the models
L = −∑N

i=1(yi)
T log(ŷi).
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Model Yahoo Clinton Enron Yelp Average

XLNet+DNN 60.701.03 64.001.36 55.151.14 56.450.94 59.10
StructSim 63.650.74 66.200.81 57.000.81 58.051.21 61.23
StructSim-SGC 63.430.58 66.220.68 56.870.74 58.071.14 61.15

SGR (Ours) 64.380.61 67.050.75 57.470.76 58.631.10 61.79
NGR (Ours) 64.550.76 67.260.69 57.090.73 59.421.17 62.18

Table 4: Mean accuracy (std) results on GCDC. Please see Section 5.3 for details.

Figure 2: Visualising the relationship between the av-
erage node-specific radius of GAINER and the node
degrees on the Cora dataset. The plot demonstrates a
clear trend: nodes with larger degrees consistently show
smaller average radii, whereas nodes with smaller de-
grees tend to have higher average radii.

5.3.3 Experimental Results
Table 4 shows the results on the Grammarly Corpus
of Discourse Coherence (GCDC) dataset (Liu et al.,
2023). We perform 10-fold cross-validation over
the training GCDC dataset. Our proposed methods
better exploit the structural similarity information
between documents, leading to significant improve-
ments compared to recent fixed-hop graph-based
approaches, as demonstrated in the table.

Significance: The p-value of a Welch’s t-test
comparing the accuracy of our proposed models
with the accuracy of the most competitive baselines
in Tables 1, 3, and 4 is less than 0.001, indicating
strong evidence against the null hypothesis.

5.4 Relationship between Node-specific
Radius and Node Connectivity

We delve into the fundamental aspect of our pro-
posed methods: the node-specific radius, which
serves as the distinguishing feature, enabling them
to outperform existing approaches across tasks.

In Figure 2, we examine the relationship between
the node degree and the average node-specific ra-

Figure 3: Visualising the relationship between the av-
erage node-specific radius of GAINER and the size of
the two-hop neighbourhood on Cora. The plot shows
a trend that supports our intuition: nodes with good
connectivity benefit from smaller radii, and vice versa.

dius, averaged across all nodes with a particular
degree. The findings depicted in this figure align
with Figure 1, indicating that nodes with lower de-
grees tend to benefit from larger radii, while nodes
with higher degrees benefit from smaller radii.

Figure 3 delves into the interplay between the
radius and the size of the 2-hop neighbourhood.
The number of nodes offers insights into the den-
sity of connectivity in the vicinity of a node. The
observations corroborate our intuition, indicating
that well-connected nodes typically require smaller
radii, while nodes with limited connectivity benefit
from a larger hops of information propagation.

6 Conclusion

We have introduced GAINER, a novel graph-based
learning framework that assigns a dedicated radius
to each node, controlling information propagation
depth. We propose Simple-GAINER and Neural-
GAINER for graph NLP to harness the power of
graph structures to advance graph NLP research.
Extensive experiments on short text classification,
document classification, and coherence assessment
demonstrate the significance of GAINER.
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Limitations

Our work lays the foundation for various potential
extensions and future enhancements.

More Challenging Structures: Our GAINER
approach leverages the principle of homophily,
which suggests that nodes with similar labels tend
to be connected in the graph, a characteristic com-
monly observed in our target tasks and datasets. In
the heterophilic setting (Lim et al., 2021; Zhu et al.,
2020; Pei et al., 2020), the complexity increases as
there are more instances of node pairs with differ-
ent labels compared to those with the same label,
posing a greater challenge for classification or anal-
ysis tasks. In the context of heterogeneous multi-
relational graphs, the inclusion of multiple types
of nodes and edges provides an exciting avenue
for investigation, offering diverse perspectives and
opportunities for exploration. Extending GAINER
to handle such settings is an interesting direction
to explore.

Multiple Modalities: In the context of expand-
ing the scope of our work, there are several promis-
ing directions to explore. Firstly, considering multi-
modal or multi-graph settings could provide a
richer representation of the data by incorporating
diverse sources of information such as text, im-
ages, or knowledge graphs. This would enable us
to capture more comprehensive relationships and
dependencies within the data. Additionally, incor-
porating external knowledge sources, such as on-
tologies or domain-specific knowledge bases, could
enhance the model’s understanding and improve its
performance on specific tasks.

Transferability: Investigating the transferabil-
ity of our methods across different domains or tasks
would be valuable, as it could reveal the general-
isability of our approaches and potentially enable
knowledge transfer from one domain to another.
Transferring the ideas of GAINER to more advanc-
ing models such as graph attention (Zhang et al.,
2020; Nikolentzos et al., 2020) and sparse struc-
ture learning (Piao et al., 2022) is also a potential
avenue for further research.

References

Sami Abu-El-Haija, Hesham Mostafa, Marcel Nassar,
Valentino Crespi, Greg Ver Steeg, and Aram Gal-
styan. 2021. Implicit svd for graph representation

learning. In Advances in Neural Information Process-
ing Systems (NeurIPS) 34, pages 8419–8431. Curran
Associates, Inc.

Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheg-
giani, and Khalil Simaan. 2017. Graph convolutional
encoders for syntax-aware neural machine translation.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1957–1967.

Aleksandar Bojchevski, Johannes Klicpera, Bryan Per-
ozzi, Amol Kapoor, Martin Blais, Benedek Rózem-
berczki, Michal Lukasik, and Stephan Günnemann.
2020. Scaling graph neural networks with approx-
imate pagerank. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pages 2464–
2473.

Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li,
Ye Yuan, Xiaoyong Du, and Ji-Rong Wen. 2020.
Scalable graph neural networks via bidirectional
propagation. In Advances in Neural Information Pro-
cessing Systems (NeurIPS) 33, pages 14556–14566.
Curran Associates, Inc.

Xiuying Chen, Mingzhe Li, Shen Gao, Rui Yan, Xin
Gao, and Xiangliang Zhang. 2022. Scientific pa-
per extractive summarization enhanced by citation
graphs. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4053–4062.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic.
2021. Adaptive universal generalized pagerank graph
neural network. In International Conference on
Learning Representations (ICLR).

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine Learning, 20(3):273–297.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (ACL) (Long and Short Papers), pages
4171–4186.

Kaize Ding, Jianling Wang, Jundong Li, Dingcheng Li,
and Huan Liu. 2020. Be more with less: Hypergraph
attention networks for inductive text classification.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4927–4936.

Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He,
Shuxian Bi, Zhaolin Ding, and Peng Cui. 2021. On
the equivalence of decoupled graph convolution net-
work and label propagation. In Proceedings of The
Web Conference (TheWebConf), pages 3651–3662.

617

https://openreview.net/forum?id=9Jsop0faZtU
https://openreview.net/forum?id=9Jsop0faZtU
https://aclanthology.org/D17-1209/
https://aclanthology.org/D17-1209/
https://dl.acm.org/doi/abs/10.1145/3394486.3403296
https://dl.acm.org/doi/abs/10.1145/3394486.3403296
https://papers.nips.cc//paper/2020/hash/a7789ef88d599b8df86bbee632b2994d-Abstract.html
https://papers.nips.cc//paper/2020/hash/a7789ef88d599b8df86bbee632b2994d-Abstract.html
https://aclanthology.org/2022.emnlp-main.270/
https://aclanthology.org/2022.emnlp-main.270/
https://aclanthology.org/2022.emnlp-main.270/
https://openreview.net/forum?id=n6jl7fLxrP
https://openreview.net/forum?id=n6jl7fLxrP
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://www.aclweb.org/anthology/2020.emnlp-main.399/
https://www.aclweb.org/anthology/2020.emnlp-main.399/
https://dl.acm.org/doi/10.1145/3442381.3449927
https://dl.acm.org/doi/10.1145/3442381.3449927
https://dl.acm.org/doi/10.1145/3442381.3449927


Fabrizio Frasca, Emanuele Rossi, Davide Eynard,
Ben Chamberlain, Michael Bronstein, and Federico
Monti. 2020. Sign: Scalable inception graph neural
networks.

Lukas Galke and Ansgar Scherp. 2022. Bag-of-words
vs. graph vs. sequence in text classification: Ques-
tioning the necessity of text-graphs and the surprising
strength of a wide MLP. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (ACL) (Volume 1: Long Papers), pages
4038–4051.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley,
Oriol Vinyals, and George E. Dahl. 2017. Neural
message passing for quantum chemistry. In Proceed-
ings of the 34th International Conference on Machine
Learning (ICML), pages 1263–1272.

Camille Guinaudeau and Michael Strube. 2013. Graph-
based local coherence modeling. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (ACL) (Volume 1: Long
Papers), pages 93–103.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems
(NeurIPS) 30, pages 1024–1034. Curran Associates,
Inc.

William L. Hamilton. 2020. Graph representation learn-
ing. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 14(3):1–159.

Xiaoxin He, Xavier Bresson, Thomas Laurent, and
Bryan Hooi. 2023. Explanations as features: Llm-
based features for text-attributed graphs.

Keke Huang, Jing Tang, Juncheng Liu, Renchi Yang,
and Xiaokui Xiao. 2023. Node-wise diffusion for
scalable graph learning. In Proceedings of the ACM
Web Conference (TheWebConf), pages 1723–1733.

Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong
Zhang, and Houfeng Wang. 2019. Text level graph
neural network for text classification. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3444–3450.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim,
and Austin Benson. 2021. Combining label propa-
gation and simple models out-performs graph neural
networks. In International Conference on Learning
Representations (ICLR).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations
(ICLR).

Thomas N Kipf and Max Welling. 2017. Semi-
Supervised Classification with Graph Convolutional
Networks. In International Conference on Learning
Representations (ICLR).

Johannes Klicpera, Aleksandar Bojchevski, and Stephan
Günnemann. 2019. Predict then propagate: Graph
neural networks meet personalized pagerank. In In-
ternational Conference on Learning Representations
(ICLR).

Alice Lai and Joel Tetreault. 2018. Discourse coherence
in the wild: A dataset, evaluation and methods. In
Proceedings of the 19th Annual SIGdial Meeting on
Discourse and Dialogue, pages 214–223.

Kwei-Herng Lai, Daochen Zha, Kaixiong Zhou, and
Xia Hu. 2020. Policy-gnn: Aggregation optimiza-
tion for graph neural networks. In Proceedings of
the 26th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD),
pages 461–471.

Irene Li, Aosong Feng, Dragomir Radev, and Rex Ying.
2023a. HiPool: Modeling long documents using
graph neural networks. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers) (ACL), pages
161–171.

Juanhui Li, Harry Shomer, Jiayuan Ding, Yiqi Wang,
Yao Ma, Neil Shah, Jiliang Tang, and Dawei Yin.
2023b. Are message passing neural networks re-
ally helpful for knowledge graph completion? In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers) (ACL).

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang,
Vaishnavi Gupta, Omkar Bhalerao, and Ser Nam
Lim. 2021. Large scale learning on non-homophilous
graphs: New benchmarks and strong simple meth-
ods. In Advances in Neural Information Processing
Systems (NeurIPS) 34, pages 20887–20902. Curran
Associates, Inc.

Bang Liu and Lingfei Wu. 2022. Graph Neural Net-
works: Foundations, Frontiers, and Applications,
chapter 21: Graph Neural Networks in Natural Lan-
guage Processing. Volume 1 of (Wu et al., 2022).

Meng Liu, Hongyang Gao, and Shuiwang Ji. 2020. To-
wards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD),
pages 338–348.

Wei Liu, Xiyan Fu, and Michael Strube. 2023. Mod-
eling structural similarities between documents for
coherence assessment with graph convolutional net-
works. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers) (ACL), pages 7792–7808.

Xiaojun Ma, Junshan Wang, Hanyue Chen, and Guojie
Song. 2021. Improving graph neural networks with
structural adaptive receptive fields. In Proceedings
of The Web Conference (TheWebConf), pages 2438–
2447.

618

http://arxiv.org/abs/2004.11198
http://arxiv.org/abs/2004.11198
https://aclanthology.org/2022.acl-long.279
https://aclanthology.org/2022.acl-long.279
https://aclanthology.org/2022.acl-long.279
https://aclanthology.org/2022.acl-long.279
http://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v70/gilmer17a.html
https://aclanthology.org/P13-1010/
https://aclanthology.org/P13-1010/
https://proceedings.neurips.cc/paper_files/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://www.cs.mcgill.ca/~wlh/grl_book/
https://www.cs.mcgill.ca/~wlh/grl_book/
http://arxiv.org/abs/2305.19523
http://arxiv.org/abs/2305.19523
https://dl.acm.org/doi/10.1145/3543507.3583408
https://dl.acm.org/doi/10.1145/3543507.3583408
https://aclanthology.org/D19-1345
https://aclanthology.org/D19-1345
https://openreview.net/forum?id=8E1-f3VhX1o
https://openreview.net/forum?id=8E1-f3VhX1o
https://openreview.net/forum?id=8E1-f3VhX1o
https://openreview.net/forum?id=szXGN2CLjwf
https://openreview.net/forum?id=szXGN2CLjwf
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=H1gL-2A9Ym
https://aclanthology.org/W18-5023
https://aclanthology.org/W18-5023
https://dl.acm.org/doi/10.1145/3394486.3403088
https://dl.acm.org/doi/10.1145/3394486.3403088
https://aclanthology.org/2023.acl-short.16/
https://aclanthology.org/2023.acl-short.16/
https://openreview.net/forum?id=DfGu8WwT0d
https://openreview.net/forum?id=DfGu8WwT0d
https://openreview.net/forum?id=DfGu8WwT0d
https://graph-neural-networks.github.io/gnnbook_Chapter21.html
https://graph-neural-networks.github.io/gnnbook_Chapter21.html
https://dl.acm.org/doi/10.1145/3394486.3403076
https://dl.acm.org/doi/10.1145/3394486.3403076
https://aclanthology.org/2023.acl-long.431/
https://aclanthology.org/2023.acl-long.431/
https://aclanthology.org/2023.acl-long.431/
https://aclanthology.org/2023.acl-long.431/
https://dl.acm.org/doi/10.1145/3442381.3449896
https://dl.acm.org/doi/10.1145/3442381.3449896


Yao Ma and Jiliang Tang. 2020. Deep Learning on
Graphs. Cambridge University Press.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1506–1515.

Danielle S. McNamara, Scott A. Crossley, and Philip M.
McCarthy. 2010. Linguistic features of writing qual-
ity. Written Communication, 27(1):57–86.

Xupeng Miao, Wentao Zhang, Yingxia Shao, Bin
Cui, Lei Chen, Ce Zhang, and Jiawei Jiang. 2021.
Lasagne: A multi-layer graph convolutional network
framework via node-aware deep architecture. IEEE
Transactions on Knowledge and Data Engineering
(TKDE), 35(2):1721–1733.

Minh Van Nguyen, Bonan Min, Franck Dernoncourt,
and Thien Nguyen. 2022. Joint extraction of entities,
relations, and events via modeling inter-instance and
inter-label dependencies. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL), pages 4363–4374.

Giannis Nikolentzos, Antoine J.-P. Tixier, and Michalis
Vazirgiannis. 2020. Message passing attention net-
works for document understanding. In Proceedings
of the Thirty-Fourth Conference on Association for
the Advancement of Artificial Intelligence (AAAI),
pages 8544–8551.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang,
Yu Lei, and Bo Yang. 2020. Geom-{gcn}: Geomet-
ric graph convolutional networks. In International
Conference on Learning Representations (ICLR).

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Association
for Computational Linguistics (ACL).

Yinhua Piao, Sangseon Lee, Dohoon Lee, and Sun Kim.
2022. Sparse structure learning via graph neural
networks for inductive document classification. In
Proceedings of the Thirty-Sixth Conference on Asso-
ciation for the Advancement of Artificial Intelligence
(AAAI), pages 11165–11173.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations (ACL), pages 101–108.

Yifu Qiu and Shay B. Cohen. 2022. Abstractive sum-
marization guided by latent hierarchical document
structure. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5303–5317.

T. Konstantin Rusch, Michael M. Bronstein, and Sid-
dhartha Mishra. 2023. A survey on oversmoothing
in graph neural networks.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri,
Kurt Mehlhorn, and Karsten Borgwardt. 2009. Effi-
cient graphlet kernels for large graph comparison. In
Proceedings of the Twelth International Conference
on Artificial Intelligence and Statistics (AISTATS),
pages 488–495. PMLR.

Indro Spinelli, Simone Scardapane, and Aurelio Uncini.
2021. Adaptive propagation graph convolutional net-
work. IEEE Transactions on Neural Networks and
Learning Systems (TNNLS), 32(10):4755–4760.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search (JMLR), 15(56):1929–1958.
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Appendix GAINER: Graph Machine Learning with Node-Specific Radius

The appendix contains additional details such as
dataset statistics, detailed empirical setup, baseline
methods used for comparison, the hyperparameter
values, and supplementary experiments.

A Task 1: Inductive Short Text
Classification

In this section, we describe additional details on
the inductive STC problem. We supplement the
experiments in the main section with additional
experiments such as varying data percentages, em-
bedding sizes, and threshold τ .

A.1 Datasets

This paper has utilised short text datasets from a
prior work (Zheng et al., 2022), and we present a
summary of the key statistics in Table 5.

Dataset # texts l c # words
Twitter 9970 6.6 2 20726

MR 10,661 11.2 2 18447
Snippets 10174 17.5 8 25906

TagMyNews 31279 6.5 7 231218

Table 5: Key statistics of short text datasets used, l is
the average legnth, and c is the number of classes

A.2 Detailed Empirical Setup

In this subsection, we explain the experimental
setup of inductive short text classication in detail.
We closely follow the setup of a prior work (Zheng
et al., 2022).

A.2.1 Graph Construction
To compensate for the limited availability of seman-
tic information, we initially create a word graph
by leveraging WikiText, an extensive external cor-
pus, allowing us to augment the dataset with a
broader context and enrich the representation of
words. Subsequently, we learn a text graph by
learning connections between short texts and the
words contained within them. Through this pro-
cess, we facilitate the propagation of the limited
labeled information across the interconnected texts,
allowing for the dissemination of valuable insights
and enhancing the overall learning process.

A.2.2 Data Preprocessing
Our data preprocessing strategy involves narrow-
ing down the input to solely the abstracts, which

encapsulate the key information from each article.
Following this, we tokenise the sentences within
the abstracts and apply further preprocessing steps,
including the removal of stop words and the exclu-
sion of infrequent words that occur less than 10
times in the global pool. By implementing these
measures, we curate a refined dataset that priori-
tises meaningful and frequently occurring content.

A.2.3 Word Graph
To capture the interrelationships between words,
we construct a word graph which serves as a
representation of the connections among these
words. This graph is constructed by establishing
connections between words, leveraging local co-
occurrence statistics derived from point-wise mu-
tual information calculations.

A.2.4 Model Details
In this step, we generate node embeddings within
the word graph, by training our GAINER ap-
proaches, i.e., Equation 3 for the SGR model and
Equation 5 for the NGR model, to capture both the
general topology and the specific characteristics of
the dataset. This training process enables us to en-
code comprehensive representations of the nodes,
incorporating both the overall structure of the word
graph and the task-specific information required
for each STC task. The short texts are encoded as
the weighted aggregated node embeddings. The
weights are given by term frequency-inverse text
frequency (TF-IDF).

A.2.5 Optimisation
In the final step, we predict the class labels for each
short text and optimize our model, SimpleSTC,
based on the classification loss. This process in-
volves assigning the most appropriate class label to
each short text and fine-tuning our model to min-
imise the cross-entropy classification error.

A.2.6 Inference
During inference, all parameters of GAINER are
fixed. We tokenise each short text and obtain its
embedding and predict its class.

Note on Word Graph vs. Short Text Graph In
this particular configuration, we adopt a hierarchi-
cal approach to graph learning that involves two
distinct graphs. The first graph with words as nodes
is created utilising Point-wise Mutual Information
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(PMI), whereas the second graph with short texts as
nodes is learned during the training process through
the construction of edges based on cosine similar-
ity of trained embeddings. Notably, our focus in
this work is primarily on leveraging our proposed
GAINER techniques specifically for the word-level
graph. However, an intriguing avenue for future
investigation involves extending GAINER to hi-
erarchical graph learning and/or incorporate edge
learning within the short text graph, which holds
potential for further advancements in this domain.

A.3 Baselines

We compare our SGR and NGR methods with:

• Traditional two-step feature extraction
and classification methods including TF-
IDF+SVM, LDA+SVM (Cortes and Vapnik,
1995), and WideMLP (Galke and Scherp,
2022)

• Pretrained BERT (Devlin et al., 2019) which
represents each short text as the averaged
word embeddings (BERT-Avg) or the embed-
ding of the CLS token (BERT-CLS) and is
fine-tuned together with a linear classifier

• Inductive GNN based text classification meth-
ods including TLGNN (Huang et al., 2019),
TextING (Zhang et al., 2020), and HyperGAT
(Ding et al., 2020), and

• Inductive STC Methods including HGAT-
Inductive (Yang et al., 2021b) and SimpleSTC
(Zheng et al., 2022) and SimpleSTC-SGC
which is GCN in SimpleSTC replaced by SGC
(Wu et al., 2019).

A.4 Hyperparameters

The sliding window size for caclulating PMI is
5 and the word embedding size is 200. We use
the Adam optimiser with a learning rate of 0.001
to train for a maximum of 1000 epochs. The
dropout rate is 0.9. The threshold for GAINER
is selected based on grid search in the range τ ∈
{0.05, 0.075, 0.1, 0.125, 0.15}.

A.5 Effect of Training Data Percentage

Figure 4 illustrates the changes in accuracy and
F1 scores on the Snippets dataset as the size of
the training dataset varies. The figures vividly
highlight the performance gains attained by our
proposed methods, particularly in cases where the

(a) Accuracy (b) F1

Figure 4: Accuracy and F1 scores of SGR, NGR, and the
most competitive baseline (SimpleSTC) with varying
training data percentages on the Snippets dataset.

training dataset size is extremely limited. We at-
tribute this to the enhanced information propaga-
tion capabilities of SGR, NGR, allowing them to
leverage the rich graph structure more efficiently,
especially in scenarios with low supervision.

A.6 Effect of Embedding Size
The effect of varying embedding sizes on NGR per-
formance is depicted in Figure 5. The findings sug-
gest that the NGR method is capable of capturing
and leveraging meaningful information from the
graph structure across a range of embedding sizes.
This flexibility in accommodating different embed-
ding sizes enhances the adaptability and robustness
of the NGR approach in various applications.

(a) Accuracy (b) F1

Figure 5: Accuracy and F1 scores of NGR with varying
embedding sizes on the Snippets dataset.

A.7 Memory Consumption
Table 6 shows the memory consumption of SGR,
NGR compared to the SimpleSTC. Due to its non-
neural nature on the word graph, SGR utilises the
least memory. NGR requires the most memory
while exhibiting superior overall accuracy.

Model Twitter MR Snippets TagMyNews

SimpleSTC 9.10 9.20 9.15 12.37

SGR 8.91 9.03 8.97 12.15
NGR 10.01 10.58 10. 53 13.67

Table 6: Memory Consumption of SGR, NGR, and
SimpleSTC in GB on different datasets
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A.8 Effect of the Threshold
The effect of varying embedding sizes on SGR is
depicted in Figure 6. The reason behind choosing
SGR for this experiment is its resilience to varia-
tions in the threshold. As the node-specific radii
tend to increase with decreasing threshold values,
this characteristic of SGR does not adversely affect
its training process. The findings suggest that the
SGR method is capable of capturing and leveraging
meaningful information from the graph structure
across a range of threshold values. The choice of an
optimal threshold value is essential for improving
the resilience of models.

(a) Accuracy (b) F1

Figure 6: Accuracy and F1 scores of SGR with varying
threshold τ on the Snippets dataset.

B Task 2: Document Classification on
Text Attributed Graphs

In this section, we describe the datasets, experimen-
tal setups of the document classification problem
in detail.

B.1 Datasets Used
Table 7 summarises the datasets used in the paper.
The TAG datasets with LLM features were obtained
from a recent study (He et al., 2023). The datasets
with bag-of-words features were obtained from a
popular work (Kipf and Welling, 2017).

Dataset #Nodes #Edges Task Metric

Cora 2,708 5,429 7-class classification Accuracy
PubMed 19,717 44,338 3-class classification Accuracy
CiteSeer 3,312 4,732 6-class classification Accuracy

Table 7: Statistics of the TAG datasets

B.2 Experimets on Citeseer
Although the Citeseer dataset lacks titles and ab-
stracts, previous studies (Kipf and Welling, 2017)
have explored the dataset using bag-of-words as
features and established standard splits. We follow
the standard setting and report the experimental
results on Table 8. The table highlights the strong

Table 8: Results on Citeseer.

Type Models Citeseer

Coupled
GCN 70.8±0.5
GAT 72.5±0.7

JK-Net 70.7±0.7

Decoupled

APPNP 71.8±0.5
AP-GCN 71.3±0.5
PPRGo 71.3±0.5

DAGNN 73.6±0.7

Linear

MLP 61.8±0.8
SGC 71.3±0.5
SIGN 72.4±0.8
S2GC 73.0±0.2

Ours SGR 73.5±0.5
NGR 73.7±0.6

performance of our proposed methods when com-
pared to various baselines, which will be discussed
in detail in the subsequent subsection.

B.3 Description of Baselines

In this section, we describe the baselines by their
main characteristics.

Coupled methods refer to a class of techniques
in which the feature propagation and feature trans-
formation steps are tightly coupled within each
hidden layer.

• GCN (Kipf and Welling, 2017) was ini-
tially developed as an efficient convolutional
method for semi-supervised classification on
graph-structured data, and has now become
popular in multiple domains due to its effec-
tiveness and versatility.

• SAGE (Hamilton et al., 2017), an inductive
framework, utilises node attribute information
to effectively generate representations for pre-
viously unseen data.

• GAT (Veličković et al., 2018) utilises masked
self-attention layers to assign distinct weights
to nodes within a neighborhood, enabling su-
perior learning of node representations.

• JK-Net (Xu et al., 2018), a neural network
method, offers flexibility in gathering neigh-
borhood information from different ranges,
thereby facilitating a more comprehensive and
structure-aware representation.
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Decoupled methods refer to a class of methods
in which the feature propagation and feature trans-
formation are decoupled.

• APPNP (Klicpera et al., 2019) capitalises on
the correlation between graph convolution net-
works (GCN) and PageRank to generate en-
hanced node representations, leading to im-
proved outcomes.

• AP-GCN (Spinelli et al., 2021) employs a
halting unit to determine the receptive range
of a given node, enabling more adaptive and
context-aware information propagation.

• DAGNN (Liu et al., 2020) introduces a de-
coupling approach that separates the represen-
tation transformation and propagation steps.
This decoupling enables deep graph neural
networks to effectively utilize large receptive
fields without compromising performance.

• PPRGo (Bojchevski et al., 2020) incorporates
an efficient page-rank-inspired approximation
of information diffusion within graph neural
networks (GNNs), resulting in notable speed
improvements without sacrificing state-of-the-
art prediction performance.

Linear methods, in the context of graph machine
learning, pertain to a category of approaches where
the feature propagation over the graph follows a
linear function of specific graph structural elements,
such as the graph Laplacian, the adjacency matrix.

• SGC (Wu et al., 2019) simplifies the graph-
based learning process by eliminating non-
linearities in GCN and collapsing weight ma-
trices between consecutive layers.

• SIGN (Frasca et al., 2020) SIGN is a
highly efficient and scalable graph embedding
method that offers an alternative to graph sam-
pling in GCN. It utilises various local graph
operators tailored to different tasks.

• S2GC (Zhu and Koniusz, 2021) introduces a
modified Markov Diffusion Kernel to create
a variant of GCN that balances low-pass and
high-pass filtering. This unique approach en-
ables the capturing of both global and local
contexts for each node.

B.4 Hyperparameters

The node embedding size of NGR is selected based
on grid search in the range {32, 64, 128, 256}.
We use the Adam optimiser with a learning
rate of 0.001 to train for a maximum of 1000
epochs. The dropout rate is 0.5. The thresh-
old for GAINER is selected in the range τ ∈
{0.05, 0.075, 0.1, 0.125, 0.15}.

B.5 Training Time, Test Accuracy Tradeoff

In this section, we explore the relationship between
training time and test accuracy, examining the trade-
off between the two factors. The findings from the
PubMed dataset, focusing on the utilization of bag-
of-words features, are visually depicted in Figure
7, providing insights into the relationship between
training time and test performance. When com-
paring with linear models such as SGC and S2GC,
several notable observations emerge: (a) both cou-
pled and decoupled GNNs demand substantially
longer training times, (b) SGR achieves superior
test accuracy while maintaining a training time sim-
ilar to that of SGC, (c) NGR requires more time
but also delivers excellent test performance.

Figure 7: Visualising the relative training times and test
accuracy tradeoff of the proposed method (green) and
baselines (blue) on the PubMed dataset with bag-of-
words features. SGR achieves high test accuracy with
impressive speed, while NGR requires more time but
also delivers excellent performance.

C Task 3: Document Coherence
Assessment

In this section, we delve into the specifics of the
document coherence assessment task. In particular,
we provide a detailed account of the dataset utilised,
the experimental setup employed in our study, com-
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prehensive descriptions of the baseline methods
employed, and an overview of the hyperparameters
chosen.

C.1 Dataset Used

Our study utilizes the Grammarly Corpus of
Discourse Coherence (GCDC) dataset (Lai and
Tetreault, 2018) as the benchmark dataset, specifi-
cally designed for assessing document coherence.
This dataset has recently been used for the task of
measuring the coherence of a given text (Liu et al.,
2023). The GCDC dataset comprises texts from di-
verse domains, including Yahoo online forum posts,
emails from Hillary Clinton’s office, Enron emails,
and Yelp online business reviews. Table 9 shows
some key statistics of the dataset.

Dataset Split #Doc Avg #W Max #W Avg #S

Yahoo
Train 1000 157.2 339 7.8
Test 200 162.7 314 7.8

Clinton
Train 1000 182.9 346 8.9
Test 200 186.0 352 8.8

Enron
Train 1000 185.1 353 9.2
Test 200 191.1 348 9.3

Yelp
Train 1000 178.2 347 10.4
Test 200 179.1 340 10.1

Table 9: The statistics of the GCDC dataset. #Doc, #W,
#S denote the number of documents, words, sentences.

C.2 Detailed Empirical Setup

We closely follow the setup of a recent study (Liu
et al., 2023). It consists of four components which
we organise as four sub sections

C.2.1 Constructing the Sentence Graph
Our approach to representing a document as a di-
rected sentence graph builds upon a prior work
(Guinaudeau and Strube, 2013). However, certain
modifications are introduced to enhance the graph
construction process. Connections between sen-
tences are established by considering the existence
of strong semantic relations between the nouns in
those sentences.

To process and segment a document, we employ
the Stanza toolkit (Qi et al., 2020) that allows al-
lows us to accurately divide the document into indi-
vidual sentences and identify all the nouns present
in each sentence. To determine the semantic con-
nection between two sentences, we calculate the
similarity score (using cosine similarity) for each
pair of nouns and selecting on the basis of the max-
imum similarity score. If the maximum similarity

score exceeds a threshold, a directed edge is added
between the sentences, resulting in the construction
of a directed graph.

C.2.2 Subgraph Set
In this section, we focus on representing sentences
through a subgraph set, allowing us to compare
graph structures efficiently and enables document
comparison based on structure. A subgraph of a
graph is such that the nodes in it can be mapped
to the nodes in the graph with the same connec-
tion relations. We only consider subgraphs without
backward edges, as our approach processes docu-
ments from left to right.

We use weakly connected and disconnected sub-
graphs, as they reflect document properties related
to coherence. Given a sentence graph, we mine
contained k-node subgraphs, filter out distant sub-
graphs, count their frequency, and identify isomor-
phic subgraphs to represent the sentence graph as
a subgraph set. The aformentioned approach is in-
spired by a prior study (Shervashidze et al., 2009).

C.2.3 Doc-subgraph Graph
In this section, we introduce the concept of the
doc-subgraph graph, which is an undirected graph
constructed at the corpus level. It connects struc-
turally similar documents through their shared sub-
graphs. The graph consists of document nodes and
subgraph nodes, with the total number of nodes
being the sum of the number of documents and the
number of distinct k-node subgraphs mined from
the documents.

Two types of edges are defined in the graph:
edges between documents and subgraphs, and
edges between subgraphs. The first type of edge is
determined based on the presence of a subgraph in
a document’s subgraph set, with the edge weight
being a combination of the subgraph’s frequency in
the set and its inverse document frequency. The sec-
ond type of edge is constructed between subgraphs
that co-occur in the same document’s subgraph set,
and its weight is calculated using the Pointwise
Mutual Information (PMI) measure.

C.2.4 Applying GAINER
The resulting doc-subgraph graph captures the
structural relationships between documents and
subgraphs, providing a comprehensive represen-
tation of the corpus. We apply GAINER meth-
ods, viz., SGR and NGR on the aformentioned
docsubgraph-graph.
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The input to GAINER is the adjacency matrix
of the doc-subgraph graph, where self-connections
are added to each node. The input node features
for the document nodes are representations ob-
tained through a pre-trained language model and
zero vectors for the subgraph nodes. The output of
GAINER is passed through an activation function
and fed into a softmax classifier for prediction.

C.2.5 Training and Evaluation
During training, the model is trained using Cross-
Entropy loss over the document nodes, where the la-
bels are one-hot encoded. The doc-subgraph graph
is constructed based on the training corpus, and
GAINER methods are trained on this graph. Dur-
ing evaluation, the model operates inductively.

For each document in the test corpus, it is added
to the doc-subgraph graph, and its adjacency matrix
is normalised. The model then predicts the label
for the document based on the updated graph. This
ensures that the model can make predictions on
unseen documents without using information from
other samples in the test corpus.

C.3 Baseline Description
The baseline model, XLNet+DNN, utilises doc-
ument representations obtained from the XLNet
model (Yang et al., 2019) as input features. It
then learns document embeddings using a two-
layer deep neural network (DNN) and employs
a softmax layer as the classifier for making pre-
dictions. StructSim is the model proposed in the
recent study (Liu et al., 2023) which uses GCN on
the Doc-subgraph Graph whereas StructSim-SGC
uses SGC instead of GCN on the same graph.

C.4 Evaluation Setting and Hyperparameters
To evaluate the performance of our method, we con-
duct cross-validation experiments on the GCDC
dataset and the TOEFL corpus following estab-
lished practices in the literature. For the GCDC
dataset, we perform 10-fold cross-validation on
the training dataset, as done in previous work (Lai
and Tetreault, 2018). We set the dimensionality of
GAINER methods to 240 for the Clinton and Enron
domains, and 360 for the Yahoo and Yelp domains.
The Adam optimiser (Kingma and Ba, 2015) with
an initial learning rate of 0.01 is used for Clinton
and Enron, while a learning rate of 0.008 is used
for Yahoo and Yelp. Dropout (Srivastava et al.,
2014) with a rate of 0.5 is applied, and the model
is trained for 160 epochs.
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