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Abstract

Code switching (CS) is a very common phe-
nomenon in written and spoken communication
but one that is handled poorly by many natural
language processing (NLP) applications. Look-
ing to the application of building CS corpora,
we explore CS language identification (LID)
for corpus building. We make the task more
realistic by scaling it to more languages and
considering models with simpler architectures
for faster inference. We also reformulate the
task as a sentence-level multi-label tagging
problem to make it more tractable. Having
defined the task, we investigate three reason-
able models for this task and define metrics
which better reflect desired performance. We
present empirical evidence that no current ap-
proach is adequate and finally provide recom-
mendations for future work in this area.

1 Introduction

Code switching (CS), or the use of one or more
languages within the same utterance (Sitaram et al.,
2019), is a very common phenomenon in written
and spoken communication (Doğruöz et al., 2021).
However, many natural language processing (NLP)
applications currently struggle to deal with it effect-
ively (Solorio et al., 2021; Winata et al., 2023). An
obvious first step in building better systems for CS
is gathering the data necessary for training effective
models, something which is currently lacking for
CS text (Mendels et al., 2018). A fundamental part
of this process is identifying CS in the first place.

In this paper, we look at CS language identifica-
tion (LID) for text and the challenges in getting CS
LID systems to work at scale. Previous shared tasks
on CS LID have produced systems which achieve
impressive results (Solorio et al., 2014; Molina
et al., 2016), albeit limited to two languages. We
seek to extend CS LID systems to work in a real-
istic setting as part of a corpus building pipeline by
scaling up both the number of languages covered

and the speed of inference. Our intended use case
is mining web text to build CS corpora which can
then be used as training data in applications aimed
at handling CS.

We therefore reformulate CS LID as a multi-
label task where the aim is to assign a set of lan-
guage labels to each sentence, rather than a word-
level or document-level tagging task as in previ-
ous work (Section 3). We experiment with high-
coverage LID systems (200+ languages) which are
simple enough to scale easily, and investigate three
different models as reasonable baseline approaches
to the task (Section 4). We test on wide range of
CS and single-label LID test sets aiming to cover
as many languages as possible (Section 5), and we
choose metrics that better reflect true performance
in our multi-label setting than those commonly
used for single-label LID (Section 6). We find
that even the best-performing models are still inad-
equate for identifying CS text at scale (Section 7),
due to the inherent difficulty of defining CS and de-
tecting the intended language(s) in realistic settings.
Finally, we make recommendations for future work
in this area based on our findings (Section 8). To
aid future research, we provide code to obtain and
transform training and test data, to train all models,
and to calculate evaluation metrics.1

2 Previous work

LID has been an active topic of research for a long
time in NLP (Jauhiainen et al., 2019). Much of the
most recent research on this topic has been towards
covering more and more languages, with some
models claiming to cover over a thousand (Brown,
2014; Dunn, 2020; Adebara et al., 2022; NLLB
Team et al., 2022; Burchell et al., 2023). However,
nearly all general-purpose LID systems assume that
text is entirely monolingual (e.g. NLLB Team et al.,

1https://github.com/laurieburchell/
cs-lid-harder-than-you-think
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2022) or occasionally that any different languages
present occur in discrete chunks (e.g. Ooms, 2023).
This leads to pipelines where CS text is ignored or
discarded.

Previous work on multiple-label LID specifically
can be split into two main sub-tasks: multilingual
LID, where the expected input is a document con-
taining discrete monolingual chunks in different
languages; and CS LID, where the expected input
is a sentence or short text containing CS text. The
former task has a longer history and its intended
application is to segment web text (Baldwin and
Lui, 2010; Lui et al., 2014; Jauhiainen et al., 2015;
Kocmi and Bojar, 2017). The latter task has re-
ceived more attention recently including several
shared tasks on CS LID, where the aim was word-
level tagging of CS text given a known pair of lan-
guages (Solorio et al., 2014; Molina et al., 2016).
However, both tasks have a limited application to
web-scale text because they assume that the input
is only in a small number of known languages and
tend to reply on computationally-expensive, high-
capacity models like transformers (Vaswani et al.,
2017) or large language models (LLMs) for clas-
sification. We argue that these are not realistic for
filtering web crawls since inference is too slow and
expensive.

Finally, we note that despite the wide range of
approaches towards monolingual LID (Jauhiainen
et al., 2019), LID algorithms are still found to
perform poorly in practice compared to test per-
formance, particularly for low resource languages
(Caswell et al., 2020; Kreutzer et al., 2022). This
shows that even the simpler task of monolingual
high-coverage LID remains a challenging problem.

3 Task definition

We define our task as follows: given a short in-
put text (around sentence length), return a set of
codes corresponding to the language(s) it contains.
Following NLLB Team et al. (2022), we output
modified ISO 639-3 language codes encoding both
the language variety and the script: for example,
eng_Latn means English written in Latin text.

This way of framing the task differs from most
previous work on CS LID by assigning tags on
the sentence-level, rather than on the word level
as in Solorio et al. (2014); Molina et al. (2016).
Less granular labeling like this speeds up inference
and so is more practical when using LID to build
corpora from web-scale text. In addition, we felt

that labelling on the sentence-level avoided some
of the ambiguity when labelling at the word level.
Our model covers many more languages than the
previous shared tasks in CS LID (201 rather than
just two) so the search space becomes much larger
and less tractable at the word level. In addition,
the shared tasks included extra tags aside from
the two included languages, covering categories
such as named entities, ‘foreign words’, and non-
linguistic content like emojis. We wished to avoid
this complication since it was not relevant to our
aim of dataset building.

4 Models

We compare the performance of three models for
CS LID: OpenLID, a pre-existing single-label LID
model adapted to a multi-label setting (Burchell
et al., 2023), MultiLID, a novel LID model, and
Franc, a high-coverage LID package.2 The first two
models are trained on the same data (OpenLID) to
help isolate the effect of the change in architecture.
We employ Franc as a comparison point, since it
allocates prediction scores in a different way and
covers more languages than the other two. In this
way, we aim to measure the performance of three
reasonable approaches to CS LID, explore their
limitations, and so guide further research.

4.1 OpenLID

We adapt the single-label OpenLID LID model
provided by Burchell et al. (2023) to a multi-label
setting. We choose this model because it covers
a large number of languages with good perform-
ance, it scales well to large datasets, and its openly-
available training data means we can compare two
models trained on the same data and thus eliminate
a potential confounding variable.

OpenLID is a fastText model (Joulin et al., 2017).
The architecture consists of an input sentence vec-
tor obtained by averaging word and n-gram embed-
dings, which is then fed to a simple linear classifier.
The output logits are transformed to a probability
distribution over the output labels with a softmax
activation function. It uses cross entropy loss to
update the weights.

We use thresholding to obtain multi-label out-
puts since this is a standard method to adapt
softmax-based classifiers to a multi-label task. This
means that rather than returning the label with the
maximum probability, we instead return all labels

2https://github.com/wooorm/franc
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with a predicted probability above some chosen
threshold k. The classifier may return no labels in
the case where no language is predicted a probabil-
ity above the threshold. It also limits the maximum
number of labels to ⌊k−1⌋ because the predicted
probabilities for all the classes must sum to one.
We set k = 0.3 so that the classifier can return a
maximum of three labels.

Softmax-based classifiers like OpenLID make
the implicit assumption that each input should
be assigned one and only one label. This is be-
cause their output is a probability distribution over
mutually-exclusive classes. We therefore experi-
ment with altering the basic architecture of Open-
LID to relax this assumption, resulting in the Mul-
tiLID model.

4.2 MultiLID
We create MultiLID, a novel LID model which
conceptualises LID as a multi-label rather than
single-label problem. In this way, we aim to handle
both monolingual and CS text. There are a range
of approaches for multi-label problems (Zhang
and Zhou, 2013), but inspired by Stahlberg and
Kumar (2022), we explore using binary cross en-
tropy (BCE) loss: rather than use a softmax activ-
ation followed by cross-entropy loss as in Open-
LID, MultiLID uses a sigmoid activation plus cross-
entropy loss. The effect is that the predicted scores
are no longer normalised into a probability distri-
bution so the model can predict multiple classes
independently.

More formally, BCE is defined as follows. Let
N be the number of languages covered by the clas-
sifier, L = [l1, . . . , lk, . . . , lN ]⊤ be the output vec-
tor of predicted scores for each language where
lk ∈ [0, 1], and l∗k ∈ {0, 1} be the true label as-
signed to some input representation xk. The BCE
loss for some particular element lk is thus:

BCELosslk = l∗k · log(lk)+
(1− l∗k) · log (1− lk)

We sum the loss for each element to generate the
final loss since we have a sparse output vector.

When deciding which labels to return, we found
that a fixed threshold was ineffective due to the
unnormalised scores. Instead, we use the following
heuristic to choose the labels to return. We note that
the BCE loss function encourages most scores to
be close to zero, and so the mean score is very close
to zero. Only some of the scores are significantly

above the mean, and these correspond to the labels
we want to return. We therefore calculate the mean
and standard deviation of the output scores for a
particular example, and set a dynamic threshold
of two standard deviations above the mean based
on empirical results using the LinCE training sets
(described in section 5). We choose the language
label with the highest score to ensure we always
return a label, and optionally return a second label
provided its score exceeds the dynamic threshold.

We build our model using Python and Pytorch,
and we aim to keep it as close to fastText as possible
by design. We first clean the data and remove emoji
and hash symbols, then build the vocabulary from
all words seen more than 1000 times, plus the 2-
to 5-grams of these words. The input sentence rep-
resentation vector is formed as a bag of vocabulary
embeddings, which is then fed to a linear trans-
formation layer. The output logits are converted to
output scores using a sigmoid function.

We note that our model is trained on single-label
rather than CS data, even though it is designed to
be able to return multiple labels if necessary. We
made this decision due to the lack of CS training
data for most languages, so a practicable CS LID
model would need to be trained without specifically
CS data for every language pair. Future work could
look at exploiting what CS data does exist.

4.3 Franc

The final LID model we use is Franc, a LID pack-
age covering 414 languages. We include it as an
alternative pre-existing model that covers an even
larger number of languages than the other two mod-
els, and which returns scores that adapt easily to
a multi-label setting. Franc is not trained on the
same data as the other two models, but rather we
use the pre-trained Python model to predict.3

At inference time, Franc returns scores for all
languages that use the same script as the input text
in decreasing order of probability. These scores are
calculated based on the distances of the trigram dis-
tributions in the input text and the language model,
scaled such that the closest language will have a
score of 1. Since we often have short strings in our
test sets, we set the minimum valid string length to
1 so Franc always returns a prediction. We choose
to return the closest predicted language label plus
the second-closest language label provided its pre-
dicted score is higher than 0.99 (since this is suffi-

3https://github.com/cyb3rk0tik/pyfranc
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ciently close to still be a valid label). This selection
heuristic is based on empirical results on the LinCE
training sets (section 5).

The language labels returned by Franc differ
somewhat from those assigned to the test sets. We
normalise these using the langcodes Python pack-
age,4 so if the language code is not among those
covered by FLORES-200*, we find an equivalent
tag.5 If a match exists, we replace the predicted tag
with this match; otherwise, we simply return the
original prediction. When calculating the metrics,
we count all languages not covered by FLORES-
200* (described in section 5) as empty tags for ease
of computation.

5 Test sets

Our aim when choosing test sets was to cover as
many CS language pairs as possible, despite the
limited number of easily-accessible CS test sets.
We were further hampered by the fact that the Open-
LID training data does not include Indian languages
written using Roman characters which are some of
the most common languages to include in CS test
sets (Aguilar et al., 2020; Khanuja et al., 2020;
Winata et al., 2023). Nonetheless, we source six
CS test sets which include eight languages, plus a
high-coverage monolingual test set.

We describe all test datasets below and include
fuller instructions on how to obtain them in Ap-
pendix A. Most of the datasets we use are annot-
ated with language tags at the token level. To fit
with our task, we convert these to sentence-level
tags by relabelling the sentence as CS if two lan-
guage labels are present, monolingual if only one
is present, and discarding the sentence if it has no
language labels (e.g. the sentence only contains
named entities or emojis). Table 1 summarises the
proportion of CS examples in each test set after
preprocessing.

Test set % CS

Turkish–English 98.9
Indonesian–English 93.5
Basque–Spanish 59.8
Spanish–English 35.2
Chinese–English 27.8
MSA–Egyptian Arabic 14.5
FLORES-200* 0

Table 1: Proportion of CS examples in each test set in
order of most to least.

4https://github.com/rspeer/langcodes
5Specifically, we filter on tag_distance < 10.

Turkish–English dataset Yirmibeşoğlu and Ery-
iğit (2018) created a CS Turkish–English dataset as
part of their work on detecting CS for this language
pair. The data is sourced from Twitter and the Ekşi
Sözlük online forum, then labelled at the token
level as either Turkish or English. After recombin-
ing sentences, the dataset consists of 376 lines of
data and 98.9% of the sentences are labelled as CS.

Indonesian–English dataset Barik et al. (2019)
created a CS Indonesian–English dataset from Twit-
ter data, where each token in each tweet is annot-
ated with a language tag. After pre-processing, the
dataset consists of 825 lines of data and 93.5% of
the sentences are labelled as CS.

BaSCo Basque–Spanish corpus This corpus
contains Spanish and Basque sentences sourced
from a collection of text samples used in training
bilingual chatbots (Aguirre et al., 2022). These sen-
tences were shown to volunteers who were asked
to provide a realistic alternative text with the same
meaning in Euskañol (Basque–Spanish CS). The
created sentences were checked for validity by a
team of annotators. We process this corpus into
our test set by extracting all Spanish, Basque, and
Euskañol utterances present in the final corpus and
labelling them using the provided utterance-level
language labels. After processing, the dataset con-
sists of 2304 lines of data, of which 59.8% are
labelled as CS.

LinCE Spanish–English and Modern Standard
Arabic–Egyptian Arabic Aguilar et al. (2020)
provide a benchmark for linguistic CS evaluation,
used in previous shared tasks on CS LID (Solorio
et al., 2014; Molina et al., 2016). We test on two
of its suite of language pairs and tasks, Spanish–
English LID and Modern Standard Arabic (MSA)–
Egyptian Arabic LID,6 using the validation sets
since the test sets are private. These datasets are
both sourced from Twitter and are annotated at
the word level. After relabelling at the sentence
level and filtering, there are 3247 lines of Spanish–
English data, of which 35.2% are marked as CS,
and 1107 lines of MSA–Egyptian Arabic data, of
which only 14.5% are marked as CS.

ASCEND Mandarin Chinese–English Lovenia
et al. (2022) created a corpus of conversational
Mandarin Chinese–English CS speech which is

6The other two include transliterated Hindi and transliter-
ated Nepali, neither of which are covered by our LID models.
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transliterated and labelled by language at the utter-
ance level. We extract the transliterated sentences
from the training split of this dataset. After pro-
cessing, there are 9869 lines of data of which 27.8%
are labelled as containing CS.

FLORES-200* We assess single-label LID per-
formance using a subset of FLORES-200, an eval-
uation benchmark consisting of professional trans-
lations from 842 distinct web articles (Guzmán
et al., 2019; Goyal et al., 2022). It includes 3001
sentences for each one of 204 language varieties.
Following Burchell et al. (2023), we test on 201 of
these taken from the dev-test split, which we refer
to as FLORES-200*. We test on this dataset to as-
sess the monolingual performance of our classifier.
FLORES-200* consists of 203,412 lines of data
after pre-processing.

6 Measuring performance

The most common metrics for single-label, multi-
class problems are precision and recall (defined in
Appendix B). However, whilst these metrics give
some insight into the functioning of our models, we
found them too easy to misinterpret in a multi-label
setting. The first reason for this is that precision
and recall are undefined when there are no true pos-
itive examples of a predicted class in the dataset.
This was very common given our high-coverage
models, but precision and recall could not detect
this key performance issue. Secondly, neither pre-
cision nor recall account for true negatives, a key
indicator for our application of building web cor-
pora since avoiding spurious labels helps prevent
noisy datasets.

As a consequence of these findings, we decided
that precision and recall were not suitable for use
as main metrics. Instead, we chose three alternative
metrics as a better reflection of the desired down-
stream performance: exact match ratio, Hamming
loss, and false positive rate (FPR). These metrics
allow direct comparison between our different data-
sets and are easy to interpret correctly even in a
multi-label setup with many classes such as ours.
We define and discuss each metric below.

Exact match ratio This metric is simply that
for each sentence i in our dataset of length N , we
count a correct match if all the predicted labels (ŷ)
match the gold labels (y):

Exact match ratio =
1

N

N−1∑

i=0

I(ŷi = yi)

The higher the metric, the better. The exact match
ratio has the advantage of being easy to understand,
but it is a strict measure of success and does not
reward partial matches.

Hamming loss We therefore also report Ham-
ming loss which allows us to both give credit for
partial matches and to penalise predicting too many
labels. It can be understood as the fraction of wrong
labels among the total number of labels, and the
smaller the value of the loss the better. More pre-
cisely, let L be the number of classes (languages),
Yi,l (Ŷi,l) signify the Boolean that the ith example
(prediction) is assigned the lth language label, and
⊕ denote exclusive-or:

Hamming loss =
1

LN

N−1∑

i=0

L−1∑

l=0

Yi,l ⊕ Ŷi,l

False positive rate Finally, we report the macro-
average of false positive rate (FPR) with respect
to each language class, or the ratio of number of
examples incorrectly identified as a particular lan-
guage (false positives, FP ) to the total number of
ground truth negatives (true negatives plus false
positives, TN + FP ).

False positive rate =
FP

TN + FP

The smaller the FPR, the better. Measuring non-
relevant predictions is particularly important given
our intended application of building web corpora.
This is because the internet mostly consists of non-
CS data, so using a classifier with a high FPR on
the web will result in a final dataset where most of
the content is not relevant (Caswell et al., 2020).

7 Results

MultiLID OpenLID Franc

Exact match ↑ 0.861 0.926 0.672
Hamming loss ↓ 0.00121 0.000694 0.00279

FPR ↓ 0.000885 0.000395 0.00123
Precision ↑ 0.879 0.942 0.666

Recall ↑ 0.933 0.939 0.706
Mean # preds. 1.11 1.02 1.08

Table 2: Results on FLORES-200* test set. We include
results using the OpenLID model returning all labels
with predicted probability > 0.3 and the top two predic-
tions from Franc with score > 0.99.
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Exact match ↑ Hamming loss ↓ False positive rate ↓
MultiLID OpenLID Franc MultiLID OpenLID Franc MultiLID OpenLID Franc

tur–eng 0.0665 0.0213 0.00532 0.00732 0.00531 0.00903 0.00206 0.000291 0.00119
ind–eng 0.184 0.0448 0.0182 0.00617 0.00680 0.00995 0.00199 0.00153 0.00164
eus–spa 0.317 0.360 0.201 0.00576 0.00383 0.00746 0.00213 0.000620 0.00169
spa–eng 0.379 0.417 0.146 0.00613 0.00451 0.00721 0.00314 0.00126 0.00168
zho–eng 0.508 0.507 0.301 0.00399 0.00386 0.00447 0.00197 0.00130 0.000332
arb–arz 0.345 0.625 0.691 0.00631 0.00281 0.00242 0.00500 0.00174 0.00481

Table 3: Main metrics calculated for predictions on the CS datasets.

FLORES-200* results We first consider the res-
ults on the single-label LID test set FLORES-200*
in order to provide a point of comparison with
later results on CS datasets. Table 2 shows that
the OpenLID classifier achieves the best results for
each assessed metric, which is unsurprising given
that it is designed as a single-label classifier which
covers the languages of FLORES-200*. MultiLID
still shows reasonable performance, though Ham-
ming loss and FPR are markedly higher. This is
likely because MultiLID is more likely to predict
multiple labels as shown in the higher number of
mean predictions at the bottom of Table 2. The
performance for Franc is markedly lower across all
metrics, though it should be noted that this model is
disadvantaged here by covering far more languages
than the other two.

CS test sets: main metrics Moving on to the
results for the CS test sets, Table 3 gives the ex-
act match ratio, Hamming loss, and FPR for the
three assessed models. As shown in table 1, there
is a wide variation between how many sentences
labelled as CS are present in each test set, from
98.8% in the Turkish–English dataset to just 14.5%
in the MSA–Egyptian Arabic dataset.

In terms of exact label match, MultiLID per-
forms better on the most code-mixed datasets,
though the absolute numbers are still much lower
compared to single-label performance: compare
0.93 for top-1 OpenLID on FLORES-200* (from
Burchell et al. (2023))to just 0.06 for MultiLID on
the Turkish–English dataset. Similarly, the Ham-
ming loss for all models differs by an order of
magnitude compared to OpenLID single-label per-
formance in Table 2, showing that they struggle to
label CS text correctly.

Franc’s algorithm means that it is at a particular
disadvantage when dealing with CS text, since it
bases its prediction partially on the script. In the
case of mixed scripts (as in the Chinese–English CS
data), it often did not return a label at all. This lead
to the low FPR (better) but low exact match (worse)

on this dataset. Additionally, Franc does not cover
Arabic dialects including Egyptian Arabic, so it
labelled nearly all sentences in the MSA–Egyptian
Arabic dataset as MSA. This gave it a high exact
match score and low Hamming loss compared to
the other models since it could not confuse sim-
ilar Arabic dialects and most of the dataset was
actually single-label. However, the fact remains
that it does not cover Egyptian Arabic at all, and
the higher results here show the limitations of the
testing regime.

Notably, the FPR of the OpenLID model is lower
for every test set compared to the other two mod-
els (apart from for Chinese–English as discussed
above), sometimes by as much as an order of mag-
nitude. This is despite the fact that exact match
and Hamming loss do not differ from MultiLID by
that degree. Further investigation shows that this
difference comes from the fact that null predictions
are often a significant proportion of the OpenLID
results, particularly for CS sentences. Table 4 gives
the percentage of empty predictions by this clas-
sifier, which can be as high as 12% for Spanish–
English CS sentences. Returning no prediction
when no label is assigned a high enough probabil-
ity does result in a lower FPR as the model is not
forced to classify the most difficult examples. How-
ever, such behaviour may not be desirable when
building a corpus since the small number CS sen-
tences are more likely to be missed.

% empty % c/s empty

FLORES-200 0.092 -
Turkish–English 0.798 0.806

Indonesian–English 9.46 9.21
Basque–Spanish 0.608 0.726
Spanish–English 10.6 12.0
Chinese–English 1.91 4.42

MSA–Egyptian Arabic 0.632 1.24

Table 4: Percentage of empty predictions returned by
the OpenLID classifier. The left column gives results
over the entire dataset, the right only the CS sentences.
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Exact match ↑ Hamming loss ↓ False positive rate ↓
MultiLID OpenLID Franc MultiLID OpenLID Franc MultiLID OpenLID Franc

tur–eng 0.0618 0.0134 0 0.00737 0.00535 0.00907 0.00206 0.000281 0.00117
ind–eng 0.153 0.00649 0.0013 0.00634 0.00704 0.0103 0.00175 0.000968 0.00148
eus–spa 0.0247 0.0189 0 0.00789 0.00563 0.00979 0.00226 0.000408 0.00171
spa–eng 0.0184 0.00613 0 0.00844 0.00729 0.0105 0.00259 0.000985 0.00190
zho–eng 0.0365 0.0164 0 0.00618 0.00637 0.00777 0.00107 0.000703 0.000620
arb–arz 0.0994 0.0373 0 0.00766 0.00584 0.00535 0.00294 0.000587 0.000127

Table 5: Main metrics calculated over CS sentences only.

Performance on CS sentences Table 5 gives the
the main metrics solely on the CS sentences in each
dataset. MultiLID shows higher performance on
exact match for every test sets, but the absolute
numbers are still low and there is a notable reduc-
tion in performance for the datasets with the least
amount of CS. This shows that the better num-
bers in Table 3 were mostly driven by good results
on the single-label sentences. Hamming loss is
more mixed but the FPR for OpenLID is now an
order of magnitude lower across the board. This
is due to the larger number of null predictions on
CS sentences shown in table 4 and discussed above.
Similarly, even though Franc has a low FPR, it also
achieves zero in exact match for nearly every test
set, suggesting that the algorithm is not suited to
CS text. The contrast between the results for exact
match and FPR demonstrate the need for a suite a
metrics which measure different aspects of desired
performance.

Precision and recall We return to the entire CS
tests sets to calculate precision and recall with
respect to each language present. Precision was
nearly always very close to one, showing that the
predictions that the model did make were very
likely to be correct. The only exception to this
was Egyptian Arabic, where precision was 0.645
for the OpenLID model, 0.485 for the MultiLID
model, and 0 for Franc. This was due to former two
models struggling to distinguish between Arabic
dialects and a lack of coverage for the latter.

Recall for each model and language label was
much more varied, as can be seen in Table 6.
For the datasets with the highest amount of CS
(Turkish–English and Indonesian–English), there
is a large difference between the recall of the Open-
LID model. This suggests that its predictions only
contain one of the classes and it is failing to de-
tect the other. The difference is less pronounced
for MultiLID, suggesting that it is more likely to
detect the presence of the other language. For the
other datasets, MultiLID does slightly better in re-

call overall compared to OpenLID, likely because
it returns multiple labels more often. Franc nearly
always has lower recall compared to the other two
models (apart from the degenerate results for MSA)
though it is important to note that it is disadvant-
aged by covering more labels.

We draw attention to the (sometimes) relatively
high scores for recall and the low scores in Tables 3
and 5. In particular, we note that considering pre-
cision and recall in isolation might lead to the con-
clusion that using one of these LID models in a
pipeline would create an adequate CS dataset. How-
ever, the low exact match scores show just how few
of the labels are actually correct, especially for CS
sentences. This demonstrates the importance here
of careful metric selection.

Recall ↑
Label MultiLID OpenLID Franc

tur 0.731 0.952 0.435
eng 0.206 0.032 0.027

ind 0.723 0.727 0.227
eng 0.372 0.066 0.063

eus 0.706 0.858 0.459
spa 0.377 0.312 0.128

spa 0.467 0.469 0.193
eng 0.642 0.560 0.211

zho 0.792 0.695 0.467
eng 0.517 0.451 0.222

arb 0.540 0.734 0.995
arz 0.891 0.721 0.000

Table 6: Recall with respect to each pair of languages
in each CS test dataset. Precision is nearly always ≈ 1.

Number of unique languages predicted We see
from Table 7 that the predictions for all classifi-
ers contain a large number of languages despite
there being only two language labels in each test
set. This suggests that all three are struggling to
form a consistent representation of each language
based on the input feature vectors. This may be due
to the ‘confusion’ of CS, or possibly because of a
change of domain from training to test: the training
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data (at least for OpenLID and MultiLID) is mostly
formal text whereas the test data is primarily social
media. The predictions for MultiLID contain far
more unique languages than those for OpenLID.
This is likely because the lack of normalisation in
its architecture results in a less strong prior over
languages, so it is more likely to predict rarer lan-
guages. Franc’s predictions nearly always contain
far more again, which is probably an artifact of the
large number of languages it includes.

MultiLID OpenLID Franc

tur–eng 54 11 97
ind–eng 79 27 118
eus–spa 94 50 193
spa–eng 126 86 234
zho–eng 134 85 225
arb–arz 18 10 8

Table 7: Number of unique languages in the predictions
by each model for each CS test set.

8 Analysis

Considering the results as a whole, it is clear that
none of the models are adequate for the task of
detecting the language(s) of CS text. The OpenLID
model is not designed to return multiple labels and
so misses many examples of CS sentences, prefer-
ring to label them with a single label or not return a
label at all. The MultiLID model has the advantage
of being designed to return multiple labels, but the
lack of normalisation in the scores means that it
is more likely to return spurious labels, as shown
in its high FPR and larger number of unique lan-
guages in the predictions. Franc’s algorithm is not
suitable for CS text since it assumes a single script
and is designed for longer pieces of text. In all
cases, the low exact match ratios show that if we
were building a corpus from this data, we would
miss most of the CS sentences.

The performance in general is hampered by one
of the inherent problems in CS LID: the boundaries
of CS are not defined clearly, even at a linguistic
level. In her book on the subject, Gardner states
that CS “is not an entity which exists out there in
the objective world, but a construct which linguists
have developed to help them describe their data”
(Gardner-Chloros, 2009, p.10). However, both lin-
guists and language users disagree on what should
count as CS, meaning assigning language labels to
text can be an ambiguous task in itself.

We illustrate our point with two contrasting ex-
amples. Firstly, this tweet is a fairly straightforward

example of a separate English fragment followed
by a Spanish fragment:

@USER delete that tweet. . . ya lo
hize.

This makes it easy (for a human annotator) to as-
sign language labels to it. However, there are many
more cases of potential CS which are much more
ambiguous and harder to label. The most com-
mon of these is a single-word switch in a sentence
(Gardner-Chloros, 2009, p.30), for example:

hoy me siento bien senior. . . .

These short switches complicate labelling for two
main reasons. Firstly, there is no clear line between
a ‘borrowed’ word, CS, and a loan word which
is now an accepted part of the language (indeed,
loan words start out as CS) (Gardner-Chloros, 2009,
p.30). Secondly, short fragments of CS can make
it difficult to work out which language was inten-
ded by the author. This leads to disagreement even
amongst expert annotators and consequent ‘noisy’
labels. We also note that the non-standard ortho-
graphy of social media and informal text can also
hamper n-gram based approaches to LID.

8.1 Qualitative analysis: Turkish–English

As shown in tables 1 and 3, the Turkish–English
dataset had the highest proportion of CS and the
lowest exact match. In light of this, we carried
out some qualitative analysis of the OpenLID and
MultiLID results to understand what kind of errors
the model was making and how these related to the
test data.

98.9% of the test examples are labeled as con-
taining both Turkish and English. Despite this,
the most frequent prediction for both models was
Turkish alone as shown in table 8, which gives the
top-five predicted labels by count for each model.
There were no cases where both models managed
to label a CS sentence correctly; in fact, the only
time both models gave the gold prediction was for
two sentences labeled as Turkish only. We note
that for all of the 214 examples where OpenLID
predicted Turkish as the sole label, MultiLID gave
the same (usually partially correct) prediction.

Based on surface analysis (since none of the au-
thors are Turkish speakers), the examples in the
test set appear to be well-formed and there is no
clear reason why the models struggled to assign the
right labels aside from limitations in the models
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MultiLID OpenLID

Predictions # Predictions #

Turkish 341 Turkish 214
English 6 English 25

English & Turkish 5 English & Turkish 23
C. Tatar & Turkish 4 C. Tatar & Turkish 11

None 3 N. Azerb. & Turkish 9

Table 8: Top-five languages predicted by the OpenLID
and MultiLID models on the Turkish–English test data-
set. ‘C. Tartar’ = Crimean Tartar, ‘N. Azerb.’ = North
Azerbaijani.

themselves. We give three representative examples
in table 9 where one or both models gave an incor-
rect prediction (there are no CS examples where
both models gave a correct prediction). For the first
two cases, there is no clear reason why one model
predicted two labels and the other only one: both
examples consist of mid-sentence switches with re-
latively long continuous text in both languages. For
the final sentence, neither model predicted either
of the correct labels. We hypothesise that this is
an artifact of the non-standard spelling used in the
example, namely repeated letters for emphasis. As
Caswell et al. (2020) point out, repeated n-grams
often cause LID systems to fail as an artifact of the
models’ reliance on character n-gram modelling.
Our conclusion from the qualitative analysis is that
the LID models are not failing to predict correctly
in general because of flaws with the test set, but
rather because inherent flaws in how the models
represent the input.

Predictions

Example OpenLID MultiLID

bir kahve dükkanında geçen
film tadında güzel bir şarkıya
ayrılsın gece falling in love at
a coffee shop

Turkish English &
Turkish

haters gon hate players gon
play live a life man good luck
mic drop tam bekledigim gibi
cikti çok efsane

English &
Turkish

English

deri ceket sezonu acilsinnnnnn
cool kids of bursaaaaa

Standard
Latvian

Latgalian
& Wolof

Table 9: Examples from the Turkish–English test dataset
where the gold labels are ‘English & Turkish’. English
text is rendered in italics to distinguish it from Turkish.

8.2 Recommendations
In light of our results and analysis, we have the
following suggestions for improving CS LID over
the baseline approaches explored in this paper.

Firstly, we recommend that researchers consider
carefully which metrics they use and in particular
how they relate to the downstream performance:
for example, the metrics we use in this paper aim
to reflect how useful the LID model will be for
corpus building. We have shown that using metrics
common in multi-class tasks for multi-label tasks
is easily misleading and that a suite of metrics is
necessary to capture performance fully.

Secondly, any approach should embrace the am-
biguity inherent in the task, and aim for a com-
mon sense rather than prescriptive definition of
what counts as a language (Gardner-Chloros, 2009,
pp.165-7). With respect to NLP, this means consid-
ering the task of language labelling in light of the
downstream application, rather than assuming that
labels are fixed and exclusive. CS is too heterogen-
eous a concept for a ‘one size fits all’ definition to
be useful for improving NLP tooling for multilin-
gual users.

Finally, we believe that the performance of CS
LID depends heavily on the input representation.
All of the models we study in the paper rely on
n-gram representations, and the poor results across
the board suggest that these are not adequate for
representing CS in actual use. Further work should
move beyond n-gram based embeddings so that
the input representation could more easily pick up
short switches.

9 Conclusion

We explored the task of scaleable CS LID with the
intended use as part of a corpus-building pipeline.
We found that three reasonable approaches to the
task fell short of the performance required to build
useful corpora, demonstrating that the task of real-
istic CS LID at scale is far from solved. We recom-
mend that future work choose metrics with care to
reflect true performance, understand the ambigu-
ity inherent in CS, and fit their definition of CS to
the intended task rather than enforce a prescriptive
definition of the phenomenon.

Limitations

The CS test sets we use only cover a small fraction
of the potential language sets which could be used
in multi-lingual communication, and additionally
the languages we cover are mostly high-resource
(particularly English). Creating more high-quality
CS datasets for more of the world’s languages
would be incredibly useful further work.

654



Though we mitigate some ambiguity by labelling
at the sentence- rather than word-level, there is still
a level of ambiguity in assigning labels for LID.
This is particularly apparent for short switches
and/or similar languages. Future work could devise
better models for ambiguous language labels.

The OpenLID data contains a large amount of
skew in the number of training examples per class.
This may mean that some classes are more likely
to be predicted than others as an artifact of its prob-
ability to occur in the training data. Conversely,
some languages are more likely to be used for CS,
particularly English, but our models do not include
any explicit prior on which languages are likely
to occur in the same utterance. Further research
could explore both mitigating unwanted training
data biases and including information about which
languages are likely to co-occur.

Ethics Statement

Using social media data to build corpora needs to
be done with care so as not to violate users’ rights
to privacy. The CS test sets based on social media
in this work have been anonymised and we provide
links to the data for further research rather than
hosting the files ourselves; this is to help control
distribution of the data. We hope that by creating
more CS datasets, NLP technologies become ac-
cessible for more people in their preferred language
and register of communication.

Updates to the FLORES-200 dataset have raised
issues both with the reliability of the test sets and
the choice of language labels.7 We have used the
labels used by Burchell et al. (2023) in this paper
to allow comparison with previous work, but fu-
ture work should incorporate any updates to the
FLORES+ test set. This not only increases the reli-
ability of the test sets, but also incorporates more of
the exonyms preferred by the users of the languages
themselves.
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A Data sourcing

We provide instructions on how we obtained all
datasets used in this paper to aid future work. These
are correct at the time of writing; we cannot guar-
antee that datasets will be available in the future.

• OpenLID training dataset: downloaded from
https://github.com/laurieburchell/
open-lid-dataset.

• FLORES-200 benchmark: downloaded from
https://github.com/facebookresearch/
flores/blob/main/flores200.

• Turkish–English dataset: fill out and email
requisition form at http://tools.nlp.itu.
edu.tr/Datasets.

• Indonesian–English dataset: emailing lead au-
thor (see Barik et al., 2019, for contact de-
tails).

• BaSCo Basque–Spanish dataset:
valid_utterances.json downloaded
from https://github.com/Vicomtech/
BaSCo-Corpus.

• LinCE LID benchmark: validation data
sourced from https://huggingface.co/
datasets/lince.

• ASCEND Chinese–English dataset: training
data sourced from https://huggingface.
co/datasets/CAiRE/ASCEND.

B Precision and recall

Let TP be the count of true positives, FP be the
count of false positives, and FN be the count of
false negatives. Then

precision =
TP

TP + FP
,

recall =
TP

TP + FN
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