
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 1: Long Papers, pages 674–689

March 17-22, 2024 c©2024 Association for Computational Linguistics

Quantifying the Hyperparameter Sensitivity of Neural Networks for
Character-level Sequence-to-Sequence Tasks

Adam Wiemerslage† Kyle Gorman‡ Katharina von der Wense†Υ
†University of Colorado Boulder

ΥJohannes Gutenberg University Mainz
‡Graduate Center, City University Of New York

adam.wiemerslage@colorado.edu kgorman@gc.cuny.edu katharina.kann@colorado.edu

Abstract

Hyperparameter tuning, the process of search-
ing for suitable hyperparameters, becomes
more difficult as the computing resources re-
quired to train neural networks continue to
grow. This topic continues to receive little at-
tention and discussion—much of it hearsay—
despite its obvious importance. We attempt
to formalize hyperparameter sensitivity using
two metrics: similarity-based sensitivity and
performance-based sensitivity. We then use
these metrics to quantify two such claims: (1)
transformers are more sensitive to hyperparam-
eter choices than LSTMs and (2) transform-
ers are particularly sensitive to batch size. We
conduct experiments on two different character-
level sequence-to-sequence tasks and find that,
indeed, the transformer is slightly more sensi-
tive to hyperparameters according to both of
our metrics. However, we do not find that it is
more sensitive to batch size in particular.

1 Introduction

Neural networks are famously hard to interpret and
slightly mysterious to researchers and practitioners
alike. Hyperparameter tuning, typically an impor-
tant part of developing a neural model, is often
perceived as black magic—based on trial and er-
ror or inherited recipes. This has resulted in urban
legends within the speech and NLP communities
regarding deep learning models and their hyperpa-
rameters. At the same time, actual hyperparam-
eter tuning is not commonly performed. Larger
models, along with the increasing multilinguality
of NLP models and tasks, make hyperparameter
tuning more expensive, and the prevalence of the
pretraining–fine-tuning paradigm has many con-
vinced that hyperparameter tuning is unimportant.

We consider two specific claims regarding hy-
perparameters. First, we test whether transformers
(Vaswani et al., 2017) are more sensitive to specific
hyperparameter choices than LSTMs (Hochreiter
and Schmidhuber, 1997). This can be found in

“. . . (Transformer) neural networks are very sensi-
tive to architecture and hyperparameter settings.”
(Murray et al., 2019)

“Unlike the LSTM-based model. . . the
Transformer-based architecture was found to be
sensitive to such changes.” (Stengel-Eskin et al.,
2021)

“The Transformer models were even tuned longer,
since they were more sensitive to small hyperpa-
rameter changes.” (van Noord et al., 2022)

“It is acknowledged that Transformer [sic] model
is extremely sensitive to the hyper-parameters. . . ”
(Inaguma et al., 2020)

“We. . . find (i) framing the task. . . and (ii) sev-
eral additional techniques. . . can mitigate the (pre-
trained transformer)’s extreme sensitivity to hy-
perparameters.” (Liu et al., 2020)

Table 1: Excerpts from ACL papers mentioning the
hyperparameter sensitivity of transformers.

different paraphrased versions in multiple ACL-
published studies; we provide examples in Table 1.
Second, we investigate the claim that transformers
are particularly sensitive to batch size when com-
pared to LSTMs (e.g., Popel and Bojar, 2018; Wu
et al., 2021). Such statements are poorly defined
since there is no accepted definition of hyperpa-
rameter sensitivity.

We first motivate and describe task- and
architecture-agnostic metrics for quantifying hyper-
parameter sensitivity. Then, we run a study where
we apply our metrics to two character transduction
tasks (i.e., character-level sequence-to-sequence
tasks that typically have very short sequences;
Wu et al., 2021): morphological inflection and
grapheme-to-phoneme conversion. We perform an
extensive hyperparameter search for both LSTM
and transformer models for the two tasks, together
covering ten languages.

We find that transformers are typically more sen-
sitive to hyperparameters according to both of our
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metrics. While, for batch size in particular, the
transformer is more sensitive, we do not find that
this sensitivity is any greater than all parameters
together, which contradicts the claims of previous
work. In addition, we also define a new state of the
art for both tasks and each language as a side ef-
fect of our extensive tuning: surprisingly, we show
that, in contrast to the results of Wu et al. (2021),
transformers do not outperform LSTMs with atten-
tion on either task with equivalent random tuning
budget. Finally, we analyze the most successful
hyperparameter ranges for each architecture, and
find that typical ranges used previously for LSTMs
may be sub-optimal.

2 Related Work

Hyperparameter sensitivity is frequently discussed
in the NLP literature beyond the claims in Ta-
ble 1. Olsen and Plank (2021) investigate the
hyperparameter sensitivity of convolutional neu-
ral networks (CNNs) by looking at the mean and
max performance resulting from a hyperparameter
search. Britz et al. (2017) discuss hyperparmeter
sensitivity of recurrent neural networks (RNNs) for
machine translation, and perform a large ablation
study of which hyperparameters work best. Zhang
and Wallace (2017) discuss hyperparameter sen-
sitivity of CNNs and make tuning suggestions to
practitioners. In contrast, our goal is to propose re-
producible metrics for comparing hyperparameter
sensitivity across architectures. Popel and Bojar
(2018) present suggestions for training transform-
ers, and Wu et al. (2021) do the same for character
transduction tasks in particular. Both works claim
transformers are particularly sensitive to batch size.
Zhou et al. (2022) propose a knowledge distillation
method that they claim is insensitive to hyperpa-
rameters. Similar in spirit to our work, Dodge et al.
(2019) define the expected validation performance
of an architecture, given some computation bud-
get for hyperparameter search. Instead, we define
metrics that are concerned with the variance of per-
formance as a function of hyperparameter settings.

3 Hyperparameter Sensitivity

We define hyperparameter sensitivity as the extent
to which an architecture changes in performance
due to changes in hyperparameters. We distinguish
between two types of sensitivity: performance-
based sensitivity describes how likely high perfor-
mance is across a random hyperparameter search—

a common technique often resulting in good hy-
perparameters (Bergstra and Bengio, 2012). In
contrast, similarity-based sensitivity refers to how
close performance is for similar hyperparameter
configurations, a metric more relevant for struc-
tured hyperparameter optimization (e.g., Bergstra
et al., 2011). Both types of sensitivity are quantified
in terms of changes in model accuracy.

We present multiple metrics for each type of
hyperparameter sensitivity. Figure 1 provides a
visual intuition of the two types of hyperparame-
ter sensitivity and the relationship to accuracy that
the metrics measures. In Case 1, we have an ar-
chitecture that is fully robust to any changes in
hyperparameters. This is not sensitive at all accord-
ing to the performance-based metrics. In Case 2,
we have an architecture that linearly increases in
performance as we make small changes to hyperpa-
rameters. Although this may be a sensitive model
according to performance-based metrics, it is not
sensitive according to similarity-based metrics. Fi-
nally, Case 3 is more sensitive in terms of both
types of metrics due to its inconsistent changes
in performance, though still less sensitive than a
completely random distribution of accuracy. Given
the large hyperparameter space that we study, we
expect our outcomes to be closest to Case 3.

3.1 Preliminaries

Random Hyperparameter Search Hyperparam-
eter search requires training several models with
different configurations. The goal is to find the
optimal configuration that leads to the best learn-
ing algorithm. Traditionally, for neural networks,
this has often been performed by searching over
every combination of finite sets of manually cho-
sen hyperparameters—typically referred to as grid
search. Bergstra and Bengio (2012) find that ran-
dom search leads to better outcomes. In a random
hyperparameter search, we set a distribution for the
values of each hyperparameter, and sample from
these distributions for each configuration. Our met-
rics are defined in terms of a random hyperparame-
ter search, which allows us to cover a large hyper-
parameter space for comparing sensitivity and also
samples configurations that we as researchers may
not typically search over in a more manual setup.

Notation To compute the proposed metrics, we
assume a random hyperpameter search with a bud-
get of n “runs” for a given architecture and dataset,
with ri denoting the hyperparameter configuration
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Figure 1: Possible relationships between hyperparame-
ter similarity (defined in §3.3) and accuracy.

of the ith run. In our experiments we define a
dataset as the combination of a task (e.g., morpho-
logical inflection) and a language (e.g., Dutch). The
performance of ri is denoted by acci ∈ A, where
A is the vector of all accuracies from one search.1

The set of varied hyperparameters is denoted by H,
and a particular hyperparameter, e.g., batch size, is
h j. The value of hyperparameter h j in run ri is hi

j.

3.2 Performance-based Sensitivity

Each performance-based metric compares architec-
tures in terms of how many hyperparameter con-
figurations in a random search attain a relatively
high performance, i.e., a performance that is close
to the best one found during the search. A practical
question that this sheds light on is: in a random
hyperparameter search, how likely am I to find
an optimally2 performing model? Sensitivity is
more concerned with measuring variance in per-
formance than finding the best run or architecture,
so performance-based sensitivity considers relative
accuracy to the best performing system.

Relative Performance at k This measures the
difference in performance between the best per-
forming run r1, and the kth best run in the hyperpa-
rameter search. To compute this, we first sort all
runs by performance, and then we simply compute
acck
acc1

. Intuitively, a higher value at a larger k means
that there is a larger subset of runs that achieve high
accuracy, and, thus, implies lower sensitivity.

Relative Mean Performance of First k In order
to capture more nuance in the change across runs

1Although we use accuracy in this work, any metric that is
positively correlated with system performance could be used.

2We refer to the best performance obtained during a search
as optimal, though there may exist better configurations not
found during search.

from the best to the kth, we additionally compute
the mean performance of the first k runs and report
it as relative to acc1. This reduces the impact of the
choice of a particular k. We first rank all runs by
performance, and then, for a given k, we compute

k∑
i=2

acci

(k − 1) · acc1
. (1)

Percentage of Best-equivalent Runs The per-
centage of systems within a region of practical
equivalence (ROPE; Benavoli et al., 2017) of the
best model measures how likely an optimal run is in
a random hyperparameter search with a fixed-size
window of optimal values. We define the ROPE
as the [1,−1] interval, meaning that we report the
percentage of runs that achieve at most 1% accu-
racy less than acc1. A higher percentage means that
a larger number of runs achieve roughly optimal
performance and, thus, implies lower sensitivity.

Expected Size of Equivalent Runs In a large
hyperparameter search, there are likely to be unrea-
sonable hyperparameter combinations. To account
for this, we characterize the expected percentage
of equivalent runs to any given run. To this end,
for each acci, we compute the number of acc j ∈ A
within a ROPE of [1,−1], which we denote by δi.
Then, we report the mean δ over all runs. This
metric says less about the likelihood of finding an
optimally perfomant run, but illustrates the robust-
ness of a particular architecture to hyperparameter
changes in general.

3.3 Similarity-based Sensitivity

An architecture for which small changes in hyper-
parameter values are associated with large changes
in performance is sensitive according to similarity-
based sensitivity. A practical question that this
sheds light on is: in a structured hyperparameter
search, how predictably will changes to hyperpa-
rameters lead to better results?

Measuring the similarity between runs is not
straightforward because each h j samples values
from a different distribution, which could be con-
tinuous, discrete, or categorical. To resolve this, we
quantify similarity with a non-parametric measure.
Each run ri is assigned a rank, denoted by ranki,
as follows. First, all hi

j ∈ h j are sorted from the
largest to smallest. We define γi

j as the index of
hi

j in the sorted vector, where γi
j = γ

k
j if hi

j = hk
j.
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Hyperparameter values

Optimization

Batch size {16, 32, . . . , 2048}
Learning rate [1e−6, 0.01]
β1 [.8, .999]
β2 [.98, .999]
Label smoothing [0, .2]
Scheduler {reduceonplateau, warmupinvsqrt, (none)}
Warmup samples∗ {100, 200, . . . , 5M}
Factor∗ [.1, .9]
Min. learning rate∗ [1e−7, .001]
Learning rate patience∗ {1, 2, . . . , 5}

Architectural

Embedding Size {16, 32, . . . , 512}
Hidden layer size {64, 128, . . . , 2048}
Encoder layers Transformer: {2, 4, 6, 8}; LSTM: {1, 2}
Decoder layers Transformer: {2, 4, 6, 8}; LSTM: {1}
Attention heads† {2, 4, 8}
Dropout [0, .5]

Table 2: Hyperparameters and the distributions we sample from. We write continuous distributions as an interval
[. . . ] and discrete distributions by demonstrating the step size between samples: {1, 2, . . . , max}. We sample all
values uniformly at random, with the exception of learning rate, for which we sample from a log uniform distribution.
∗: Conditional hyperparameters; ignored if the related scheduler is not chosen. †: Specific to the transformer.

That is, γi
j is the rank of ri for the hyperpameter

h j. Then we compute the average rank of every
hyperparameter in ri:

ranki =
1
n

n∑

j=1

γi
j. (2)

This process leaves the possibility of equal ranks,
which complicates the requirement of some sen-
sitivity metrics to sort all runs by rank. In order
to account for this when sorting, we sort such that
acck > acck+1 within equal ranks. When comput-
ing similarity with respect to a single hyperparam-
eter, as in batch size, we compute Equation 2 by
setting h j to the batch size. In the case of categori-
cal variables, as in learning rate scheduler, we need
to manually choose a ranking based on intuitions
about that hyperparameter. The subjectivity here is
undesirable, but such cases are rare. For example,
in our experiments, the learning rate scheduler is
the only categorical variable. We describe how the
learning rate scheduler is treated in Appendix A.

Performance Correlation We compute Spear-
man’s ρ between similarity and accuracy relative to
the best run. More formally, we build two vectors
|rank1 − ranki| and acc1 − acci for all 1 < i ≤ n, re-
spectively, and then compute ρ between the vectors.

This measures the extent to which hyperparameters
and performance vary in the same direction. An
architecture with a high ρ is less sensitive in terms
of similarity-based sensitivity.

Number of Maxima To further characterize per-
formance in terms of changes in hyperparameters,
we compute the number of performance maxima
when sorting by rank. Each maximum is an out-
lier for which a small change in hyperparameters
reduces performance. Consider Case 3 in Figure 1:
each maximum is a point where a small change
in hyperparameters in either direction will reduce
performance. We first sort A by rank, resulting in
A∗. Then, we count the number of maxima using
this ordering: that is, ai such that ai−1 < ai > ai+1,
where i refers to ranki. Thus, more maxima indi-
cate higher sensitivity.

Average Change in Performance Performance
maxima can occur from small fluctuations in per-
formance, which do not actually represent high
sensitivity. We additionally compute the average
change in performance between adjacent runs:

1
n

∑

ai∈{A∗\an}
|ai+1 − ai|. (3)

A higher value means that adjacent points are fur-
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Task Arch Rel@25 ↑ Rel@50 ↑ Rel@100 ↑ Rel@150 ↑

Infl.
LSTM 99.31 (0.75) 98.86 (1.16) 98.29 (1.61) 96.75 (2.84)
Trans. 99.42 (0.35) 99.03 (0.58) 96.91 (1.73) 74.54 (15.26)

G2P
LSTM 99.70 (0.30) 99.57 (0.40) 99.25 (0.63) 98.13 (1.65)
Trans. 99.39 (0.54) 98.90 (1.01) 97.11 (1.97) 83.38 (10.36)

Table 3: Performance-based sensitivity metrics: Rel@k (and standard deviation) averaged over each language.

Task Arch µ@25 ↑ µ@50 ↑ µ@100 ↑ µ@150 ↑ % Best ↑ E[%Equiv.] ↑

Infl.
LSTM 99.59 (0.45) 99.31 (0.69) 98.96 (1.02) 98.56 (1.33) 44.85 (34.33) 47.08 (20.96)
Trans. 99.62 (0.23) 99.42 (0.35) 98.81 (0.66) 96.00 (1.87) 29.71 (13.83) 22.67 (6.11)

G2P
LSTM 99.81 (0.19) 99.71 (0.28) 99.57 (0.40) 99.34 (0.58) 64.07 (21.56) 58.29 (15.69)
Trans. 99.64 (0.30) 99.41 (0.53) 98.80 (0.96) 97.05 (1.81) 34.67 (26.91) 27.00 (18.35)

Table 4: Performance-based sensitivity metrics: Mean @k, Percentage of Best-equivalent Runs, and Expected Size
of Equivalent Runs where each metric is averaged over all languages. Standard deviations are given in parentheses.

ther in accuracy from their most similar hyperpa-
rameters, which implies higher sensitivity.

4 Case Study: Character Transduction

We perform a case study to explore the hyperparam-
eter sensitivity of transformers and LSTMs for char-
acter transduction tasks. We choose those tasks as
the vocabularies and sequence lengths are typically
quite short, and models train faster than for many
other tasks, which makes it possible to run a large
set of experiments within a few weeks. Further-
more, there are several high-quality benchmarks
available. We also believe that hyperparameter sen-
sitivity is of particular interest to the community
working on these problems because most character
transduction datasets are highly multilingual—this
is true of transliteration (e.g., Roark et al., 2020)
and text normalization (e.g., Bollmann, 2019) in
addition to the tasks we report results on—and typ-
ically one model is trained for each language in the
task. While our findings about the relative hyper-
parameter sensitivity of LSTMs vs. transformers
may not generalize to the many tasks which lack
these properties, the metrics we introduce can be
applied to virtually any machine learning system.
We submit that even for large pretrained models,
where hyperparameter tuning is difficult and pro-
hibitively expensive, sensitivity in the fine-tuning
stage should be considered.

Morphological Inflection We experiment with
morphological inflection (Infl.), the task of produc-
ing a word form given a lemma and inflectional

tags. For example, given the English verb be and
the tags for first person, singular, and present tense,
a system should generate am. Following standard
practice, we evaluate using exact match accuracy
of the generated word.

Grapheme-to-Phoneme Conversion Grapheme-
to-phoneme conversion (G2P) is the task of pre-
dicting the sequence of phonemes representing the
sounds of a word from its orthographic form. Un-
like inflection, the input and output vocabularies
here are typically disjoint. We again use exact
string match accuracy.

Data We consider a subset of languages from
benchmarks for each task. We sample eight lan-
guages from the CoNLL-SIGMORPHON 2017
shared task on morphological reinflection (Cotterell
et al., 2017) in the high setting for the inflection
experiments. For G2P, we sample four languages
from the SIGMORPHON 2021 shared task (Ashby
et al., 2021) in the medium setting. For both tasks,
we use accuracy on the development set to quantify
sensitivity metrics. We additionally report the test
set performance of the best model in each sweep
according to development accuracy. See Table 7
for dataset details.

4.1 Models
We use two architectures. Following Kann and
Schütze (2016), we use an LSTM encoder-decoder
model (Cho et al., 2014; Sutskever et al., 2014)
with soft attention (Bahdanau et al., 2015). Fol-
lowing Wu et al. (2021), we further use a trans-
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Task Arch ρ ↑ Maxima ↓ µ length ↓ BS ρ ↑ BS Maxima ↓ BS µ length ↓

Infl.
LSTM .09 (.16) 53.88 (18.67) 15.93 (4.24) .04 (.07) 45.75 (19.32) 15.11 (3.46)
Trans. .05 (.07) 58.75 (9.36) 31.56 (4.77) −.02 (.10) 56.12 (8.06) 30.16 (4.88)

G2P
LSTM −.04 (.04) 46.25 (27.29) 15.22 (5.36) −.01 (.05) 43.25 (26.06) 15.87 (5.68)
Trans. .07 (.04) 60.75 (7.93) 27.35 (4.17) .07 (.07) 56.75 (6.34) 27.00 (3.01)

Table 5: Similarity-based sensitivity metrics averaged over each language. Standard deviations are given in
parentheses. We additionally present similarity-based sensitivity for just the batch size denoted by BS.

former encoder-decoder model (Vaswani et al.,
2017). Each run trains for up to 800 epochs with a
patience of 50 and a fixed random seed. Develop-
ment set accuracy is evaluated every four epochs;
we report best development accuracy.

Hyperparameters We report all sixteen hyperpa-
rameters and the distributions their values are sam-
pled from in Table 2. All but three hyperparameter
distributions are the same for both architectures.
As is standard practice, we use a single attention
head for the LSTM, though this is a varied hyperpa-
rameter for transformers in our study. Similarly, we
do not consider deep (i.e., many-layer) LSTM en-
coders or decoders, though we do for transformers.
All sweeps consist of 200 runs.

5 Results

All results are discussed with respect to the average
over all languages. We report per-language values
in the appendix, in Table 10, Table 11 and Table 12.

5.1 Performance-based Sensitivity

Relative Performance Table 3 presents the rela-
tive performance at k for each task and architecture,
averaged over all languages. At smaller relative
k = 100 or lower, both models have extremely high
scores, indicating that they are within a few points
of accuracy of the best system. However, there is
a significant drop in performance at k = 150 by
the transformer, while the LSTM scores remain
stable. This suggests that while neither architecture
highly sensitive, if we look at the longer tail of
suboptimal runs, transformers are more sensitive
than LSTMs. Table 4 presents the mean relative
performance of the first k, where even at k = 150,
the scores between both architectures are compara-
ble. This shows that the difference in sensitivity is
less drastic than the rel@150 score implies.

Percentage of Best Equivalent Systems Table 4
also shows that, for both tasks, the percentage of

best-equivalent runs for LSTMs is much higher,
though with a much higher standard deviation
across languages for inflection. We interpret this as
showing that, with a ROPE interval of [1,−1], there
are some languages for which LSTMs will find an
optimal accuracy for many hyperparameter config-
urations, though this is not true in other (perhaps
more challenging) languages. Though transformers
seem to, on average, attain very similar relative per-
formance for the best 50–100 performing systems,
LSTMs are much less sensitive overall.

Expected Size of Equivalent Runs The last col-
umn of Table 4 similarly shows that LSTMs consis-
tently have a much higher expected size of equiva-
lent runs. This shows that LSTMs are more robust
to changing hyperparameters. That is, there is a
much larger cluster of runs that result in roughly
equivalent accuracy. Transformers are much more
sensitive according to this metric.

5.2 Similarity-based Sensitivity
Table 5 presents results for the similarity-based
sensitivity metrics for both tasks and architectures
averaged over all languages.

Number of Maxima The number of maxima are
very high for both architectures, though LSTM re-
sults vary more. Still, on average, LSTMs result
in fewer maxima on both tasks. This implies that
small changes to hyperparameters do not lead to
systematic increases in accuracy in either architec-
ture. That is, both architectures are sensitive to
small changes in hyperparameters, but transform-
ers, again, are more sensitive than LSTMs.

Average Change in Performance LSTMs have
much lower average changes in performance than
transformers. Despite the high number of max-
ima, this shows that transformers are quite a bit
more sensitive than LSTMs. LSTM runs tend to be
around two times closer in accuracy to their most
similar runs than transformers.
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Task Lang Max Mean % Zero Test Acc.
Trans. LSTM Trans. LSTM Trans. LSTM Trans. LSTM

Infl.

alb 99.90 99.80 77.65 92.68 13.50 5.50 99.30 99.30
ara 97.70 97.50 76.75 85.67 13.00 9.50 95.40 95.30
cat 99.20 98.80 80.75 88.61 11.50 8.00 98.50 98.60
dut 98.70 98.50 78.82 91.36 10.50 5.00 97.10 97.00
gle 94.40 94.80 67.77 81.16 16.00 10.00 92.40 93.10
hai 99.00 99.00 73.32 86.75 15.00 12.00 98.00 99.00
hun 88.50 91.60 67.12 79.29 17.00 9.00 86.20 91.30
rom 90.70 93.00 73.49 84.06 8.50 4.50 88.20 91.30
Avg. 96.01 96.63 74.46 86.20 13.12 7.94 94.39 95.61

G2P

arm_e 95.40 95.90 76.60 84.57 7.00 10.00 92.90 93.80
dut 90.50 90.50 71.83 77.91 7.00 11.50 83.70 84.80
geo 100.00 100.00 83.30 91.33 8.00 8.00 99.60 99.60
hun 98.60 99.00 76.02 94.66 13.50 2.00 99.40 98.90
Avg. 96.12 96.35 76.94 87.12 8.88 7.88 93.90 94.28

Table 6: Results on the exact match accuracy of each sweep for every language and task. Test accuracies are for the
best performing model according to development accuracy.

Performance Correlation The ρ values are over-
all quite low: there does not seems to be a mean-
ingful linear relationship between hyperparameter
similarity and accuracy overall. However, the per-
language breakdown in Table 12 in the appendix
reveals some positive correlations for LSTMs.

5.3 Sensitivity to Batch Size

On the right side of Table 5, we additionally present
similarity-based sensitivity metrics when batch size
is the only hyperparameter considered. As men-
tioned in §2, batch size has frequently been dis-
cussed as a hyperparameter transformers are par-
ticularly sensitive to. Here we measure similarity-
based sensitivity in the same way as before, but
the ranking here only uses batch size. We find
that transformers are more sensitive to batch size
according to the number of maxima and average
change in performance. However, the scores for
batch size scale very closely to the scores for all hy-
perparameters, though they are consistently slightly
lower. Indeed the only case of higher sensitivity to
batch size than to all hyperparameters together is
for LSTMs on the G2P task. We interpret this as
showing that, while transformers are more sensi-
tive to batch size than LSTMs, they are no more
sensitive to it than they are to the full set of hy-
perparameters. Whereas previous work fixed all
other hyperparameters and found batch size to have
a high impact on optimization (Popel and Bojar,

2018; Wu et al., 2021), our work varies many hy-
perparameters together and does not support the
claim that transformers are particularly sensitive to
batch size, at least for character transduction.

5.4 Overall Performance

Table 6 summarizes the performance of the sweeps
for all tasks, languages, and architectures. We
present the mean and max accuracy on the devel-
opment set, as well as the accuracy of the best
model according to development accuracy on the
test set. For both architectures, some hyperparam-
eter configurations result in an accuracy of zero,
which is likely due to certain unreasonable com-
binations of hyperparameters. We additionally
present the percentage of runs for which this is the
case. Transformers result in more zero-accuracy
runs in every language for inflection, which signals
another aspect of hyperparameter sensitivity. For
G2P, LSTMs result in more zero-accuracy runs in
Armenian and Dutch, however.

Contrary to most work on character transduction
tasks, an LSTM run attains the best performance
on almost every language for both tasks. When a
transformer performs best, it is always within 0.1
percentage point of accuracy, with the single excep-
tion of Hungarian G2P, where the transformer per-
forms better by an absolute 0.5 percent. This con-
tradicts prior work showing that transformers
outperform LSTMs on character-level sequence-
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Figure 2: Boxplots of the hidden, embedding, and batch sizes of the best performing systems in each language and
task. Mean values are marked with a small green triangle.

to-sequence tasks (Wu et al., 2021). One expla-
nation for this in our experiments is that, being
less sensitive to hyperparameters, in a large enough
sweep, it is possible to train an LSTM which out-
performs the transformers. Another explanation is
that most work has simply not considered suitable
hyperparameters for LSTMs. Indeed, one widely
held belief about the superiority of transformers is
due to the direct access of self-attention from any
token in a sequence to any other token. LSTMs, on
the other hand, potentially lose information through
the recurrence over long enough sequences. As we
consider tasks with shorter sequences, this apparent
advantage of the transformer may be irrelevant.

5.5 Which Hyperparameters Work Best?

A side effect of our experiments is that we have
found the best performing hyperparameters for
each architecture from very large sweeps, for sev-
eral languages. We present the best configurations
in Table 8 and Table 9 in the appendix. In Figure 2,
we present box plots for some hyperparameters of
particular interest. Both architectures tend to per-
form best with large hidden sizes. Most works in
character transduction tasks consider LSTM layers
with a hidden sizes of less than 500—often as low
as 100 (e.g., Kann and Schütze, 2016)—and as-
sume that transformers require a larger hidden size.
In our inflection experiments, the best LSTMs have
hidden sizes about three times larger than what we
would have expected—typically much larger than
transformers on average. However, most of the opti-
mal transformers have many layers—an option that
is not available to LSTMs in our sweeps—which
may make up for the smaller hidden sizes. Both
architectures, and especially LSTMs, perform best

with a large range of embedding sizes spanning
almost our entire sample space. For G2P, hidden
sizes are smaller but the trend is the same, and small
embedding sizes seem to work best for both archi-
tectures. Finally, the optimal transformer batch
sizes are not consistently higher than for LSTMs:
in G2P the average LSTM batch size is higher.
Typically LSTMs for character transduction are
trained with very small batch sizes, but this does
not seem necessary in our experiments. The best
batch size is, however, highly varied in both ar-
chitectures. One possible explanation is that the
impact of batch size depends heavily on the learn-
ing rate and scheduler it is coupled with.

6 Conclusion

We have presented metrics for quantifying hyperpa-
rameter sensitivity according to two different defi-
nitions. In applying these metrics, we confirm that
the LSTM is less sensitive to hyperparameters than
the transformer for character transduction. Like in
previous work, transformers also appear to be more
sensitive to batch size than LSTMs. However, we
find that they are no more sensitive to batch size
than to all hyperparameters together. Lastly, we
find that LSTMs outperform transformers for these
tasks and languages with few exceptions, which
contradicts previous findings. This is likely be-
cause we have sampled hyperparameters outside
of the typical range for LSTMs in character trans-
duction. We believe that a careful measurement
of the relationship between architectures and hy-
perparameter search is important for testing claims
about hyperparameter sensitivity. We hope that
our metrics will be used to explore hyperparameter
sensitivity in other tasks.
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Limitations

The scope of this study is limited due to the large
compute budget needed to cover more languages
and tasks in a large hyperparameter search. For
the similarity-based metrics in particular, we do
see some variation in results, and a larger study on
more data sets could potentially change the results.
Additionally, in the large random search space, the
number of runs is a limiting factor and more runs
will always lead to more stable results. Further-
more, we have not yet used structured search meth-
ods in our evaluations.
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A Special Hyperparameters

In order to to handle certain hyperparameters in
our experiments, we need to take care to handle
some special edge cases, which we describe here.
To ensure we can run every experiment on a single
GPU, we set a maximum batch size of 256, and
accumulate gradients on equal sized batches up
to the requested batch size. This is to avoid out-
of-memory errors on extremely large batch sizes,
while still simulating the same gradient accumula-
tion of the requested batch size in practice. We set a
number of warmup samples when using a warmup
scheduler, rather than number of warmup steps, as
is typical. This is because the number of warmup
steps is not comparable across different batch sizes.
In practice, we compute a number of warmup steps
at runtime as the number warmup samples divided
by batch size. We also search over conditional hy-
perparameters, depending on the scheduler. These
are (i) number of warmup samples (ii) factor (iii)
LR patience (iv) minimum LR. We force each of
these to 0 no matter what value is sampled in the
hyperparameter search when the dependent sched-
uler is not sampled. Finally, when computing ranki,
we fix the order for our categorical variable: learn-
ing rate scheduler as follows: (i) None (ii) Reduce
On Plateau (iii) Warmup. Our justification for this
ranking reflects the observation that the reduce-on-
plateau scheduler may not hit a plateau during all
runs and thus is conceptually similar to no schedul-
ing. Additionally, it can be thought of as simply
tuning the learning rate in later stages of training.
In contrast, the warmup scheduler will always have
some impact on optimization.
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Task Source Lang Train Dev Test

Inflection Cotterell et al. (2017)

ara 10k 1k 1k
alb 10k 1k 1k
cat 10k 1k 1k
dut 10k 1k 1k
gle 10k 1k 1k
hai 6.84k 100 100
hun 10k 1k 1k
rom 10k 1k 1k

G2P Ashby et al. (2021)

arm 10k 1k 1k
dut 10k 1k 1k
hun 10k 1k 1k
geo 10k 1k 1k

Table 7: All data we use for experiments.

Task Arch batch size LR beta1 beta2 LS sched. wrmp steps factor LR patience min LR

alb Infl. LSTM 576 1.1e-3 0.92 1.0 0.04 wrmp. 1570 0 0 0
Trans. 1136 2.1e-4 0.91 0.99 0.09 wrmp. 1968 0 0 0

ara Infl. LSTM 368 8.26e-4 0.85 0.99 0.09 wrmp. 3483 0 0 0
Trans. 1856 7.01e-4 0.88 1.0 0.13 None 0 0 0 0

cat Infl. LSTM 304 3.56e-3 0.95 0.98 0.04 wrmp. 1847 0 0 0
Trans. 432 8.66e-4 0.92 0.99 0.04 wrmp. 3488 0 0 0

dut Infl. LSTM 752 8.21e-4 0.87 0.99 0.04 reduce 0 0.45 1 4.9e-4
Trans. 576 4.22e-4 0.85 0.98 0.03 None 0 0 0 0

gle Infl. LSTM 1408 1.02e-3 0.94 0.99 0.18 None 0 0 0 0
Trans. 160 1.48e-3 0.81 0.99 0.14 reduce 0 0.77 3 9.63e-4

hai Infl. LSTM 1136 1.64e-4 0.91 1.0 0.04 None 0 0 0 0
Trans. 736 6.08e-4 0.92 1.0 0.08 reduce 0 0.34 2 6.13e-4

hun Infl. LSTM 32 3.25e-5 0.84 0.98 0.07 None 0 0 0 0
Trans. 528 1.99e-3 0.87 0.99 0.05 wrmp. 2246 0 0 0

rom Infl. LSTM 16 7.12e-4 0.82 0.98 0.19 None 0 0 0 0
Trans. 48 1.03e-3 0.87 0.99 0.15 wrmp. 47847 0 0 0

arm-e G2P LSTM 640 6.49e-5 0.89 0.99 0.11 wrmp. 2026 0 0 0
Trans. 1312 1.12e-4 0.86 0.98 0.1 None 0 0 0 0

dut G2P LSTM 608 1.21e-4 0.93 0.99 0.15 None 0 0 0 0
Trans. 384 2.2e-4 0.97 0.99 0.06 reduce 0 0.18 4 4.83e-4

geo G2P LSTM 1568 1.12e-4 1.0 0.99 0.12 None 0 0 0 0
Trans. 160 2.46e-4 0.97 0.99 0.12 wrmp. 5656 0 0 0

hun G2P LSTM 1632 7.34e-4 0.8 1.0 0.005 wrmp. 165 0 0 0
Trans. 1824 1.09e-3 0.81 0.99 0.06 wrmp. 558 0 0 0

Table 8: Optimization hyperparameters for the best performing system in each task and language.
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Task Arch enc. layers hidden size dropout emb. size attn heads dec. layers

alb Infl. LSTM 1 1408 0.08 416 1 1
Trans. 4 1152 0.16 352 8 4

ara Infl. LSTM 2 1920 0.05 384 1 1
Trans. 8 1216 0.23 64 4 6

cat Infl. LSTM 2 1792 0.11 64 1 1
Trans. 6 1408 0.29 304 4 6

dut Infl. LSTM 2 1216 0.39 368 1 1
Trans. 6 1152 0.3 384 2 8

gle Infl. LSTM 2 1600 0.19 112 1 1
Trans. 6 384 0.19 208 2 8

hai Infl. LSTM 1 1472 0.26 496 1 1
Trans. 8 1344 0.19 128 8 6

hun Infl. LSTM 2 1664 0.43 416 1 1
Trans. 4 1984 0.42 304 8 4

rom Infl. LSTM 2 1088 0.28 112 1 1
Trans. 8 512 0.08 144 4 2

arm-e G2P LSTM 2 1664 0.17 144 1 1
Trans. 6 384 0.28 320 2 6

dut G2P LSTM 2 832 0.01 192 1 1
Trans. 4 128 0.21 192 2 2

geo G2P LSTM 1 384 0.06 80 1 1
Trans. 4 1984 0.16 160 8 4

hun G2P LSTM 1 1024 0.16 256 1 1
Trans. 2 128 0.07 64 2 8

Table 9: Architectural hyperparameters for the best performing system in each task and language.
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Task Arch Rel@25 ↑ Rel@50 ↑ Rel@100 ↑ Rel@150 ↑

alb Infl.
LSTM 100.00 99.90 99.80 99.50
Trans. 99.80 99.70 98.30 84.78

ara Infl.
LSTM 99.49 99.18 98.36 96.72
Trans. 99.28 98.87 95.70 84.03

cat Infl.
LSTM 99.70 99.70 99.60 99.29
Trans. 99.60 99.29 98.29 87.50

dut Infl.
LSTM 99.49 99.29 98.98 97.77
Trans. 99.29 98.89 97.37 84.60

gle Infl.
LSTM 98.95 98.42 97.36 93.04
Trans. 99.26 98.52 93.64 48.52

hai Infl.
LSTM 100.00 100.00 100.00 100.00
Trans. 100.00 100.00 98.99 53.54

hun Infl.
LSTM 97.71 96.83 95.74 93.56
Trans. 99.10 98.53 96.72 72.32

rom Infl.
LSTM 99.14 97.53 96.45 94.09
Trans. 99.01 98.46 96.25 81.04

arm-e G2P
LSTM 99.58 99.37 98.96 97.60
Trans. 99.27 98.74 96.12 84.49

dut G2P
LSTM 99.34 99.12 98.56 96.13
Trans. 98.67 97.57 95.14 78.90

geo G2P
LSTM 100.00 100.00 100.00 100.00
Trans. 99.90 99.90 99.70 97.20

hun G2P
LSTM 99.90 99.80 99.49 98.79
Trans. 99.70 99.39 97.46 72.92

Table 10: Performance-based sensitivity metrics: Rel @k for each language.
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Task Arch µ@25 ↑ µ@50 ↑ µ@100 ↑ µ@150 ↑ % Best ↑ E[%Equiv.] ↑

alb Infl.
LSTM 100.00 99.96 99.92 99.86 83.42 71.32
Trans. 99.85 99.81 99.54 98.08 43.72 27.49

ara Infl.
LSTM 99.63 99.45 99.12 98.65 29.15 38.01
Trans. 99.56 99.32 98.46 96.25 24.12 18.20

cat Infl.
LSTM 99.80 99.75 99.69 99.60 79.90 66.45
Trans. 99.68 99.57 99.27 98.15 39.70 29.49

dut Infl.
LSTM 99.68 99.55 99.34 99.10 52.26 52.98
Trans. 99.48 99.32 98.78 96.97 25.13 22.05

gle Infl.
LSTM 99.51 99.08 98.56 97.69 14.07 25.72
Trans. 99.65 99.27 97.97 92.48 18.59 13.98

hai Infl.
LSTM 100.00 100.00 100.00 100.00 83.92 71.36
Trans. 100.00 100.00 99.82 94.65 52.76 30.99

hun Infl.
LSTM 98.59 97.95 97.13 96.46 3.02 27.30
Trans. 99.42 99.11 98.40 95.79 18.09 21.42

rom Infl.
LSTM 99.49 98.78 97.92 97.11 13.07 23.46
Trans. 99.31 98.99 98.25 95.61 15.58 17.72

arm-e G2P
LSTM 99.72 99.58 99.37 99.10 54.27 52.08
Trans. 99.56 99.30 98.55 96.50 22.61 18.07

dut G2P
LSTM 99.60 99.39 99.12 98.67 39.70 41.83
Trans. 99.26 98.72 97.61 95.53 10.05 13.97

geo G2P
LSTM 100.00 100.00 100.00 100.00 88.94 78.91
Trans. 99.93 99.92 99.86 99.67 72.36 54.10

hun G2P
LSTM 99.94 99.88 99.79 99.61 73.37 60.33
Trans. 99.83 99.71 99.18 96.48 33.67 21.85

Table 11: Performance-based sensitivity metrics: Mean @k for each language.
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Task Arch ρ ↑ Maxima ↓ µ length ↓ BS ρ ↑ BS Maxima ↓ BS µ length ↓

alb Infl.
LSTM 0.14 45.00 11.75 0.07 37.00 10.82
Trans. −0.04 52.00 33.91 0.03 53.00 33.79

ara Infl.
LSTM 0.04 61.00 19.53 −0.03 58.00 15.59
Trans. 0.12 63.00 30.61 −0.12 60.00 29.77

cat Infl.
LSTM 0.16 53.00 15.88 0.06 34.00 15.62
Trans. 0.09 62.00 27.15 −0.13 63.00 28.51

dut Infl.
LSTM −0.00 60.00 10.06 −0.02 52.00 11.08
Trans. −0.03 64.00 28.88 −0.01 55.00 30.05

gle Infl.
LSTM 0.09 65.00 22.04 0.14 62.00 20.32
Trans. 0.09 63.00 36.98 0.09 58.00 34.81

hai Infl.
LSTM 0.22 12.00 19.70 −0.04 6.00 18.59
Trans. 0.04 38.00 38.64 −0.00 38.00 36.71

hun Infl.
LSTM −0.23 71.00 15.62 0.11 54.00 16.50
Trans. 0.14 62.00 31.57 −0.12 62.00 25.43

rom Infl.
LSTM 0.27 64.00 12.84 0.06 63.00 12.38
Trans. −0.01 66.00 24.73 0.11 60.00 22.18

arm-e G2P
LSTM −0.06 65.00 17.28 −0.08 57.00 19.03
Trans. 0.04 63.00 25.47 0.06 63.00 25.83

dut G2P
LSTM 0.01 61.00 19.79 −0.01 62.00 20.37
Trans. 0.11 65.00 25.44 0.12 59.00 24.34

geo G2P
LSTM −0.03 6.00 16.31 0.01 5.00 16.33
Trans. 0.11 49.00 24.91 −0.02 48.00 26.51

hun G2P
LSTM −0.07 53.00 7.49 0.04 49.00 7.73
Trans. 0.04 66.00 33.59 0.13 57.00 31.30

Table 12: Similarity-based sensitivity metrics for each language. We additionally present similarity-based sensitivity
for just the batch size denoted by BS.
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