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Abstract
Document-level neural machine translation
(DOCNMT) aims to generate translations that
are both coherent and cohesive, in contrast to
its sentence-level counterpart. However, due
to its longer input length and limited avail-
ability of training data, DOCNMT often faces
the challenge of data sparsity. To overcome
this issue, we propose a novel Importance-
Aware Data Augmentation (IADA) algorithm
for DOCNMT that augments the training data
based on token importance information esti-
mated by the norm of hidden states and training
gradients. We conduct comprehensive experi-
ments on three widely-used DOCNMT bench-
marks. Our empirical results show that our pro-
posed IADA outperforms strong DOCNMT
baselines as well as several data augmentation
approaches, with statistical significance on both
sentence-level and document-level BLEU.

1 Introduction

Document-level Neural Machine Translation
(DOCNMT) has achieved significant progress in re-
cent years, as evidenced by notable studies (Tiede-
mann and Scherrer, 2017; Maruf and Haffari, 2018;
Wong et al., 2020; Wu et al., 2021; Li et al., 2022;
Lupo et al., 2022; Sun et al., 2022; Wang et al.,
2023; Lyu et al., 2023; Wu et al., 2024). By effec-
tively incorporating contextual information, DOC-
NMT aims to enhance the coherence and cohesion
between the translated sentences, compared with its
sentence-level counterpart (SENTNMT). However,
training DOCNMT models requires document-
level parallel corpora, which are more difficult and
expensive to obtain than SENTNMT. This data
sparsity issue can cause DOCNMT models to learn
spurious patterns in the training data, leading to
poor generalization (Dankers et al., 2022).

To overcome this issue, the data augmentation
(DA) technology (Shorten et al., 2021; Wang et al.,
2022) offers a promising solution. These DA meth-
ods for SENTNMT typically generate synthetic

Because of paralysis, my grandmother's legs have
stopped working.

Today, she had another attack.

Context

Current Sentence

Figure 1: An example showing the missing information
can be recovered by the complementary information in
the context. Strikethrough indicates perturbation.

data by randomly perturbing tokens in the training
instances (Gal and Ghahramani, 2016; Sennrich
et al., 2016a; Wei and Zou, 2019; Takase and Kiy-
ono, 2021). On top of this, in this paper, we pro-
pose a novel Important-Aware Data Augmentation
(IADA) method, which provides explicit signals
for training the DOCNMT models to proactively
utilize document contextual information. Specif-
ically, as shown in Figure 1, IADA first perturbs
the important tokens (i.e., she and attack) in the
current sentence to be translated, which enforces
the DOCNMT models to recover those information
using the document context. IADA further per-
turbs the less important tokens in the context (i.e.,
because and have), highlighting the useful informa-
tion in the document context. To determine token
importance, we propose two novel measures de-
rived from the DOCNMT model: the topmost hid-
den states of the encoder/decoder (TNORM), which
leverages context-dependent information, and train-
ing gradients (GNORM), which takes source-target
alignment information into account. Finally, as
IADA perturbs the important information in cur-
rent sentences and could increase learning diffi-
culty. We combat this issue by adding an agreement
loss between the original and perturbed instances.

In this work, we combine IADA with two pop-
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ular data augmentation methods, word dropout
(Gal and Ghahramani, 2016) (i.e., IADADROP)
and word replacement (Takase and Kiyono, 2021)
(i.e., IADAREPL). We evaluate these versions on
three widely-used DOCNMT benchmarks: TED,
News, and Europarl. Our experiments consistently
demonstrate that both IADADROP and IADAREPL

outperform various strong DOC2DOC models with
statistical significance. We perform ablation studies
to validate the effectiveness of our design choices.
Through our analyses, we show that IADA en-
hances contextual awareness and robustness in the
DOCNMT model. Additionally, we demonstrate
that IADA can be combined with back/forward-
translation techniques and is particularly benefi-
cial in low-resource settings. Lastly, our linguistic
study confirms IADA’s ability to effectively iden-
tify important tokens in the text.

2 Related Work

Document-Level NMT In recent years, numer-
ous approaches have been proposed for document-
level neural machine translation (DOCNMT). One
early model, proposed by Tiedemann and Scher-
rer (2017), simply concatenates the context and
the current sentence. Since then, many works on
DocNMT have been published, covering various
research topics such as model architecture (Mi-
culicich et al., 2018; Maruf et al., 2019; Zhang
et al., 2021; Wu et al., 2023), training methods
(Sun et al., 2022; Lei et al., 2022), and evaluation
(Bawden et al., 2018; Jiang et al., 2022). Unlike
its sentence-level NMT (SENTNMT), DOCNMT
often faces data scarcity issues, as collecting par-
allel document pairs is even more challenging and
expensive, impeding the progress of DOCNMT.

Data Augmentation Data augmentation (DA)
approaches for NMT are commonly catego-
rized into two classes, word replacement and
back/forward translation. Gal and Ghahramani
(2016) and Sennrich et al. (2016a) introduce word
dropout (WORDDROP), where word embeddings
are zeroed out at random positions in the input
sequence. Provilkov et al. (2020) incorporate a
dropout-like mechanism into the BPE segmentation
process (Sennrich et al., 2016c; Kudo, 2018), gener-
ating multiple segments for the same sequence. Liu
et al. (2021) utilize language models and phrasal
alignment with causal modeling to augment sen-
tence pairs. Takase and Kiyono (2021) demon-
strate that word dropout (WORDDROP) and word

replacement (WORDREPL) can achieve strong per-
formance with improved computational efficiency.
Kambhatla et al. (2022) expand the training cor-
pus by enciphering the text with deterministic rules.
Back-translation (BT) translates the monolingual
corpus from the target language back to the source
language, resulting in significant performance im-
provements (Bojar and Tamchyna, 2011; Sennrich
et al., 2016b). Hoang et al. (2018) perform iterative
BT and observe substantial performance gains. An-
other approach, known as forward-translation (FT)
or self-training, translates the monolingual source
corpus into the target language (Zhang and Zong,
2016; He et al., 2020). Recent works perform BT
with a DOCNMT model, known as DOCBT (Huo
et al., 2020; Ul Haq et al., 2020).

Ours Our novel Important-Aware Data Augmen-
tation (IADA) method effectively encourages the
DOCNMT model to leverage the contextual infor-
mation. Our empirical results conform that IADA
is compatible with the classical DA approaches,
such as DOCBT and DOCFT.

3 Method

In this section, we introduce the task of DOCNMT
in Section 3.1, our proposed IADA framework in
Section 3.2, our token importance measures in Sec-
tion 3.3, and our training objective in Section 3.4.

3.1 Document-Level NMT
The standard sentence-level NMT (SENTNMT)
model ignores surrounding context information,
whose probability of translation is defined as:

P (yyyi|xxxi) =
|yyyi|∏

t=1

P (yi,t|yyyi,<t,xxxi), (1)

where xxxi and yyyi are the i-th source and target train-
ing sentence, yi,t denotes the t-th token in yyyi and
|·| indicates the sequence length. Different from
SENTNMT, DOCNMT has the access to both cur-
rent sentence and context sentences for transla-
tion. Given a document pair {XXXi,YYY i}, we define
XXXi = {CCCxxxi ,xxxi} and YYY i = {CCCyyyi , yyyi}, where xxxi
and yyyi are the current sentence pair, and CCCxxxi and
CCCyyyi are their corresponding context. The transla-
tion probability of yyyi in DOCNMT is:

P (yyyi|xxxi,CCCxxxi ,CCCyyyi) =

|yyyi|∏

t=1

P (yi,t|yyyi,<t,xxxi,CCCxxxi ,CCCyyyi),
(2)
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Because of paralysis, my grandmother's legs have stopped working. Today, she had another attack.

Aufgrund von Lähmung haben die Beine meiner Großmutter aufgehört zu arbeiten. Heute hatte sie einen weiteren Anfall.

Context Current Sentence

Figure 2: An illustrative example of IADA. Strikethrough indicates perturbation. The “sie” is semantically
connected to “she”, “grandmother”, and “Großmutter”. IADA is inclined to mask “she” in the current sentence and
other less-important words in the context. Tokens in blue are similarly affected by IADA.

3.2 Importance-Aware Data Augmentation

Existing DOCNMT models only demonstrate lim-
ited usage of the context (Fernandes et al., 2021),
while an ideal one should proactively leverage the
contextual information in the translation process.
Importance-Aware Data Augmentation (IADA)
is built on top of this goal. Specifically, IADA
first perturbs the important tokens in the current
sentence to be translated, which encourages the
DOCNMT models to recover those information us-
ing the document context. IADA then perturbs the
less important tokens in the context, highlighting
the useful contextual information. Note that these
two steps can be performed simultaneously.

As shown in Figure 2, IADA is likely to per-
turb “she” and “attack” in the current sentence and
“because” and “have” in the context. Accordingly,
after IADA perturbation, the context sentences gen-
erally have more valuable information than the cur-
rent sentences, providing the inductive bias that
context is crucial during training.

To implement this design, IADA perturbs the
original document pair and obtain X̃XXi = {C̃CCxxxi , x̃xxi}
and ỸYY i = {C̃CCyyyi , ỹyyi}. Accordingly, the translation
probability of a DOCNMT model with IADA is:

P (yyyi|x̃xxi, C̃CCxxxi , C̃CCyyyi) =

|yyyi|∏

t=1

P (yi,t|ỹyyi,<t, x̃xxi, C̃CCxxxi , C̃CCyyyi),
(3)

IADA uses a token-specific replacement probabil-
ity pi,t to determine the tokens to be replaced in
these sentences. For example, the token xi,t in the
source documentXXXi is replaced:

mi,t ∼ Bernoulli(pi,t),

x̃i,t =

{
Ω(xi,t), if mi,t = 1;

xi,t, otherwise,

(4)

where Ω(·) could be an arbitrary replacement strat-
egy. IADA can be incorporated with various ex-
isting replacement strategies. In this paper, we
show the effectiveness of two versions of IADA,
IADADROP (with word dropout) and IADAREPL

(with word replacement).

Token-Specific Replacement Probability As
discussed above, in IADA, the important tokens
in the context should be assigned lower replace-
ment probabilities, while the important tokens in
the current sentence should be assigned higher re-
placement probabilities. Therefore, for the token
xi,t in the source documentXXXi, we define its cor-
responding pi,t as:

pi,t =

{
σ(σ−1(pctx)− ψ(xi,t)), if xi,t ∈ CCCxxxi ,

σ(σ−1(pcur) + ψ(xi,t)), if xi,t ∈ xxxi,
(5)

where pctx and pcur are the initial replacement prob-
abilities for the context and current sentence re-
spectively, and σ(·) is the sigmoid function whose
output can be interpreted as a probability.

Importance Normalization To properly control
the spread of token importance scores, we propose
to normalize the token importance score ψ(xi,t)
across all tokens inXXXi as:

ψ(xi,t) = α
ϕ(xi,t)− µi

σi
, (6)

where

µi =
1

|XXXi|

|XXXi|∑

t=1

ϕ(xi,t), (7)

σi =

√√√√ 1

|XXXi|

|XXXi|∑

t=1

(ϕ(xi,t)− µi)2. (8)
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ϕ(xi,t) is the original token importance score. α is
the hyper-parameter that controls the spread of to-
ken importance scores. We also apply this normal-
ization process to ψ(yi,t) in the target documents.

3.3 Token Importance Measures

In this section, we discuss how IADA determines
the word importance score ϕ(xi,t) for the DOC-
NMT training instances. Schakel and Wilson
(2015) and Wilson and Schakel (2015) discover
that words only used in specific context are often
associated with higher values of word embedding
norm. These words often refer to the concrete real
world objects/concepts and should be considered
as important words in the sentence (Luhn, 1958).
Motivated by these findings, we propose two dif-
ferent approaches to leverage the internal states of
input tokens in the DOCNMT models in ϕ(xi,t).

Norm of Topmost Hidden States (TNORM)
The meaning of a word is dynamic according to
its surrounding context. Thus, we propose to use
the norm of topmost layer hidden states hhhxi,t from
encoder, which incorporates the context-aware in-
formation (Peters et al., 2018; Devlin et al., 2019),
as importance measure. The importance measure
ϕTNORM(xi,t) is:

[hhhxi,0 , · · · ,hhhxi,|XXXi|
] = Encoder(XXXi),

ϕTNORM(xi,t) =
∥∥hhhxi,t

∥∥
2
,

(9)

Likewise, given a target document YYY i, we obtain
importance score ϕTNORM(yi,t):

[hhhyi,0 , · · · ,hhhyi,|YYY i|
] = Decoder(YYY i,HHHXXXi

),

ϕTNORM(yi,t) =
∥∥hhhyi,t

∥∥
2
,

(10)

where HHHXXXi
= [hhhxi,0 , · · · ,hhhxi,|XXXi|

]. We use hid-
den states given by the topmost point-wise feed-
forward networks in the encoder or decoder to
compute the TNORM, before the layer normaliza-
tion (Ba et al., 2016).

Norm of Gradients (GNORM) TNORM is
context-aware but ignores the source-target align-
ment information, as ϕTNORM(xi,t) in Equation 9
does not include any information from the target
document YYY i. To tackle this issue, we propose to
use the norm of training gradients which include
all input information from both sides. Important
tokens should make more contributions during the
training by its gradients, resulting in larger value of

gradient norm (Sato et al., 2019; Park et al., 2022).
We obtain the importance score ϕGNORM(xi,t):

gggxi,t = ∇eeexi,t
Li(XXXi,YYY i, θθθ),

ϕGNORM(xi,t) =
∥∥gggxi,t

∥∥
2
,

(11)

where L(XXXi,YYY i, θθθ) is the loss function with the
input ofXXXiand YYY i seeking for the optimal parame-
ters θθθ. The identical process can be directly applied
to yi,t. Note that the gradient gggxi,t or gggyi,t in this
process is not used for updating θθθ.

3.4 Training Objective
As described in Equation 5, IADA perturbs the im-
portant information in the current sentence and ac-
cordingly increases the learning difficulty. Recent
works demonstrate that hard-to-learn examples can
hurt the model performance (Swayamdipta et al.,
2020; Marion et al., 2023). To combat this issue,
we draw inspiration from multi-view learning (Yan
et al., 2021) and consider the perturbed samples as
different views of the original samples. Therefore,
we design three components in our training objec-
tive, including the original loss, the perturb loss,
and the agreement loss:

Li =

original loss, see Equation 13︷ ︸︸ ︷
Li

NLL(P (YYY i|XXXi)) +

perturb loss︷ ︸︸ ︷
Li

NLL(P (ỸYY i|X̃XXi))

+ Li
JS(P (YYY i|XXXi), P (ỸYY i|X̃XXi))︸ ︷︷ ︸
agreement loss, see Equation 14

(12)

As defined in Equation 2, the conventional training
objective of the DOCNMT models for a document
pair {XXXi,YYY i}, namely the original loss, can be
defined as:

Li
NLL(P (YYY i|XXXi)) =

−
∑

logP (yi,t|yyyi,<t,xxxi,CCCxxxi ,CCCyyyi).
(13)

The perturb loss is defined in the same way for
{X̃XXi, ỸYY i}. Furthermore, given the equivalence be-
tween the perturbed and original samples, we in-
troduce an extra agreement loss, namely Jensen-
Shannon divergence:

Li
JS(P (YYY i|XXXi), P (ỸYY i|X̃XXi)) =

1

2
[Di

KL(P (YYY i|XXXi)||P (ỸYY i|X̃XXi))

+Di
KL(P (ỸYY i|X̃XXi)||P (YYY i|XXXi))],

(14)

where Di
KL(·||·) is the KL divergence.
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4 Experiments

4.1 Baselines

We evaluate IADA against various competitive
baselines from two categories, the DOCNMT base-
lines and the data augmentation baselines.

DOCNMT baselines Our DOCNMT baselines
in this work include:

• DOC2DOC: The DOC2DOC baseline, pro-
posed by Tiedemann and Scherrer (2017),
incorporates contextual information into the
translation process by concatenating the con-
text and current sentence as the input for the
DOCNMT model.

• HAN: Miculicich et al. (2018) propose a hier-
archical attention model to capture the contex-
tual information. The proposed hierarchical at-
tention encodes the contextual information in
the previous sentences and have the encoded
information integrated into the original NMT
architecture.

• SAN: Maruf et al. (2019) propose the SAN
baseline, which utilizes sparse attention to se-
lectively focus on relevant sentences in the
document context. It then attends to key
words within those sentences.

• HYBRID: Zheng et al. (2020) propose the HY-
BRID baseline, a document-level NMT frame-
work that explicitly models the local context
of each sentence while considering the global
context of the entire document in both the
source and target languages.

• FLATTRANS: The FLATTRANS baseline, in-
troduced by Ma et al. (2020), offers a sim-
ple and effective unified encoder that concate-
nates only the source context and the source
current sentence

• GTRANS: The GTRANS baseline, proposed
by Bao et al. (2021), introduces the G-
Transformer, which incorporates a locality as-
sumption as an inductive bias into the Trans-
former architecture.

• MULTIRES: Sun et al. (2022) evaluate the
recent DOCNMT approaches and propose
Multi-resolutional Training that involves mul-
tiple levels of sequence lengths.

• DOCFLAT: The DOCFLAT baseline, pre-
sented by Wu et al. (2023) propose Flat-Batch
Attention (FBA) and Neural Context Gate
(NCG) into the Transformer model.

Furthermore, we also compare our approach

Train Valid Test

TED 204.4K/1.7K 8.9K/93 2.2K/23
News 242.4K/6.1K 2.3K/81 3.2K/155
Europarl 1.8M/117.9K 3.8K/240 5.5K/360

Table 1: The number of sentences/documents of each
split of the parallel corpora.

with a number of data augmentation approaches:
• Word Dropout (WORDDROP) Word dropout

(Gal and Ghahramani, 2016; Sennrich et al.,
2016a) randomly selects a subset of positions
with fixed replacement probability p in an in-
put sequence and have the selected positions
replaced with ⟨MASK⟩.

• Word Replacement (WORDREPL): Word
replacement (Wei and Zou, 2019; Takase and
Kiyono, 2021) replaces a number of input to-
kens with arbitrary tokens in the vocabulary.

• BPEDROPOUT: Provilkov et al. (2020) pro-
pose a simple and effective subword regular-
ization method that randomly corrupts seg-
mentation process of BPE.

• CIPHERDAUG: Kambhatla et al. (2022) pro-
pose CIPHERDAUG that enlarges the training
data based on ROT-k ciphertexts.

4.2 Experimental Setup

Datasets In our experiments, we evaluated the
performance of our model on three English-
German translation datasets: the small-scale
benchmarks TED (Cettolo et al., 2012) and
News Commentary, and the large-scale benchmark
Europarl (Koehn, 2005). For each source and
target sentence, we used up to three previous sen-
tences as the context. We tokenize the datasets
with the Moses (Koehn et al., 2007) and apply BPE
(Sennrich et al., 2016c) with 32K merges. Data
statistics can be found in Table 1.

Evaluation We evaluate the translation quality
using sentence-level SacreBLEU (Papineni et al.,
2002) and document-level SacreBLEU (Liu et al.,
2020), denoted as s-BLEU and d-BLEU.1 To as-
sess the contextual awareness of DOCNMT mod-
els, we employ the English-German anaphoric pro-
noun test set introduced by Müller et al. (2018).
This test requires the model to identify the correct
pronoun (er, es, or sie) in German among several
candidate translations, and the performance is mea-

1SacreBLEU signature: nrefs:1|case:mixed|
eff:no|tok:13a|smooth:exp|version:2.2.0.
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TED News Europarl

s-BLEU d-BLEU COMET s-BLEU d-BLEU COMET s-BLEU d-BLEU COMET

HAN (2018) 24.6 — — 25.0 — — 28.6 — —
SAN (2019) 24.4 — — 24.8 — — 29.7 — —
HYBRID (2020) 25.1 — — 24.9 — — 30.4 — —
FLATTRANS (2020) 24.9 — — 23.6 — — 30.1 — —
GTRANS (2021) 25.1 27.2 — 25.5 27.1 — 32.4 34.1 —
MULTIRES (2022) 25.2 29.3 — 25.0 26.7 — 32.1 34.5 —
DOCFLAT (2023) 25.4 — 31.0 25.4 — 21.2 32.2 — 59.9

WORDDROP (2016a) 24.5 28.1 26.6 24.5 26.7 16.9 31.6 33.7 59.0
WORDREPL (2019) 24.6 28.5 27.7 24.9 26.9 18.0 31.9 33.8 58.9
BPEDROPOUT (2020) 25.1 28.9 28.8 25.6 27.4 20.3 32.2 34.0 59.9
CIPHERDAUG (2022) 24.2 28.0 19.7 24.4 26.7 14.4 31.4 33.2 58.5

Importance-Aware Augmented (Ours)
DOC2DOC (doc baseline) 24.3 27.4 23.5 24.4 26.4 12.7 31.2 33.1 58.4
+ IADADROP + TNORM 25.6 29.3 28.7 26.2 28.3 20.1 32.7 34.9 60.3

+ GNORM 26.1 29.6 29.8 26.3 28.6 20.7 32.8 35.0 60.3
+ IADAREPL + TNORM 26.1 29.7 29.7 26.3 28.5 20.8 32.8 34.8 60.3

+ GNORM 26.2 29.6 29.8 26.4 28.7 22.1 33.0 35.1 60.4

Fine-tuning from pre-trained models for comparison
FLATTRANS + BERT 26.6 — — 24.5 — — 32.0 — —
GTRANS + BERT 26.8 — — 26.1 — — 32.4 — —
GTRANS + MBART 28.0 30.0 — 30.3 31.7 — 32.7 34.3 —

Table 2: Main results on English-German document-level machine translation. All the results given by IADADROP

and IADAREPL significantly outperform DOC2DOC at the significance level p = 0.05 based on Koehn (2004). Best
results are highlighted in bold.

sured by Accuracy.

Inference We translate test examples in their
original order, beginning with the first sentence
independent of context. Previous translations serve
as the context for the current translation.

Hyperparameters All the approaches in this
works, including IADA and baselines, are trained
from scratch with the identical hyperparameters.
The model is randomly initialized and optimized
with Adam (Kingma and Ba, 2015) with β1 = 0.9,
β2 = 0.98 and the learning rate α = 5×10−4. The
model is trained with the batch size of 32K tokens
for both datasets and the dropout rate p = 0.3. The
batch size of 32K tokens is achieved by using the
batch size of 4096 tokens and updating the model
for every 8 batches. The learning rate schedule is
the same as described in Vaswani et al. (2017) with
4K warmup steps. We use early stopping on valida-
tion loss. For our IADA approach, we set the initial
replacement probabilities for both the context and
the current sentence to be pctx = pcur = 0.1. We
set the α in Equation 6 to α = 0.1.

Computational Infrastructure The model ar-
chitecture for all the approaches in this work is
Transformer-base (Vaswani et al., 2017), having
about 64M parameters. We run experiments with

two A100 GPUs. Each experiment for IADA on
TED commonly take less than 5 hours. The com-
putational cost of IADA on News and Europarl is
proportional to that of TED with regard to the size
of training corpus.

4.3 Main Result

We present the main results in Table 2.

Comparison with other approaches Our
IADADROP and IADAREPL models surpass other
DOCNMT models in performance without
requiring additional neural modules or incurring
computational overhead. Moreover, IADA
models also outperform other competitive DA
approaches on both s-BLEU and d-BLEU. They
exhibit substantial performance gains on all three
benchmarks, demonstrating their effectiveness in
training DOCNMT models for both low-resource
and high-resource settings. In contrast, other DA
approaches only exhibit marginal improvements
on the large benchmark Europarl.

IADADROP vs. IADAREPL Both IADADROP

and IADAREPL consistently outperform the unaug-
mented DOC2DOC baseline, WORDDROP, and
WORDREPL, with statistical significance, demon-
strating the effectiveness of our method. Interest-
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Cont. Curr. s-B. d-B. s-C.

WORDREPL — — 24.6 28.5 27.7

DOC2DOC — — 24.3 27.4 23.5
+ IADAREPL + TNORM ↓ ↑ 26.1 29.7 29.7

↑ ↓ 25.7 28.9 29.3
↓ ↓ 25.6 28.4 29.5
↑ ↑ 25.5 28.3 28.9

+ IADAREPL + GNORM ↓ ↑ 26.2 29.6 29.8
↑ ↓ 25.8 28.5 29.4
↓ ↓ 25.9 28.8 29.2
↑ ↑ 25.7 28.6 29.3

Table 3: Ablation study for the perturbation strategy in
Equation 5 given by IADAREPL on TED. Best results are
highlighted in bold. ↑ indicates s+ψ(xi,t) or s+ψ(yi,t).
↓ indicates s− ψ(xi,t) or s− ψ(yi,t).

s-BLEU d-BLEU COMET

WORDREPL 24.6 28.5 27.7

Normalized
DOC2DOC 24.3 27.4 23.5
+ IADAREPL + TNORM 26.1 29.7 29.7
+ IADAREPL + GNORM 26.2 29.6 29.8
+ IADAREPL + RANDOM 24.6 28.4 25.4

Not normalized
+ IADAREPL + TNORM 24.5 27.8 25.0
+ IADAREPL + GNORM 24.7 27.9 25.2

Table 4: Ablation study for token importance mea-
sures and token importance normalization given by
IADAREPL on TED. Best results are highlighted in bold.

ingly, we observe that WORDREPL-based methods
(IADAREPL and WORDREPL) slightly outperform
the WORDDROP-based methods (IADADROP and
WORDDROP). We hypothesize that WORDREPL-
based methods generate more diverse synthetic data
by replacing selected tokens with distinct random
tokens, compared with replaceing selected tokens
with ⟨MASK⟩. Lastly, we also observe that GNORM

outperforms TNORM, confirming our hypothesis
in Section 3.3.

4.4 Ablation Study

In this section, we conduct ablation studies to show
the effectiveness of IADA components based on
IADAREPL on the TED benchmark.

Perturbation Strategy Our proposed perturba-
tion strategy’s effectiveness is demonstrated by
enumerating all possible strategies for token im-
portance measures in Table 3. For instance, ↑ for
the context and ↓ for the current sentence in Table 3
indicate a tendency to perturb important informa-
tion in the context while perturbing less important

s-BLEU d-BLEU COMET

WORDREPL 24.6 28.5 27.7

DOC2DOC 24.3 27.4 23.5
+ IADAREPL + TNORM 26.1 29.7 29.7

- anchor loss 25.2 28.8 28.5
- perturb loss 25.5 28.4 28.3
- agreement loss 25.4 28.5 28.5

+ IADAREPL + GNORM 26.2 29.6 29.8
- anchor loss 25.3 28.7 29.0
- perturb loss 25.4 28.3 28.5
- agreement loss 25.6 28.5 28.3

Table 5: Ablation study for the loss terms in Equation 12
given by IADAREPL on TED. “-” indicates removing the
loss term. Best results are highlighted in bold.

information in the current sentence. Results consis-
tently indicate that all other perturbation strategies
are suboptimal compared to our strategy. This suc-
cess is attributed to the design of IADA, which
encourages DOCNMT models to leverage contex-
tual information.

Token Importance Measures To demonstrate
the effectiveness of our proposed importance mea-
sures, we replace ψ(·) in Equation 5 with a random
score r ∼ N (0, α2) according to Equation 6. This
method is referred to as RANDOM in Table 4. We
observe that IADAREPL with RANDOM achieves
performance similar to WORDREPL, suggesting
that the importance measures can more effectively
guide the generation of high-quality synthetic data
compared to purely random approaches.

Importance Normalization We examine the im-
pact of importance normalization (Equation 6)
in Table 4. Without this normalization, both
IADAREPL with TNORM and IADAREPL with
GNORM experience notable performance declines
and slightly underperform the WORDREPL base-
line. These findings emphasize the crucial role of
controlling the spread of ϕ(xi,t) in IADA.

Training Objective We analyze the effectiveness
of each loss term of Equation 12 and present our
findings in Table 5. Our results demonstrate that
each loss term plays a significant role in improving
the model performance. Notably, when we remove
the perturb loss, we observe a greater decrease in
d-BLEU, indicating that our IADA design effec-
tively encourages the model to utilize the context
to enhance document-level translation quality.
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Acc. er es sie

WORDREPL 68.0 56.6 92.0 55.5

DOC2DOC 63.5 51.2 89.6 49.9
+ IADAREPL + TNORM 71.2 58.3 90.8 64.3

+ GNORM 73.8 63.9 89.4 67.8

Table 6: Accuracy (in %) on the contrastive test set
given by IADAREPL trained on TED. Best results are
highlighted in bold.
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Figure 3: Accuracy gap (in %; ∆Acc.) given by WOR-
DREPL and IADAREPL with different token importance
measures on TED against DOC2DOC with regard to the
antecedent distance (in sentences).

5 Analysis

We analyze IADA from various aspects in this
section, including contextual awareness, robust-
ness, compatibility with DOCBT/DOCFT, simu-
lated low-resource scenario, and linguistic analysis.

Contextual Awareness In our analysis, we eval-
uate the contextual awareness of DOCNMT mod-
els using a contrastive test set. We focus on the
accuracy of different anaphoric pronoun types (Ta-
ble 6) and antecedent distance (Figure 3). The
choice of anaphoric pronoun types, such as femi-
nine sie, neutral er, and masculine es, depends on
the context in English-German translation. Results
in Table 6 demonstrate that IADAREPL achieve
higher overall accuracy compared with DOC2DOC

and WORDREPL. These improvements mainly
come from the minor classes, feminine sie and
neutral er, indicating that IADA effectively over-
comes the training bias towards the major class
es. Regarding the antecedent distance shown
in Figure 3, both IADAREPL with TNORM and
IADAREPL with GNORM consistently outperform
WORDREPL across all distances.

Compatibility with DOCBT/DOCFT We in-
vestigate the compatibility of IADA with back-
translation (DOCBT) and forward-translation
(DOCFT). We start from doubling the original

s-BLEU d-BLEU COMET

DOCBT 25.0 28.8 28.9
DOCFT 25.1 28.9 29.0

DOC2DOC 24.3 27.4 23.5
+ IADAREPL + TNORM 26.1 29.6 29.7

+ DOCBT 26.8 30.2 30.5
+ DOCFT 26.9 30.4 31.0

+ IADAREPL + GNORM 26.2 29.6 29.8
+ DOCBT 26.6 30.1 30.7
+ DOCFT 26.9 30.6 31.1

Table 7: Compatibility with DOCBT and DOCFT of
IADAREPL on TED. Best results are highlighted in bold.
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Figure 4: The performance gap (∆{·}) given by
IADAREPL and WORDREPL against DOC2DOC with
regard to the percentage of training data (%Dtrn) of TED.

training corpus using DOCBT or DOCFT and then
augmenting it with IADA. The results in Table 7
demonstrate that combining IADAREPL variants
with DOCBT and DOCFT yields further improve-
ments. The hybrid systems outperform both indi-
vidual systems, indicating the successful integra-
tion of IADA with DOCBT and DOCFT.

Simulated Low-Resource Scenario We also ex-
amine the usefulness of IADA in low-resource
training scenarios. We vary the size of the train-
ing data (Dtrn) for TED from 20% (around 40K) to
100% (around 200K). The performance gap (∆{·})
compared to the DOC2DOC model is shown in
Figure 4 for all three metrics. Overall, IADAREPL

variants with TNORM, and GNORM outperform
WORDREPL across different data scales. In par-
ticular, When using only 20% of the TED training
data, IADAREPL with GNORM achieves approxi-
mately +4.5 and +5.5 improvements in s-BLEU
and d-BLEU respectively compared to DOC2DOC,
while WORDREPL provides only a +1.5 and +2.5
improvements for s-BLEU and d-BLEU. These
results highlight the effectiveness of IADA in vari-
ous low-resource data scenarios.

Robustness against Noisy Context In our ex-
periment, we test the effectiveness of IADA in
mitigating negative impacts of irrelevant and dis-
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s-BLEU d-BLEU COMET Accuracy

Gold Noisy ∆ ↓ Gold Noisy ∆ ↓ Gold Noisy ∆ ↓ Gold Noisy ∆ ↓
DOC2DOC 24.3 23.5 0.8 27.4 26.3 1.1 23.5 22.0 1.5 63.5 46.8 16.7
WORDREPL 24.6 24.0 0.6 28.5 27.8 0.7 27.7 26.2 1.5 68.0 53.4 14.6

IADAREPL

+TNORM 26.1 25.7 0.4 29.7 29.4 0.3 29.7 28.9 0.8 71.2 63.1 8.1
+GNORM 26.2 25.8 0.4 29.6 29.4 0.2 29.8 29.3 0.5 73.8 66.0 7.8

Table 8: Performance gap (∆) given by the selected methods trained with the gold context against the noisy context
on TED. Best results are highlighted in bold. ↓ indicates lower is better.
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Figure 5: The percentage (%) of the POS tags of the
perturbed tokens on TED given by WORDREPL and
IADAREPL with GNORM.

ruptive context. We randomly replace two out of
three sentences in the gold context of training in-
stances with sentences from other documents. Re-
sults on TED (Table 8) shows that IADAREPL vari-
ants have smaller performance declines compared
to WORDREPL and DOC2DOC. Notably, even
with noisy context, IADAREPL with GNORM out-
performs DOC2DOC with gold context across all
metrics. Our preliminary study shows that a vanilla
sentence-level Transformer-base model trained on
TED achieves approximately 45% accuracy. The
decline in accuracy for DOC2DOC suggests its
susceptibility to noisy context. Overall, IADA
successfully trains DOCNMT models to focus on
relevant context and enhances their robustness with
low-quality input information.

Linguistic Analysis on Perturbed Tokens We
analyze perturbed tokens from WORDREPL and
IADAREPL with GNORM using linguistic analysis,
focusing on five significant Part-Of-Speech (POS)
tags. The results (Figure 5) reveal that compared
to WORDREPL, IADAREPL with GNORM consis-
tently selects more tokens with major POS tags
in the current sentence, while IADAREPL perturbs
fewer tokens with major POS tags in the context.
These findings confirm that IADA prioritizes per-
turbing important tokens in the current sentence
and the less important ones in the context.

6 Conclusion

In this paper, we present IADA, a new method
for generating high-quality syntactic data for DOC-
NMT. By leveraging token importance, IADA aug-
ments existing training data by perturbing impor-
tant tokens in the current sentences while keep-
ing those less important ones unchanged. This
encourages DOCNMT models to effectively uti-
lize contextual information. We propose TNORM

and GNORM to measure token importance. We
also introduce the agreement loss to prevent the
training samples from being overly hard to learn
after perturbation. Results demonstrate that IADA
outperforms competitive DOCNMT approaches
as well as several data augmentation methods.
Our analysis reveals that IADA enhances DOC-
NMT models’ contextual awareness, robustness,
and is compatible with DOCBT and DOCFT tech-
niques. IADA also shows significant benefits in
low-resourced settings. Linguistic analysis vali-
dates the effectiveness of IADA in identifying im-
portant tokens. Overall, our findings highlight the
efficacy of IADA in improving syntactic data gen-
eration for DOCNMT.

7 Limitations

Comparing with standard optimization techniques,
our proposed IADA with the TNORM and GNORM

requires additional forward and backward compu-
tation. For each training step, IADA with TNORM

requires one additional forward pass, and IADA
with GNORM requires one additional forward and
backward pass. Note that IADA is only applied to
the training stage and has no impact on the DOC-
NMT inference.
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