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Abstract

Internet memes have gained significant influ-
ence in communicating political, psycholog-
ical, and sociocultural ideas. While memes
are often humorous, there has been a rise in
the use of memes for trolling and cyberbully-
ing. Although a wide variety of effective deep
learning-based models have been developed for
detecting offensive multimodal memes, only
a few works have been done on explainabil-
ity aspect. Recent laws like "right to expla-
nations" of General Data Protection Regula-
tion, have spurred research in developing inter-
pretable models rather than only focusing on
performance. Motivated by this, we introduce
MultiBully-Ex, the first benchmark dataset for
multimodal explanation from code-mixed cy-
berbullying memes. Here, both visual and tex-
tual modalities are highlighted to explain why
a given meme is cyberbullying. A Contrastive
Language-Image Pretraining (CLIP) projection-
based multimodal shared-private multitask ap-
proach has been proposed for visual and textual
explanation of a meme. Experimental results
demonstrate that training with multimodal ex-
planations improves performance in generating
textual justifications and more accurately identi-
fying the visual evidence supporting a decision
with reliable performance improvements.1

Disclaimer: The article contains profanity, nec-
essary for the nature of the work, but not reflect-
ing the authors’ opinions.

1 Introduction

The tremendous increase in multimodal content due
to the widespread use of social media platforms ren-
ders human moderation of such information unten-
able (Cao et al., 2020). Memes, which are images
with tiny text descriptions embedded in them, have
become a popular kind of multimodal content on

∗* The first three authors contributed equally to this work
and are jointly the first authors.

1https://github.com/Jhaprince/
MemeExplanation
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Figure 1: Cyberbullying Explanation in memes. Here
the aim is to highlight both the image and text as an
explanation of why the given meme is a bully.

social media in recent years. Though memes are
typically humorous, it also stimulates the propa-
gation of online abuse and harassment, including
cyberbullying. Cyberbullying (Smith et al., 2008)
is any communication that disparages an individual
on the basis of a characteristic such as color, gen-
der, race, sexual orientation, ethnicity, nationality,
or other features. The Pew Research Center esti-
mates that 40% of social media users have encoun-
tered online harassment or bullying2 (Chan et al.,
2019). Cyberbullying victims may experience de-
spair, worry, low self-esteem, and even suicidal
thoughts (Sticca et al., 2013). Automatic cyber-
bullying detection techniques with the model’s ex-
plainability are highly required to minimize those
unpleasant consequences.
Motivation and Evidence: Over the last decade,
studies on cyberbullying detection have focused
primarily on textual content (Agrawal and Awekar,
2018; Dadvar et al., 2014; Paul and Saha, 2020)
and, recently on memes (Kiela et al., 2020; Praman-
ick et al., 2021; Maity et al., 2022a) in monolingual

2https://www.pewresearch.org/internet/
2017/07/11/online-harassment-2017/
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setting, with limited research focusing on code-
mixed language. The use of code-mixed languages
in different social media and message-sharing apps
proliferates rapidly in multilingual countries (Ri-
jhwani et al., 2017). Code Mixing is a linguistic
phenomenon where words or phrases from one
language are inserted into an utterance from an-
other language (Myers-Scotton, 1997). However,
those researchers mostly concentrated on improv-
ing the performance of detecting offensive posts
using various deep learning models without giv-
ing any insight or analysis into the explainability.
Consequently, we propose a novel problem called
Multimodal Explanation of Code-Mixed Cyber-
bullying Memes (MExCCM). This task involves
processing multimodal inputs and aims to generate
both textual and visual explanations for multimodal
cyberbullying memes.
Research Gap: Till now, most of the works on
offensive memes are limited to classification tasks.
In the explainability aspect, there are some works
on text data only (highlighting the words or phrases
in a sentence) (Mathew et al., 2020; Karim et al.,
2021) and only one work on multimodal memes (in-
ternal layers’ attention weight visualization) (Hee
et al., 2022). Still, there is no work where both text
and images are highlighted to justify the offensive-
ness of cyberbullying content like a human does.
Thus, to mitigate the above-mentioned research
gap, we aim to build a deep learning-based model
that can explain cyberbullying nature of memes
in both visual and textual modalities. We seek
this idea from semiotic textology linguistic the-
ory (García-Valero, 2020), which includes three
subcomponents in order to consider how each tex-
tual media derives meaning; dictum (aka denota-
tion), evocatum (aka connotation), and appercep-
tum (mental images), the latter one embodying the
vision-grounded analysis of textual content.
Contributions: Our contributions are threefold: (i)
We present MExCCM, a novel task for generating
multimodal explanations for code-mixed cyberbul-
lying memes, a first in this field. (ii) We intro-
duce MultiBully-Ex, the first multimodal explain-
able code-mixed cyberbullying dataset. It includes
manual highlighting of both text and image modal-
ities in a meme to demonstrate why it is considered
bullying (iii) We propose an end-to-end Contrastive
Language-Image Pretraining (CLIP) approach for
visual and textual meme explanation, aiming to
encourage more research on code-mixed data.

2 Related Works

Cyberbullying is very reliant on linguistic subtlety.
Researchers have recently provided a lot of atten-
tion to automatically identifying cyberbullying in
social media. In this section, we will review recent
works on the detection and explainability aspects
of cyberbullying.
Detection: Researchers have made significant
strides in detecting meme-based cyberbullying and
offensive content. Maity et al. (2022a) created
MultiBully, a Twitter and Reddit dataset in code-
mixed language, proposing two multitask plat-
forms for detecting bullying memes, sentiment,
and emotion. Pramanick et al. (2021) extended
the HarMeme dataset and developed a deep mul-
timodal network to detect harmful memes, focus-
ing on COVID-19 and US politics. Other notable
works include Kiela et al. (2020)’s hate speech de-
tection with 69.47% accuracy using Visual-BERT,
Gomez et al. (2020)’s MMHS150K dataset of 150K
Tweets, and Suryawanshi et al. (2020)’s MultiOFF
dataset for identifying offensive meme content,
which showcased a fusion method combining text
and image modalities.
Explainability: LIME (Ribeiro et al., 2016) and
SHAP (Lundberg and Lee, 2017) have been used
to advance both textual and visual explainability
in machine learning models. Zaidan et al. (2007)
improved sentiment classification by employing
human-annotated "rationales." Mathew et al. (2020)
introduced HateXplain, finding that training with
human rationales reduced bias. Karim et al. (2021)
developed an explainable hate speech detection
in Bengali, highlighting crucial words. Hee et al.
(2022) visualized how VilBERT and VisualBERT
models captured slurs in hateful memes, discov-
ering the image modality’s significant contribu-
tion. While most studies used explainability to
justify model outputs, our task uniquely focuses
on explainability as the output itself, specifically
designed to offer textual and visual explanations
for cyberbullying memes. This represents the first
effort to generate MExCCM.

3 Multimodal Bully Explanations Dataset
(MultiBully-Ex)

To create MultiBully-Ex, we utilize MultiBully
dataset3 (Maity et al., 2022b), which includes 3222
bully and 2632 nonbully memes. We selected

3https://github.com/Jhaprince/
MultiBully
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this dataset because it is the only openly available
meme dataset on cyberbullying in a code-mixed
setting. Our work focuses on jointly extracting tex-
tual rationales (words or phrases) and visual masks
(image segmentation) to localize salient regions
to explain cyberbullying detection tasks. Hence
we only considered the bully memes for further
annotation.

3.1 Annotation training

The annotation was led by three Ph.D. scholars
with adequate knowledge and expertise in detec-
tion and mitigation of cyberbullying, hate speech,
and offensive content and performed by three un-
dergraduate students with proficiency in both Hindi
and English. First, ten undergraduate computer sci-
ence students were voluntarily hired through the
department email list and compensated through
honorarium4. For annotation training, we required
gold standard samples annotated with rationale la-
bels. We aim to annotate the text explainability
(rationales) part first, and then, based on those ra-
tionales, the visual annotation will be done. Our
expert annotators randomly selected 150 memes
and highlighted the words (rationales) for the tex-
tual explanation. Each word in a meme has been
assigned a value of 0 or 1, where 1 represents that
it is one of the rationales. Later expert annotators
discussed each other and resolved the differences
to create 150 gold standard samples with rationale
annotations. We divide these 150 annotated exam-
ples into three sets, 50 rationale annotations each,
to carry out three-phase training. After the com-
pletion of every phase, expert annotators met with
novice annotators to correct the wrong annotations,
and simultaneously annotation guidelines (refer Ap-
pendix C.1) were also renewed. After completing
the third round of training, the top three annotators
were selected to annotate the entire dataset.

3.2 Main Annotation

We used the open-source platform Docanno5 de-
ployed on a Heroku instance for main annotation
where each qualified annotator was provided with a
secure account to annotate and track their progress
exclusively. We initiated our main annotation pro-
cess with a small batch of 100 memes and later
raised it to 500 memes as the annotators became

4refer to Appendix C.2 and Appendix C.3 for more details
on cost and timeline

5https://github.com/doccano/doccano

well-experienced with the tasks. We tried to main-
tain the annotators’ agreement by correcting some
errors they made in the previous batch. On com-
pletion of each set of annotations, final rationale
labels were decided by the majority voting method.
If the selections of three annotators vary, we en-
list the help of an expert annotator to break the tie.
We also directed annotators to annotate the posts
without regard for any particular demography, re-
ligion, or other factors. We use the Fleiss’ Kappa
score (Fleiss, 1971) to calculate the token level
inter-annotator agreement (IAA) among multiple
raters for the rationale detection task signifying the
dataset being of acceptable quality. IAA obtained
a score of 0.72 for the rationales detection task sig-
nifying the dataset being of acceptable quality.
Once annotators finished doing rationale annota-
tions, they were further asked to highlight the vi-
sual regions that could justify the rationale anno-
tations. Visual annotations were done using open
source image segmentation UI interface label stu-
dio6, where the annotator has to mark the regions
of the image to generate a binary image where
the highlighted portion having pixel value 1 and
others are 0. Figure 1 shows an annotated sam-
ple from the MultiBully-Ex dataset. We assessed
the inter-annotator agreement for visual annotation
using the Dice coefficient, which is a measure of
overlap between two annotations. To ensure the
accuracy of the annotations, we first had a single
annotator create them and then assigned the same
annotation to another annotator. We then compared
their annotations using the Dice coefficient. If the
coefficient was greater than 0.5, we included the
annotation from the first annotator. However, if the
coefficient was less than or equal to 0.5, an expert
annotator was consulted to make the annotation.
It’s noteworthy that the average number of tokens
highlighted as ’bully’ was 6.79. Conversely, the to-
tal average number of tokens for ’meme’ amounted
to 14.12. Additionally, we discovered that the total
average percentage of the area covered by visual
explanations within the meme was 35.187.

4 Methodology

Formulation of MExCM: Formally, given a meme
(M ) with textual modality T = {t1, t2, ..., tn} and
visual modality V ∈ R3×W×H , where W is the
width and H is the height of an image, we intend

6https://labelstud.io/
7refer Appendix C.4 for more details on dataset statistics
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to learn textual justification along with visual ev-
idence which is defined as follow: (1) Textual
Explanation: Textual explanation is the process of
extracting pertinent rationales R = {r1, r2, .., rk}
from the textual modality T of a meme M , which
contributes to its classification as a cyberbullying
instance. (2) Visual Explanation: Visual expla-
nation involves a semantic segmentation task, the
aim of which is to predict the segmented region
S ∈ R1×W×H within the visual modality V . This
segmented region is perceived as supporting evi-
dence aligning with the textual justification.
Motivated from Liu et al. (2016), we propose
a CLIP (Radford et al., 2021) projection-based
(CP) multimodal shared-private multitask architec-
ture. To enhance comprehension of our proposed
method, we partition it into three distinct compo-
nents: (1) CLIP Projection-Based Cross-Modal
Neck, (2) Vision-Informed Textual Seq2Seq model,
and (3) Linguistically-Sensitive Visual Segmenta-
tion model. In our design, the CLIP projection-
based cross-modal neck acts as a shared layer, serv-
ing both the textual and visual explanation com-
ponents. Meanwhile, we employ BART encoder
and CVE (CLIP Visual Encoder) as private layers,

enabling them to focus more effectively on their
respective tasks. This decision to use separate task-
specific encoders stems from our concern that a
unified encoder’s shared feature space might inad-
vertently contain task-specific features, potentially
leading to unnecessary feature redundancy and a
mixing of sharable features in the private space

4.1 CLIP Projection-Based Cross-Modal Neck

Our proposed CLIP projection-based Cross-Modal
Neck acts as a common component bridging two
task-specific networks: (1) the Vision-Informed
Textual Seq2Seq model, and (2) the Linguistically-
Sensitive Visual Segmentation model. We imple-
ment modality-specific gating mechanisms to man-
age the interplay of information between these tex-
tual and visual facets. The initial step in our pro-
cess involves the acquisition of representations for
each text-meme pair. This is facilitated by CLIP
(Contrastive Language-Image Pre-training), a pre-
trained model proficient in visual-linguistic tasks,
which leverages its capabilities to encapsulate the
holistic meaning of the meme. CLIP’s effective-
ness can be traced back to its extensive pre-training
on 400 million image-text pairs harvested from
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the Internet. This training process, driven by con-
trastive learning objectives, along with the breadth
of imagery and natural language exposure, bestows
upon CLIP’s remarkable zero-shot performance.
In this study, we use multilingual BERT for text
encoding and the Vision Transformer for image
encoding. We extract two core features from each
meme: a CLIP visual feature, CI , from the meme’s
image, M , and a CLIP textual feature, CT , from
its OCR-extracted text, T . Both these features, CI

and CT , are represented as 512-dimensional vec-
tors. After this, these two vectors (CI and CT ) are
concatenated to create a joint vector representation
of both modalities which are fed into the following
two gating mechanisms simultaneously:

4.1.1 Gated Visual Projection
Previous research (Zhang et al., 2018; Lu et al.,
2018) highlights the infeasibility of correlating
functional words, such as ’the,’ ’of,’ and ’well,’
with any visual block. To address this, our ap-
proach includes a visual gate designed to dynam-
ically calibrate the contribution of visual features.
We also employ a cross-modal projection neck to
transpose gated visual features into the space of
a BART (or T5) encoder. The implementation of
the cross-modal projection neck can be achieved
via a transformer-based architecture, leveraging its
capacity to enable global attention among input
tokens. To facilitate this, we feed the visual en-
coding from CLIP into the transformer-based net-
work, merging it with randomly initialized, learn-
able weights (RW). The integration of these learn-
able weights serves dual purposes. Firstly, it em-
powers the multi-head attention mechanism with
access to valuable information from the CLIP em-
bedding. Secondly, it enables the network parame-
ters to adapt responsively to incoming information,
thereby enhancing the system’s ability to learn and
evolve over time.

4.1.2 Gated Textual Projection
Recent literature (García-Valero, 2020; Jha et al.,
2022) illustrates that several communicative as-
pects, including facial expressions, gestures, pos-
tures, spatial relationships, color schemes, and
movement, are more accurately expressed via vi-
sual cues as compared to text-based communica-
tion. In response to these findings, our proposed
model incorporates a textual gating mechanism that
moderates the influence of textual features. Com-
plementing this, we utilize a Feed Forward Net-

work (FFN) to map these textual characteristics
into the domain of the segmentation decoder. This
integrated approach underscores the importance
of both visual and textual elements, aligning with
our overarching aim of developing a multimodal
understanding of memes.

4.2 Vision-Informed Textual Seq2Seq Model

We introduce a module designed to generate ex-
plainable text, which harnesses visual understand-
ing by employing a combination of CLIP-based
gated visual projection and generative pre-trained
language models (GPLMs), specifically BART and
T5. The process begins with the tokenization of
input text and its transformation into a sequence
of embeddings, Xt ∈ RN×dt , where N is the se-
quence length and dt is the feature dimension. To
preserve the positional information of these token
embeddings, positional encodings, Epost ∈ RN×dt

are added elementwise. The resultant input Z0,
now encompassing the positional information, is
channeled into our proposed vision-aware encoder.

This vision-aware encoder comprises three sub-
components: 1) Multi-head Self-Attention (MSA),
2) Feedforward Network (FNN), and 3) Text-
Vision Fusion (TVF). Additionally, each sublayer
is followed by a residual connection (He et al.,
2016) and layer normalization (Ba et al., 2016).
The MSA (Multi-head Self-Attention) and FNN
(Feedforward Network) components of our model
are standard transformer layers, designed to facili-
tate the processing of our input data.

CLIP visual features, CI , and textual features,
CT , are processed through the Gated Visual Projec-
tion (GV P ) (as defined in the previous section) to
yield a controlled visual information Pv ∈ RM×dt ,
where M is the projected sequence length with an
embedding dimension of dt.

Pv = GV P (CI , CT ) (1)

In the Text-Vision Fusion (TVF) component of
our model, we employ two types of multimodal
fusion mechanisms (refer Appendix A), namely
dot product attention-based fusion and multi-head
attention-based fusion as suggested in (Yu et al.,
2021; Tsai et al., 2019). Formally, textual input
Zt ∈ RN×dt and gated visual input Pv ∈ RM×dt

are fused to produce a vision-aware textual repre-
sentation F ∈ RN×dt that has a same dimension
as the textual input, which allows the continual
stacking of layers.
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4.3 Linguistically Sensitive Visual
Segmentation Model

We introduce a transformer-based encoder-decoder
model, inspired by the UNet architecture, that incor-
porates a novel gated textual projection mechanism
(CP-UNet). This mechanism is designed to aug-
ment the representation capabilities of the encoder,
thereby enhancing the overall efficacy of the model.
Our encoder assembly includes a series of trans-
former layers based on the CLIP model, linked to
the decoder via residual connections. The decoder
is structured around a straightforward transformer-
based architecture, leveraging the insights offered
by the encoder to generate the final output. For-
mally, an input image V ∈ RC×W×H is processed
through the CLIP visual encoder, resulting in a
sequence of embeddings Xv ∈ RP×dt , where P
represents the projected sequence length with di-
mension dt. To encapsulate spatial features from
the visual information, we incorporate a positional
embedding Eposv ∈ RP×dt . The encoded repre-
sentation is acquired by passing the input through
a cascade of sub-layers, including MSA and FNN,
succeeded by Layer Normalization. At each layer
of the CLIP visual transformer, these encodings
are captured and projected into the decoder’s space.
They are subsequently merged with the internal
features of our decoder preceding each transformer
block. The decoder is designed to match the num-
ber of transformer blocks extracted from the CLIP
visual transformer. Importantly, the decoder inputs
are modulated with a projected gated textual vector,
facilitating a deeper comprehension of the linguis-
tic context embedded in the input, thereby yielding
more accurate and contextually aligned outputs.

4.4 Loss Prioritization

Inspired by Bengio et al. (2009), we introduce
the concept of loss prioritization sequentially so
that we can concentrate on a specific task on a
priority basis. The basic hypothesis is that the
cognitive process of MExCCM may not be en-
tirely simultaneous. Both generation loss and
segmentation loss must combine sequentially to
achieve the desired output. We combine the loss
function with a certain periodicity, i.e., after a
given number of epochs ep ∈ {15, 20, 25}. The
network initially learns its weight over a partic-
ular loss function (learning particular aspects of
tasks), after which it self-tunes the weights over
all loss functions combined sequentially (learning

some other facets of the task). Mathematically,
an overall global loss function, Lep

global can be de-

fined by the equation: Lep
global = L0.ep

i0
+ L1.ep

i1
where Liqs are individual losses such that iq ∈
{generation_loss, segmentation_loss} and q
can be non-negative integer, at a given periodic-
ity of ep epochs. A regular cross-entropy loss is
employed to calculate generation_loss and segmen-
tation_loss.

5 Results and Discussion

For a fair comparison with proposed models, we
have set up standard baselines such as BART
(Lewis et al., 2019), T5 (Raffel et al., 2020), VG-
BART, VG-T5 (Yu et al., 2021), and DeepLabv3
(Chen et al., 2017), MobileNetv3 (Howard et al.,
2019), Fully Convolutional Networks (FCN) (Long
et al., 2015), UNet (Ronneberger et al., 2015) for
textual and visual explainability, respectively. De-
tailed explanations on baselines, evaluation metrics
and training details are given in Appendix B). Our
proposed model can be utilized in a single task
(keeping one task-specific private layers) or multi-
task (keeping both visual and textual private layers)
settings. In single task setting, there is no gating
mechanism.

5.1 Quantitative analysis

We have conducted a statistical t-test on the results
of our proposed model and other baselines and ob-
tained a p-value less than 0.05.
(i) Single Task: Unimodal models The perfor-
mance of unimodal models is detailed in Table 2
(textual explanations) and Table 3 (visual explana-
tions). T5-base and BART-base models outperform
their larger counterparts, possibly due to overfitting
from excessive parameters given the limited dataset
size (3222 instances). For visual explanations,
our CLIP-based UNet excels compared to base-
line models using visual features from networks
like ResNet, VGG19, AlexNet, etc., optimized for
ImageNet, not memes. This superiority stems from
CLIP’s fine-tuning to better represent visual in-
formation through language supervision (Radford
et al., 2021).

(ii) Single Task: Multimodal models Our pro-
posed multimodal models use dot product attention-
based fusion (A1) and multi-head attention-based
fusion (A2) techniques, combined with gated visual
projection. According to the results (see 2 and 3),
our CLIP projection-based GPLMs outshine all

935



Table 1: Results of proposed multitask model for textual and Visual Explainability, A1: Dot-product attention,
A2: Multi-head attention, CP-UNet: CLIP projection-based UNet, RW: Random weight, DC: Dice Coefficient, JS:
Jaccard Similarity, mIOU: Mean Intersection over Union.

Model
Textual Explinability Visual Explinability

ROUGE BLEU HE DC JS mIOU HER1 R2 R-L B1 B2 B3 B4
CP-UNet-T5_A1 60.94 45.58 60.43 60.16 53.32 49.73 46.93 3.91 68.72 54.72 60.93 4.37

CP-UNet-T5_A1+RW 61.06 46.33 60.59 60.63 54.44 51.05 48.15 4.07 68.7 54.76 61.29 4.36
CP-UNet-T5_A2 61.46 45.63 61.07 60.86 54.55 50.93 47.33 4.31 68.32 54.11 60.82 4.28

CP-UNet-T5_A2+RW 61.67 45.28 61.21 61.75 55.24 51.39 47.82 4.34 68.38 54.42 59.93 4.29
CP-UNet-BART_A1 61.76 45.68 61.54 61.68 56.96 52.26 49.57 4.38 67.95 53.67 61.58 4.25

CP-UNet-BART_A1+RW 63.06 46.63 62.57 62.86 56.55 52.92 49.33 4.57 67.32 53.95 61.13 4.24
CP-UNet-BART_A2 62.91 46.93 62.57 62.44 56.51 53.03 49.21 4.42 67.03 53.69 62.53 4.21

CP-UNet-BART_A2+RW 63.54 47.36 63.07 62.75 57.13 53.39 50.81 4.59 67.19 53.03 62.29 4.23

Table 2: Results of different baselines and proposed
Single task model for textual explainability

Model ROUGE BLEU HER1 R2 R-L B1 B2 B3 B4
Unimodal Baselines

T5-base 59.97 44.01 59.61 60.48 53.7 50.03 47.14 3.67
T5-large 59.57 43.47 59.07 58.87 52.43 48.83 45.86 3.62
Bart-base 60.05 46.35 59.86 60.55 56.46 50.52 49.98 3.81
Bart-large 58.64 43.17 58.15 58.4 51.62 47.95 45.03 3.24

Multimodal Baselines
VG-T5 (Dot-product) 60.2 44.08 59.7 59.26 52.75 47.57 46.52 3.85
VG-T5 (Multi-head) 60.85 44.97 60.11 60.89 56.99 52.87 49.29 3.93

VG-BART (Dot-product) 60.84 45.76 60.25 61.2 54.54 50.78 47.81 3.91
VG-BART (Multi-head) 61.17 45.37 60.8 60.37 53.99 50.52 47.57 4.26

Proposed models
CP-T5_A1 60.04 43.12 59.32 59.55 52.87 49.02 46.15 3.81

CP-T5_A1+RW 60.15 43.56 59.55 59.74 53.11 49.59 46.72 3.83
CP-T5_A2 61.16 44.69 60.72 60.1 54.76 50.16 47.31 4.21

CP-T5_A2+RW 61.36 44.92 60.97 60.59 54.34 50.88 48.02 4.26
CP-BART_A1 61.71 45.98 61.27 62.17 55.55 51.73 48.88 4.27

CP-BART_A1+RW 62.37 46.51 62.06 62.53 57.09 53.55 50.85 4.32
CP-BART_A2 61.99 46.11 61.5 62.43 55.72 51.96 48.68 4.3

CP-BART_A2+RW 62.33 46.49 61.85 62.44 55.9 52.14 48.69 4.39

other models. The top model, CP-BART_A2 +
RW, notably improves over previous best mod-
els by up to 2.28 ROUGE-1, 0.14 ROUGE-2, and
3.7 ROUGE-L scores. Using visual embeddings
from CLIP with randomly initialized learnable
weights (+RW) significantly enhances performance
in textual explainability tasks. The language-aware
CLIP-UNet model outperforms its unimodal coun-
terpart, with improvements up to 1.01 in DC and
0.59 in JS scores, and substantial margins over
the previous best unimodal model. However, the
enhancement by the language-aware variant is
marginal, likely because CLIP embeddings are op-
timized for visual rather than textual information.

(iii) Multi-Task: Shared-Private Architecture
As evidenced by the results presented in Table
1, 2, and 3, it can be observed that the CLIP
projection-based multimodal shared-private mul-
titask approach outperforms all single task base-
lines by a significant margin, thus supporting the
notion that training with multimodal explanations
leads to enhanced performance in the generation
of textual justifications and more precise identifi-

Table 3: Results of baselines and proposed Single task
model for Visual explainability; V: Vision; L: Language;
HE: Human Evaluation

Model
Visual Explainability

DC JS mIOU HE
Unimodal Baselines

DeepLabv3 38.85 24.92 32.25 1.79
MobileNetV3 39.49 25.49 32.16 2.07

FCN 39.21 25.29 31.97 2.12
UNet 41.89 27.35 31.79 2.41

Proposed Models
(V) CP-UNet 65.71 51.86 63.03 3.83

(V+L) CP-UNet 66.22 52.45 62.95 3.91

cation of visual evidence. Notably, our most effec-
tive multitask model, CP-UNet-BART_A2 + RW,
which is optimized for text explanations, outper-
forms the best single-task textual explainability
model (CP-BART) by 1.21 R1, 0.87 R2, and 1.22
R3. Additionally, the best multitasking model, CP-
UNet-T5_A1 + RW, which is optimized for visual
explanations, outperforms the single task visual
explainability model (CP_UNet) by 2.48 DC, and
2.31 JS.

(iv) Human Evaluation (HE): We conducted a
human evaluation to assess the quality of generated
explanations from our proposed methods. MEx-
CCM was evaluated based on the following criteria:
1 - Very Irrelevant: The explanation does not
address the topic or concept adequately. 5 - Very
Relevant: The explanation is highly relevant to
the topic or concept. Our analysis revealed notable
findings regarding the relevance of different mod-
els in various settings. Specifically, when consider-
ing unimodal approaches, our best language-based
model, CP-BART_A2+RW, achieved an impres-
sive average relevance score of 4.39 for textual
explanations. On the other hand, our vision-based
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model, CP-UNet, obtained an average relevance
score of 3.91 for visual explanations. Moving
on to the multitask setting, our model CP-UNet-
BART_A1+RW demonstrated exceptional perfor-
mance by achieving an average relevance score of
4.59 for textual explainability. Similarly, our model
CP-UNet-T5_A1 excelled in providing relevant vi-
sual explanations, securing an average relevance
score of 4.37 ( refer to Table 1, 2 and 3 for more
details).

5.2 Qualitative Analysis

Figure 3 presents results comparing visual and tex-
tual explainability of ground truth vs. model pre-
dictions.
(i) In the first meme, textual context ("boyfriend ke
sath ka argument toh solve ho hi jayega...") is more
vital than the visual. Both single-task and multi-
task models identify the same number of correct
rationales. The multi-task model better captures
the visual aspect, representing the girl’s face. (ii)
In the second meme, visual cues surpass the tex-
tual message ("Happy Holi especially jo ghar pai
hai"). The multi-task model more accurately iden-
tifies visual and textual cues than the single-task
model. (iii) For the final meme, both modalities
equally contribute to the meme’s meaning. The
multi-task model fares better, capturing most ratio-
nales with minor mistakes. Visually, the single-task
model’s prediction is less accurate than the multi-
task model’s.
From this qualitative analysis, we can conclude
that (a) Multi-task-model is performing better than
single task model, but visual explainability is still
not convincing. More research is needed in this
direction. (b) In cases where any one of the modal-
ities dominates the others (example i and ii) single-
task model performance is comparable to multi-
tasking. (c) In cases where both modalities have
an equal contribution, the multi-task model signifi-
cantly performs better than the single-task model,
which reveals that simultaneously learning both
textual and visual explainability helps improve the
performance of both tasks.

6 Conclusion and Future Work

To encourage more research on explainable meme
cyberbullying detection in code-mixed language,
we introduced MultiBully-Ex, manually annotated
with textual and visual explanations. This work
introduces a CLIP projection-based multimodal
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Figure 3: Human annotation vs. proposed model’s vi-
sual and textual explanations; Green highlights indicate
an agreement between the human annotator and the
model. Red highlighted tokens are predicted by models,
not by human annotators.

shared-private architecture to generate rationales
(textual explainability) and binary segmented im-
age maps (visual explainability). Experimental re-
sults demonstrate that multitask models outperform
the single-task model by a significant margin. We
showed examples where visual modality is more
effective than textual ones and vice versa, support-
ing the idea that multimodal explainable models
provide better insight than unimodal approaches.
Future attempts will be made to develop methods
for identifying stereotypes in cyberbullying memes
to capture implicit content and training models on
a diverse dataset to enhance the performance of
visual explainability.
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7 Limitation

We have proposed a shared-private multimodal mul-
titask architecture and a new benchmark dataset,
MultiBully-Ex, to improve the explainability of
cyberbullying memes in code-mixed Indian lan-
guages. However, there are some limitations to this
approach:
1) Specifically, the textual explainability of memes
is limited to the lexical level, which precludes the
detection of implicit cyberbullying or stereotypes.
2) One of the main limitations of our work is its
lack of generalizability to other code-mixed lan-
guages such as English and Spanish. However,
this limitation can be addressed by fine-tuning the
model on other code-mixed languages, which will
enable it to capture the cultural nuances of the lan-
guage.
3) Additionally, the visual explainability aspect of
our approach, which involves predicting binary seg-
mentation maps, is susceptible to the center bias
commonly observed in computer vision models.
This can impede the correct identification of visual
cues that support the textual explanations, particu-
larly for objects or features located in the corners
or edges of the image.
4) This study is specifically dedicated to the analy-
sis and understanding of memes in this image and
text-based format. It is essential to highlight that
our research delves into the unique characteristics
and communication potential of static memes, dis-
tinct from the analysis of dynamic video memes.
The latter, involving audiovisual elements, falls
beyond the scope of our investigation.
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A Attention Mechanism

A.1 Dot Product Attention Based Fusion
In this type of fusion mechanism, we begin by pro-
jecting the visual features to the same dimensional
space as the textual features (Eq. 2). Then, the dot-
product is calculated, and the softmax function is
applied (Eq. 3). Finally, the input textual features
are combined with the attention-weighted visual

features and projected through a linear transforma-
tion to generate the vision-guided textual features
(Eq. 4).

Z
′
v = ZvW1 (2)

A = Softmax(ZtZ
′
v) (3)

Z
′
t = Concat(Zt, AZv)W2 (4)

A.2 Multi-head Attention Based Fusion
In this type of fusion mechanism, a multi-head
attention mechanism based on vision guidance is
used for text-vision fusion. Query, Key, and Value
are all projected linearly from the input text and
visual components (Eq. 5 - Eq. 7). Cross-modal
attention is utilized to gather the text-queried visual
features (Eq. 8). Finally, the final output representa-
tion is created by combining input textual features
and text-queried visual features (Eq. 9).

Q = ZtWq (5)

K = ZvWk (6)

V = ZvWv (7)

O = CMA(Q,K, V ) (8)

Z
′
t = Concat(Zt, O)W3 (9)

B Experimental Setups

B.1 Generation Baselines
BART (Lewis et al., 2019): BART is an encoder-
decoder-based transformer model which is mainly
pre- trained for text generation tasks such as sum-
marization and translation. BART is pre- trained
with various denoising pretraining objectives such
as token masking, sentence permutation, sentence
rotation etc.
T5 (Raffel et al., 2020): T5 is also an encoder-
decoder-based transformer model which aims to
solve all the text-to-text generation problems. The
main difference between BART and T5 is the pre-
training objective. In T5, the transformer is pre-
trained with a denoising objective where 15these
masked tokens whereas, during pre-training of
BART, the decoder generates the complete input
sequence
VG-BART (Yu et al., 2021): VG-BART is a mul-
timodal variant of BART proposed by Yu et al.
(2021) that uses a text-vision fusion mechanism
inside BART encoder.
VG-T5 (Yu et al., 2021): The work of Yu et al.
(2021) presents VG-T5, a multimodal version of
T5 which incorporates a text-visual fusion tech-
nique within the T5 encoder.
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B.2 Segmentation Baselines

Fully Convolutional Network (FCN): FCN (Long
et al., 2015) is a type of CNN that can segment im-
ages of any size, it was one of the first models
that can handle variable size inputs, now it is a
standard in most segmentation models. The model
upsamples the feature maps from lower layers and
combine them with higher layer feature maps to
produce the final segmentation mask.
DeepLabv3 DeepLabv3 (Chen et al., 2017), devel-
oped by Google in 2017, is a state-of-the-art se-
mantic image segmentation model that utilizes an
encoder-decoder architecture incorporating atrous
convolution and skip connections to enhance seg-
mentation accuracy.
MobileNetv3: MobileNetv3 (Howard et al., 2019)
is a lightweight neural network architecture uti-
lizes a combination of depthwise convolution and
bottlenecks blocks to achieve high efficiency and
accuracy. It also uses a new neural architecture
search method to find the optimal combination of
building blocks.
UNet: UNet (Ronneberger et al., 2015) is a con-
volutional neural network, utilizes a "U" shaped
architecture that combines the feature information
from a downsampling path with the upsampled out-
put from an upsampling path. The architecture also
uses skip connections to concatenate the feature
maps from the downsampling path to the upsam-
pling path, which helps to improve segmentation
performance.

B.3 Evaluation Metrics

We present the scores of five automated evaluation
metrics, including ROUGE (ROUGE, 2004) and
BLEU (Papineni et al., 2002), which are used to
measure the performance of the textual explainabil-
ity, as well as Dice Coefficient (DC) (Dice, 1945),
Jaccard Similarity (JS) (Jaccard, 1901), and mean
Intersection over Union (mIOU), which are used to
evaluate the visual explainability.

(i) BLEU: One of the earliest metrics to be used
to measure the similarity between two phrases is
BLEU. It was first proposed for machine translation
and is described as the geometric mean of n-gram
precision scores times a brevity penalty for short
sentences. We apply the smoothed BLEU in our
experiments as defined in (Lin and Och, 2004).

(ii) ROUGE-L: ROUGE was first presented for
the assessment of summarization systems, and this
evaluation is carried out by comparing overlapping

n-grams, word sequences, and word pairs. In this
work, we employ ROUGE-1 (unigram), ROUGE-2
(bigram) and ROUGE-L version, which measures
the longest common subsequences between a pair
of phrases.

(iii) Dice Coefficient: The Dice coefficient is
a similarity metric used in image segmentation to
measure the similarity between two sets. It ranges
from 0 to 1, where 1 indicates perfect match and
0 indicates no match. The formula for Dice coeffi-
cient is (2 ∗ |A ∩B|)/(|A|+ |B|), where A and B
are the two sets being compared. It is particularly
useful when working with imbalanced datasets.

(iv) Jaccard Similarity: Jaccard similarity is
a similarity metric used to measure the similarity
between two sets, it is often used in natural lan-
guage processing, information retrieval and image
segmentation. It ranges from 0 to 1, where 1 indi-
cates perfect match and 0 indicates no match. The
formula for Jaccard similarity is |A ∩B|/|A ∪B|,
where A and B are the two sets being compared.

(v) mIOU: Mean Intersection over Union
(mIOU) is an evaluation metric used in image seg-
mentation tasks, it is the mean of the Intersection
over Union (IoU) scores for all the classes. It is
used to measure the similarity of predicted segmen-
tation maps with ground truth segmentation maps,
unlike Jaccard similarity which is used to measure
the similarity between two sets.

B.4 Training Details

In this section, we detail various hyperparameters
and experimental settings used in our work. We
have performed all the experiments on Tyrone ma-
chine with Intel’s Xeon W-2155 Processor having
196 Gb DDR4 RAM and 11 Gb Nvidia 1080Ti
GPU. We have randomly chosen 70% of the data
for training, 10% for validation, and the remaining
20% for testing. We have executed all of the mod-
els five times, and the average results have been
reported. We have used BART (Lewis et al., 2019),
T5 (Raffel et al., 2020) as the base model for our
proposed model. All the models are trained for
a maximum of 40 epochs and a batch size of 32.
Adam optimizer is used to train the model with an
epsilon value of 0.00000001. All the models are
implemented using Scikit-Learn8 and pytorch9 as
a backend.

8https://scikit-learn.org/stable/
9https://pytorch.org/

941

https://scikit-learn.org/stable/
https://pytorch.org/


C Annotations

C.1 Annotation Guidelines
We follow cyberbullying definition by (Smith et al.,
2008) for our annotation process. In order to help
and guide our annotators, we provide them with
several examples of memes with textual and visual
explanations marked. We first read the entire text
present inside the memes for rationale annotations
and looked at the depicted visual clues. Each lexi-
con was marked either Bully or Non-bully based on
the visual and textual context. Additionally, visual
regions were segmented that prominently justified
the rationale annotations for visual explanations.

C.2 Daywise Schedule
• Day 1 and Day 4: Each annotator was as-

signed to annotate rationales for 150 memes.
They were instructed to annotate 30 memes
per batch within one hour, followed by a
mandatory break of 10 minutes (cf. Sec-
tion C.3).

• Day 2 and Day 5: Each annotator was
assigned to highlight the visual regions that
could justify the rationale annotations.

• Day 3: We arrange meetings with the anno-
tators to ensure that their mental well-being is
not adversely affected during the annotation
process (cf. Section C.3).

C.3 Annotation cost
The process of annotating multimodal explanation
is time-consuming and expensive, with each meme
sample requiring 2-3 minutes for textual and visual
explanation each. We initially hired 10 annotators
and selected 3 best annotators among them. An
honorarium of 5 INR was offered per sample due
to the inherent complexity, which was ensured to
be appropriate considering the 160-750 INR min-
imum wage/day based on the Minimum Wages
Act, 194810 in India (where the annotations were
done) based on the average number of annotations
across all annotators per day. The entire annotation
process took approximately 10 weeks to complete
following daywise schedule.

Ethics note: Repetitive consumption of on-
line abuse could distress mental health conditions
(Ybarra et al., 2006). Therefore, we advised an-
notators to take periodic breaks and not do the

10https://en.wikipedia.org/wiki/List_
of_countries_by_minimum_wage

annotations in one sitting. Besides, we had weekly
meetings with them to ensure the annotations did
not have any adverse effect on their mental health.

C.4 Statistics of Annotated Multimodal
Explanations

Figure 4 illustrates the distribution of meme text.
The figure showcases that the length of meme text
typically falls within the range of 0 to 80 charac-
ters. Upon conducting calculations, the average
length of meme text was determined to be approx-
imately 14.12 characters. In a similar vein, the
length of rationales ranges from 0 to 40, as depicted
in Figure 5. The average token length of annotated
rationales was observed to be around 6.79. Fur-
thermore, we observed that, on average, 35.18% of
the image area is dedicated to visual explanations
for cyberbullying memes. The distribution for the
percentage of area selected for annotated visual
explanations can be found in Figure 6.
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Figure 4: Distribution for Length of Meme Text
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