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Abstract
Identification of cognates across related lan-
guages is one of the primary problems in his-
torical linguistics. Automated cognate iden-
tification is helpful for several downstream
tasks including identifying sound correspon-
dences, proto-language reconstruction, phylo-
genetic classification, etc. Previous state-of-
the-art methods for cognate identification are
mostly based on distributions of phonemes
computed across multilingual wordlists and
make little use of the cognacy labels that de-
fine links among cognate clusters. In this paper,
we present a transformer-based architecture in-
spired by computational biology for the task of
automated cognate detection. Beyond a certain
amount of supervision, this method performs
better than the existing methods, and shows
steady improvement with further increase in
supervision, thereby proving the efficacy of uti-
lizing the labeled information. We also demon-
strate that accepting multiple sequence align-
ments as input and having an end-to-end archi-
tecture with link prediction head saves much
computation time while simultaneously yield-
ing superior performance.

1 Introduction

Words in genetically related languages with same
descendance from a common ancestral language
are termed as cognates. For example, Sanskrit
bhava and English be are cognates reconstructed as
*bhewH- in ancestral Proto-Indo-European. Within
historical linguistics, assembling potential cognates
forms an essential step in the comparative method
to proceed to further stages such as formulation
of sound laws, reconstruction of proto-language,
phylogenetic reconstruction, etc. (Campbell, 2013).
Cognate identification has been traditionally car-
ried out by tedious manual cross-comparisons of
lexica across several concepts or meanings; this
often requires sufficient linguistic expertise in the
languages that are being compared. Automated cog-
nate detection attempts to alleviate manual labor

and, thus, assists a historical linguist to quickly pro-
duce high-quality etymologies required for down-
stream tasks.

Over the past decade, several methods for auto-
mated cognate detection, mostly using sequence
alignment and other techniques inspired by bioin-
formatics and evolutionary biology (List et al.,
2017), have appeared. The best-performing meth-
ods primarily depend on similarity scores com-
puted from distributions of phonemes in multilin-
gual wordlists (Rama and List, 2019) and make
little or no use of the cognacy labels except for a
clustering task at the end. In this paper, we ad-
vocate for a supervised learning scenario that uti-
lizes the labeled information to the fullest. We
demonstrate that such a scenario combined with
the representational power of an appropriate deep
neural network architecture can outperform previ-
ous methods above a certain amount of supervision.
We also demonstrate that such a model is also ca-
pable of transfer learning. In other words, once
trained on some data, it can perform well on any
dataset unseen so far with little additional supervi-
sion.

The typical procedure followed by the state-
of-the-art methods for this problem is as follows.
In each language family, attested words from all
languages that have the same meaning, i.e., con-
cept, are clustered based on the pairwise similarity
measures computed by the respective procedure.
We propose a different approach where instead of
clustering based on pairwise similarity we directly
take input a multiple sequence alignment (MSA) of
words of the same concept and predict linkage via
an end-to-end architecture. This approach proves
to be much better in performance and much faster
than clustering from independent pairwise similar-
ity measures.

Many of the algorithms in computational his-
torical linguistics are heavily drawn or inspired
by computational biology. Continuing the trend,
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we adopt Cognate Transformer (Akavarapu and
Bhattacharya, 2023), which yielded state-of-the-
art performance in automated phonological recon-
struction task, as the base architecture. Cognate
Transformer was adapted from MSA Transformer
(Rao et al., 2021), a protein language model that ex-
cels in contact predictions. We additionally append
to this architecture layers consisting of triangular
multiplication and triangular attention modules in-
spired by Alphafold2 (Jumper et al., 2021), the
state-of-the-art protein structure predictor, where
the modules roughly capture triangle inequalities
among the distances between amino acid residues.
For our task, we applied these modules for captur-
ing transitivity property among linkages in cognate
clusters. We find that the addition of this particular
module has a significant share in the performance
of the overall architecture.

Our key contributions are as follows:

1. Firstly, we propose a supervised method for
automated cognate detection that outperforms
existing methods with sufficient supervision
with likely improvement on further supervi-
sion, thus utilizing the labeled data much more
efficiently than previous models while also
demonstrating few-concept (akin to few-shot)
learning.

2. Secondly, our method consists of an end-to-
end architecture that avoids independent pair-
wise computations by accepting MSA as in-
put and directly predicting cluster linkages,
which proves to be more efficient in terms of
both performance and time than a pairwise
approach.

3. Thirdly, we incorporate into the architecture
of Cognate Transformer additional modules
to capture transitivity property among cognate
cluster linkages which has a positive effect on
overall performance.

The rest of the paper is organized as follows.
Related work is mentioned in §2. The problem
statement is elaborated in §3. The methodology is
described in §4. The details of the experimental
setup including the datasets used, previous base-
lines, and evaluation measures are described in
§5. The results of experiments and ablation studies
along with error analyses and discussions are given
in §6. Finally, the article is concluded in §7.

2 Related Work

Computational historical linguistics is a young field
that emerged over the past two decades. Notable
works that lead to significant progress in auto-
matic cognate detection are as follows. Conso-
nant Class Method of Turchin et al. (2010) deems
two words as cognate if the first two consonants
fall under the same consonant class. In Sound-
Class-based phonetic alignment (SCA) of List
(2010), pairwise phoneme sequences are aligned
and scored for similarity using sound classes that
extend consonant classes. LexStat (List, 2012)
aligned and scored pairwise sequences using lan-
guage phonemic-specific distributions combined
with SCA-based scores. The pairwise similari-
ties thus obtained are clustered using UPGMA
(Sokal and Michener, 1958). The previous state-
of-the-art results are attributed to LexStat com-
bined with Infomap clustering (List et al., 2017).
Equivalent performance was also reported in Rama
(2018) using Chinese Restaurant Clustering. An
expectation-maximization method over pairwise
phonemic distributions is also found to yield sim-
ilar performance (MacSween and Caines, 2020).
Information-weighted similarity measure was pro-
posed by (Dellert, 2018) which reported a slight
increase in evaluation scores over LexStat, albeit
tested only on one dataset.

Supervised algorithms include the Siamese-
CNN-based model by Rama (2016) which per-
forms binary classification on a given pair of words.
Jäger et al. (2017) employ SVM on top of LexStat
and Point-wise Mutual Information (PMI) mea-
sures that yield performance similar to that of
LexStat-Infomap.

There exist several other works often performing
supervised pairwise classification and incorporat-
ing multilingual language models such as those of
Kanojia et al. (2020, 2021) and Nath et al. (2022).
Despite brilliantly employing pre-trained multilin-
gual language models, these cannot be applied for
ancient languages like Ancient Greek, Gothic, etc.,
or highly low-resource and endangered languages
like those of the Americas where one does find
wordlists of sufficient size but not enough text to
pre-train language models for sake of performing
historical linguistic tasks computationally. Another
related task is that of cognate and derivate detection
(Rani et al., 2023), which is essentially a word-pair
classification task. These tasks have a slightly dif-
ferent setup than the problem at hand since the
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clustering step is not involved.
Cognate Transformer (Akavarapu and Bhat-

tacharya, 2023) that achieves the best performance
on phonological reconstruction tasks employs a
transformer-like architecture with row-wise and
column-wise attentions to efficiently operate over
MSAs. This model was adapted from an evolu-
tionary biological model called MSA Transformer
(Rao et al., 2021) which acts on protein sequences.
Vanilla Transformer architecture was also used in
Kim et al. (2023) for proto-language reconstruc-
tion. Although we employ Cognate Transformer,
it should be well noted that the problem we are
addressing is that of cognate detection which is
quite different from that of proto-language recon-
struction. The aforementioned transformer-based
models address the latter problem.

3 Automated Cognate Detection

The automated cognate detection problem state-
ment is described here as follows. The gold data
for a language family F , comprising of related lan-
guages L1, L2, . . . ∈ F , consists of words over
several concepts, i.e., meanings, say M1,M2, . . . ,
etc. Each word is a sequence of phonemes. For
each concept Mm, there are words Wm

i for sev-
eral languages Li in that family, where Wm

i is a
word of a language Li in concept Mm. Words in
each concept are associated with labels say cmi ∈ N
which indicate the cluster to which they belong. A
single such cluster of words is called a cognate
set. We also define links lkij ∈ {0, 1} between lan-
guages Li and Lj for a concept Mm which indicate
if the corresponding words are cognates i.e., have
the same cluster label. In other words,

lmij =

{
1 if cmi = cmj
0 if cmi ̸= cmj

(1)

The goal of automated cognate detection is to cor-
rectly cluster a given set of words that mean a sin-
gle concept in a language family. In a supervised
setting, the aim is to predict the linkages correctly.

For an illustration of the overall problem, con-
sider the Indo-European language family and the
concept of ‘all’. The attested lexica in the member
languages are Sanskrit sárve (Vedic víśve), Greek
(Ancient) hólos, Latin omnes, German alle, En-
glish all, Russian vse, Czech vše, etc. Among these
Vedic víśve, Russian vse, Czech vše form a cluster,
i.e., a cognate set while Sanskrit sárve and Greek
hóla form another cognate set. Similarly, English

Skt. - s @ r V e -
Gr. - h o l - o s
Lat. - - O m n E s
En. - - O: l - - -
Ger. - - a l - @ -
Rus. f sj - - - e -
Cze. f S - - - E -

Table 1: Example of a Multiple Sequence Alignment
(MSA) of phoneme sequences

and German word forms form another cognate set.
The input data is present in IPA transcription for-
mat. Roman transliterated forms are presented here
only for demonstration.

4 Methodology

The overall workflow is described as follows.
Given some words from different languages for
a concept in a language family, the words are
first aligned (§4.1), then converted into tokens and
passed into the cognate transformer (§4.2), whose
outputs are converted into pairwise (along language
axis) representations by outer product mean mod-
ule (§4.3), which are then passed into the layers of
pairwise module (§4.4) whose outputs are classified
into two labels 0 or 1 indicating the pairwise link-
age among the languages (§4.5). Since the linkage
information is known in the form of cognacy la-
bels, the architecture described can be thus trained
end-to-end. The overall architecture is illustrated
in Figure 1.

4.1 MSA input

The input words for a concept are aligned together
using the SCA method (List, 2010), where ini-
tial pairwise alignments are carried out by using
Needleman and Wunsch (1970) with weights based
on sound classes which are further progressively
merged guided by a UPGMA (Sokal and Michener,
1958) tree based on pairwise distances. Progressive
alignment is a widely used method for multiple
sequence alignment which forms the basis of pop-
ular programs such as ClustalW (Thompson et al.,
2003). We use the implementation available in
LingPy (List and Forkel, 2021).

The resultant MSA, present in IPA (see Table 1),
is converted into ASJP (Brown et al., 2008) repre-
sentation, a phonemic representation scheme that
compacts IPA symbols resulting in lesser vocabu-
lary size. Note that each token in an MSA need not
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Figure 1: Architecture of Cognate Transformer with Triangle Multiplication and Attention modules

be a single phoneme. In the SCA method, consecu-
tive vowels are combined into one token. Language
information is passed as the initial token in each
row following Akavarapu and Bhattacharya (2023).
The resultant tokens are mapped to their respective
token numbers and padded according to the batch.
Thus, a typical input to Cognate Transformer lies in
Nb×r×c where b is the batch size, r is the maximum
number of rows, i.e., the number of words for that
batch, and c is the maximum sequence length in the
batch. From here, we ignore the batch dimension
and simply consider the input to lie in Nr×c

4.2 Cognate Transformer

Cognate Transformer (Akavarapu and Bhat-
tacharya, 2023) handles two-dimensional input em-
ploying separate row and column attentions (see
Figure 1). The input and output have the same
dimensions. In other words,

CogTran : Nr×c → Rr×c×d (2)

where d is the hidden size. The outputs of CogTran
are converted into pairwise format by the outer
product mean module.

4.3 Outer Product Mean

In this module, as the name suggests, the outer
product is computed along each column, across
all rows, and then the mean of outer products is
computed across all columns. The transformation
to the dimensions are

OutProdMean : Rr×c×d → Rr×r×d (3)

The intuition is that the multiplication of a pair
of transformed embeddings of two tokens in a sin-
gle position (i.e., column) of two different words
(i.e., rows) should roughly indicate the similarity or
distance between the two words in that particular
position. The mean operation should produce a
mean of such similarities across all positions for a

pair of words. Hence, the final matrix would repre-
sent a pairwise similarity matrix across the words
in an MSA.

This module is identical to the one in Al-
phaFold2 (Jumper et al., 2021) except that the
role of rows and columns is interchanged. In
other words, in AlphaFold2, the outputs are pair-
wise representations of amino-acid-residues (along
columns) while in our case the outputs are pairwise
representations of words (along rows).

4.4 Pairwise Module

The pairwise module in AlphaFold2, which con-
sists of triangle multiplication and triangle attention
updates via both incoming and outgoing edges, is a
differentiable workflow to capture triangle inequal-
ities that the distances between amino acid residues
should satisfy (Jumper et al., 2021). In our case,
we demand that the link predictions (see §3 for def-
inition) satisfy the transitivity property which can
be translated into the following condition

lmik · lmjk = lmij if lmik + lmjk ̸= 0 (4)

for languages Li, Lj and Lk in a family F for con-
cept Mm. The triangle multiplication update fol-
lows a similar equation but without constraint and,
hence, is apt for the problem at hand. Combining
the updates for both incoming (i → j) and outgo-
ing edges (j → i) ensures the symmetry required
for pairwise similarities. The pairwise module does
not alter the dimensions of the input, i.e.,

PairwiseMod : Rr×r×d → Rr×r×d (5)

In AlphaFold2, this module along with the MSA
module is embedded within the Evoformer module.
As of now, it is unclear if such embedding would
improve the performance. For this problem, we
stack the modules as illustrated in Figure 1 for the
sake of simplicity and easier ablation tests.
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Family Meanings Languages Cognates Words
Training data

AN 210 20 2864 4358
BAI 110 9 285 1028
CHN 140 15 1189 2789
IE 207 20 1777 4393
JAP 200 10 460 1986
OU 110 21 242 2055

Total 6817 16609
Test data

BAH 200 24 1055 4546
CHN 180 18 1231 3653
HU 139 14 855 1668
ROM 110 43 465 4853
TUJ 109 5 179 513
URA 173 7 870 1401
AN 210 45 3804 9267
AA 200 58 1872 11827
IE 208 42 2157 9854
PN 183 67 6634 12691
ST 110 64 1402 7074

Total 19136 67347

Table 2: Details of the datasets as obtained from Rama
and List (2019) indicating the number of concepts, lan-
guages, cognate sets, and words.

4.5 Classifier and Clustering
The outputs of the pairwise module are passed
through a linear layer outputting values for two
classes {0, 1} indicating linkage. Hence, the classi-
fier layer’s transformation is summarized as:

Classifier : Rr×r×d → Rr×r×2 (6)

The softmax probabilities of the outputs pmij for
P (lmij = 1) determine the linkage probabilities.
During training, the network is trained with cross-
entropy loss. During testing, UPGMA is run for
each concept Mm with pairwise similarities as pmij
flat clustered at a threshold of 0.6, which is de-
termined by a small (5%) held out validation set
during training, to obtain the required clusters.

5 Experimental Setup

In this section, the details of the experiments includ-
ing datasets, implementation, evaluation metrics,
baseline models, etc. are described.

5.1 Datasets
The dataset for both training and testing along with
the train-test split is taken from Rama and List
(2019) which was collected from various publicly
available sources. It consists of data from various

language families, namely, Austro-Asiatic (AA),
Austronesian (AN), Bai (BAI), Bahnaric (BAH),
Chinese (CHN), Huon (HU), Indo-European (IE),
Japanese (JAP), Ob-Ugrian (OU), Pama-Nyungan
(PN), Romance (ROM), Sino-Tibetan (ST), Tujia
(TUJ), and Uralic (URA). The statistics of the data
are provided in Table 2.

As is evident from the table, the original train-
ing size is disproportionately much lesser than the
test size. Many language families in tests such as
AA, PN, HU, etc. are completely absent in the
training set. We also test the model on increased
supervision by augmenting the training data with
some proportion of test data. In particular, apart
from the original train-test split, we also test by
including 12.5% and 50% additional test concepts,
i.e., approximately 20 and 100 additional test con-
cepts respectively per language family. For both
the proportions, data is divided into 5 random splits.
Hence, the results reported for 12.5%+ and 50%+
proportions are five-fold cross-validated.

5.2 Implementation Details

The architecture we deploy has two Cognate Trans-
former layers and two layers of pairwise module
(see Figure 1). In the Cognate Transformer, the
number of attention heads is also 2. The maximum
vocabulary size of the tokenizer is set to 768, while
the maximum words and sequence length in an
MSA are both set to 256. Both hidden size d and
intermediate size, wherever there is projection, are
128. This amounts to a network of about a million
parameters. The network was trained with a batch
size b of 4 and tested with that of 2. Low batch size
is due to the limitation of GPU memory (10 GB in
our case) since MSAs combined in both the dimen-
sions and the pairwise representation layers easily
blow up the memory. The training was performed
using AdamW optimizer (Loshchilov and Hutter,
2017) with learning rate 1e-3 as implemented by
HuggingFace (Wolf et al., 2020). During testing,
the pairwise softmax probabilities (similarities with
1 being the most similar) are used for flat cluster-
ing using UPGMA at a threshold of 0.6, arrived
through held-out validation from the train set (5%).
The total time taken for one run of train and test is
less than 15 minutes on GPU. This is much smaller
when compared to the models that operate on a pair
of words at a time instead of on an MSA. The code
is made publicly available1.

1https://github.com/mahesh-ak/CogDetect
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5.3 Evaluation Metrics
The outputs of the entire algorithm are clusters (see
§4.5), i.e., every word gets a cluster label assigned
which is to be compared with the gold cluster la-
bels. The usual F1 score is not a proper measure
since the assigned cluster label is not important;
rather, members of the same cognate set must get
assigned to the same cluster. Hence, the B-Cubed
F1 score (Amigó et al., 2009) is the appropriate
evaluation measure; it has been employed in the
previous works for this problem as well. We use
the implementation available in LingPy (List and
Forkel, 2021).

5.4 Baseline Models
5.4.1 LexStat-Infomap
We label the model defined so far as CogTran2.
The foremost base model with which we compare
the performance of CogTran2 is LexStat-Infomap
(List et al., 2017) whose performance is more or
less the state-of-the-art as discussed in §2. The orig-
inal model employs 10,000 permutations between
each language pair in a family to obtain language-
specific distributions. Hence, this method requires
significant test data to be known beforehand to pre-
process. We call this model as LexStInf10K. This
method takes more than 2 hours on a CPU to obtain
results on one test set. Hence we also report for the
model that has the number of runs as 1000, which
we label as LexStInf1K which takes less than 15
CPU minutes. These are imported from LingPy
(List and Forkel, 2021).

5.4.2 SCA
We also test on SCA-based model (List, 2010)
where a pairwise distance depends on sound classes
and alignment. Since it does not depend on any
sort of computation such as language-specific dis-
tributions, this is the fastest method and, unlike
LexStat-Infomap, can be run on any unseen data.
We label this as SCA. For both LexStat-Informap
and SCA, we use the flat cluster thresholds 0.6 and
0.45 respectively, as mentioned in List et al. (2017),
since the training data is the same.

5.4.3 SVM
We also compare with the SVM-based model (Jäger
et al., 2017), labeled as SVM, and the Siamese-
CNN-based model (Rama, 2016) as these are su-
pervised models. This model uses LexStat score
and PMI scores as primary features and, hence,
takes a long time to preprocess data, i.e., about 6

hours when each split is processed in parallel on
a CPU when the number of permutations runs is
1000 (for LexStat similarity). Since this is a rel-
atively much longer time, we do not increase the
number of runs any further. SVM is trained on pair-
wise binary classification tasks which give pairwise
cognacy probabilities for further clustering. We use
publicly available code for this model2.

5.4.4 Siamese CNN

From the proposed Siamese CNN architectures
(Rama, 2016), we use the model mentioned as char-
CNN with language features that show good overall
performance among the models that are proposed
therein. We label this model as CharCNN. The
network is trained on pairwise supervised binary
classification tasks. The pairwise probabilities of
the network are used further for clustering (UP-
GMA). CharCNN is implemented from scratch in
PyTorch closely following the TensorFlow code
that was made publicly available by the author 3.

5.4.5 Ablation Models

We also test on ablations, namely, without pairwise
module which we call simply CogTran.

We also test by increasing the number of hidden
layers to 4 of this same model which we label as
CogTranL4.

Further, we test on a variant that does not use
input MSA but rather only an alignment of a pair
of words at a time akin to all other previous mod-
els but unlike CogTran2. In this model, pairwise
binary classification is performed which gives prob-
ability scores for each pair of words in a concept.
Further, clustering (UPGMA) is performed using
these pairwise scores. To be more specific, the in-
put is an aligned word pair and the resultant output
embeddings are summed before the binary clas-
sifier, while in Siamese-CNN (Rama, 2016), the
absolute differences of embedding pairs are consid-
ered before the classifier layer. We note that sum-
ming should not be different since the network can
always adjust the signs within embeddings them-
selves. We call this model CogTranPair. For these
models, the link prediction is not part of the end-to-
end architecture, unlike for the model we propose.
As a result, the models are run separately on all
possible pairs of words in a concept.

2https://github.com/evolaemp/svmcc
3https://github.com/PhyloStar/SiameseConvNet/
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Data+% Method Language Families Mean
BAH CHN HU ROM TUJ URA AN AA IE PN ST

+0%

SCA .864 .793 .857 .873 .894 .909 .775 .760 .806 .709 .561 .800
LexStInf10K .894 .857 .883 .910 .899 .913 .840 .773 .826 .845 .592 .839
LexStInf1K .894 .855 .873 .912 .900 .907 .839 .759 .818 .820 .595 .834
CharCNN .759 .837 .876 .666 .845 .886 .698 .722 .725 .784 .473 .752
SVM .865 .845 .860 .927 .899 .913 .845 .734 .828 .782 .593 .826
CogTran2 .854 .864 .857 .907 .893 .899 .786 .756 .845 .797 .572 .821

CharCNN
.830

(.010)
.847

(.006)
.873

(.010)
.896

(.007)
.892

(.015)
.895

(.006)
.777

(.007)
.752

(.007)
.825

(.008)
.786

(.002)
.535

(.025)
.810

(.002)

+12.5% SVM
.878

(.006)
.836

(.006)
.882

(.010)
.934

(.007)
.919

(.005)
.914

(.006)
.840

(.003)
.767

(.012)
.831

(.004)
.765

(.012)
.582

(.012)
.832

(.002)

CogTran2
.884

(.004)
.867

(.005)
.890

(.011)
.907

(.013)
.913

(.015)
.904

(.006)
.810

(.005)
.813

(.003)
.851

(.003)
.804

(.007)
.607

(.020)
.841

(.002)

CharCNN
.876

(.011)
.854

(.007)
.880

(.005)
.914

(.012)
.899

(.018)
.904

(.012)
.795

(.008)
.784

(.005)
.840

(.006)
.785

(.011)
.563

(.011)
.827

(.003)

+50% SVM
.881

(.010)
.838

(.009)
.889

(.014)
.935

(.010)
.927

(.012)
.914

(.009)
.840

(.010)
.779

(.009)
.828

(.007)
.775

(.009)
.577

(.019)
.835

(.002)

CogTran2
.893

(.011)
.878

(.005)
.901

(.006)
.921

(.015)
.916

(.009)
.914

(.007)
.823

(.006)
.832

(.008)
.853

(.004)
.812

(.006)
.644

(.015)
.853

(.002)

Table 3: Results (B-Cubed F-scores) with language families indicated across columns along with standard deviations
in parentheses for cross-validated values. The best scores within a specific train-test split are shown in bold.

6 Results

The results are summarized in Table 3. The first
column indicates the additional proportion of con-
cepts that is moved from test data to training data.
Thus, it roughly indicates the amount of increased
supervision. The second column indicates the var-
ious methods discussed in §5.4 compared against
the proposed model, CogTran2. The rest of the
columns indicate the B-Cubed F scores (see §5.3)
for various datasets discussed in §5.1. The last
column indicates the mean B-Cubed F-scores aver-
aged across the aforementioned datasets.

For the additional proportions +12.5% and
+50%, the reported scores are means along with
standard deviations (in parentheses) over the five
validation sets (see §5.1). Note that the standard
deviation for the overall averaged B-Cubed F score
is considerably much less than those of individ-
ual datasets. This happens since in every run on a
train-test split the model may perform high on one
dataset or low on the other, yet when it comes to
the mean performance it is quite stable.

6.1 Discussion

From the results, it is visible that with increased su-
pervision, CogTran2 improves consistently when
compared to other supervised methods. At the
same time, CogTran2 crosses the previous best
LexStInf10K with additional +12.5% supervision,
i.e., with only 20 concepts per family. Since the

results of proportions +12.5% and +50% are cross-
validated, it is possible to compare the perfor-
mances throughout. Note that LexStat is not a su-
pervised method and, hence, additional supervision
does not make sense with it. With zero additional
data, CogTran2 surpasses all the other methods
on CHN and IE language families since they are
present in training as well. While AN data is also
present in both sets i.e., train and test, the individ-
ual languages do not overlap much as in the case
of CHN and IE.

Although SVM beats CogTran2 on +0% addi-
tional data, which is not surprising since this is pri-
marily dependent on LexStInf1K scores, it shows
only a little increase in scores with an increase in
additional training. Hence, overall, it is behind
CogTran2 for the other two proportions. The max-
imum score of SVM does not appear to be signif-
icantly different from its base model LexStInf1K
on whose scores it is dependent. We performed
student t-tests vis-à-vis SVM and CogTran2 scores
for proportions +12.5% and +50%. On whatever
dataset CogTran2 leads ahead of SVM, it is statisti-
cally significant for a 5% level of significance, i.e.,
p < 0.05. SVM leads ahead of CogTran2 signifi-
cantly only on two datasets, namely, Austronesian
(AN) and Romance (ROM) in both proportions.
The reason for this is unclear as of now. Analysis
with linguistic expertise in these languages could
possibly unveil the cause.
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Method Data Split

+0% +12.5% +50%

CogTran2 0.821 0.841 (± 0.002) 0.853 (± 0.002)
CogTran 0.815 0.830 (± 0.002) 0.841 (± 0.002)
CogTranL4 0.806 0.830 (± 0.002) 0.842 (± 0.004)
CogTranPair 0.779 0.813 (± 0.003) 0.833 (± 0.001)

Table 4: Mean B-Cubed F scores on various data splits
for various ablation models. Standard deviations are
indicated in parentheses for the data splits where cross-
validation was performed.

CharCNN has the disadvantage of not using
aligned input. Hence, it lags behind other mod-
els as expected (except SCA at extra supervision)
despite showing a significant improvement over the
additional training data.

Hence, it can be concluded that CogTran2 is the
best performing model when there is sufficient la-
beled data. It is also likely to show improvement
when there is plenty of labeled data. Further, given
the availability of GPU and considering the present
implementations, CogTran2 is much faster since
it starts from MSA and not from independent pair-
wise computations.

6.2 Ablation Tests

The results of the ablation tests described in §5.4
on the data proportions +0%, +12.5% and +50%
are presented in Table 4. The first column indi-
cates the method and the second column lists the
respective B-Cubed F-score averaged over all the
datasets. These are mean scores along with stan-
dard deviations across all five cross-validated sets.
CogTran, which lacks a Pairwise module (§4.4),
underperforms significantly than CogTran2, which
is the model proposed. Also, increasing the num-
ber of layers to 4 in CogTranL4 does not help ei-
ther. Hence, it can be concluded that the Pairwise
module alone contributes to further increasing the
performance in CogTran2. Further since CogTrain-
Pair, unlike the other two, starts from aligned word
pairs akin to all other previous models, and takes
input from an aligned word pair and outputs cog-
nacy probability for that pair. Hence, the Pairwise
module cannot be incorporated into this setup.

It is visible that CogTran, which acts on an MSA
input performs way better than CogTranPair which
acts on aligned word pairs. At the same time, Cog-
Tran (< 20 GPU min per split) is much faster than
CogTranPair (about 1 GPU hr per split) for the
same reason. In other words, let input MSA have r

rows and c columns, then CogTranPair acts on all
possible pairs of rows hence, in O(r2) steps. On
the other hand, CogTran for a single MSA acts only
once which results in the speed-up.

6.3 Error Analysis

To understand the working of CogTran2, we at-
tempt to study some of the cluster predictions as
follows. For this purpose, we consider CogTran2
trained on +12.5% proportion and the results on IE
(Indo-European) dataset.

6.3.1 Sound Correspondences
The fundamental aspect for comparing two lan-
guages is to identify regular sound correspondences
(Campbell, 2013). Methods like LexStat (List,
2012) have built similarity metrics for cognacy
judgement between two words giving weightage to
both the recurrent sound correspondences as well
as phonetic information. In this regard, we note
that CogTran2 appears to have learned some recur-
rent sound correspondences by observing the initial
consonant. For example, Proto-Indo-European *s-
undergoes lenition in Hellenic branch and appears
as h- is Ancient Greek (Mallory and Adams, 2006).
In the dataset we have used, two words occur as
instances for this sound change, namely, /"hE:lios/
‘sun’ and /"hals/ ‘salt’. Both these words are clus-
tered correctly with their cognates in other daughter
languages such as Old Norse /so:l/, Oriya /surdZO/
in case of the concept ‘sun’ and English /sO:lt/,
French /sEl/ in case of the concept ‘salt’. Thus,
one may assume that the sound change PIE *s >
Ancient Greek h has been learned by the model.

Another set of sound changes where position of
articulation changes is Grimm’s law where Proto-
Indo-European hard consonants undergo a chain
shift in Germanic family (Mallory and Adams,
2006). For instance, in the velar shift defined by
Grimm’s law i.e., *gh > *g > *k > *h , change
in the place of articulation occurs in the sound
change *k > *h. The model also learns this sound
change as supported by the instances mentioned
as follows. For the concept ‘dog’, German /hUnt/
has been correctly clustered together with Ancient
Greek /"kyOn/ and Old Irish /ku:/. Further, for the
concept ’horn’, German /hOrn/ and Ancient Greek
/keras/ are similarly clustered together correctly.
This sound change has been learned by the model
to an extent that unrelated German /hIml

"
/ and Latin

/kae
“
lUm/ meaning ‘sky’ have been classified as cog-

nates. Both the sound changes mentioned above
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have two instances as examples in the dataset.
On the other hand, Marathi /dzaN/ and Ossetic

/zon/ for the concept ‘know’ have been incorrectly
classified as different. This happens to be the only
example where the phonemes /dz/ and /z/, which
fall in different sound classes, co-occur in the re-
spective languages. Hence, it may be concluded
that at least two examples are needed to learn a
sound change. However, it is desirable to perform
a thorough quantitative analysis of recurrent sound
changes to support these findings. It could not be
performed due to a lack of readily available anno-
tated data for the same.

6.3.2 Partial Cognacy
Further, the network seems to consider the en-
tire word and not just the important root in some
cases. For example, for the meaning ‘woman’, Old
Norse /kven: maDr/ and Icelandic /khvEn ma:Dr/
have been assigned a different cluster than that of
Old Swedish /kvin:a/ and Danish /ghven@/. This
is conceivable since affixes cannot be learned to be
ignored easily. Detection of sub-word cognates in
presence of such affixes is part of partial cognacy
problem which was dealt in List et al. (2016). It
is, thus, clear that CogTran2, at its present training
level, cannot distinguish partial cognates.

6.3.3 Other Errors
Many errors are, however, somewhat incomprehen-
sible. For example, in the case of ‘tooth’, Greek
/"Dondi/ has been clustered together with English
/tu:T/ but not with Italian /dEntE/. There could be a
role of root vowel in this particular example. Nev-
ertheless, it is important to understand the source of
errors which demands linguistic expertise to iden-
tify the bottlenecks of the current models and to
improve beyond them.

7 Conclusions

In this paper, we have proposed a Transformer-
based model inspired by evolutionary biology for
the task of automatic cognate detection. The model
can harness efficiently the labeled data and conse-
quently, with sufficient data, outperforms existing
approaches that do not make efficient use of super-
vision data. In particular, better results are obtained
with only 20 concepts per family on some of the
datasets. To the best of our knowledge, we pro-
posed for the first time in this particular problem
a method that directly outputs link probabilities,
i.e., pairwise similarities from an input MSA in an

end-to-end fashion, unlike all the previous methods
which act on aligned pairs of words. We demon-
strated through the primary results and ablation
studies that this approach of inputting MSA rather
than paired alignments results not just in a signif-
icant increase in performance but also in drasti-
cally reducing the computation time. We have also
demonstrated by observing few outputs that the
model is capable of learning regular sound changes
from just two example instances in the data for a
particular sound change.

Evaluation of Cognate Transformer on phyloge-
netic reconstruction task (Rama et al., 2018) is an
unexplored problem and, thus, can be a potential
topic of future work.

Limitations

As mentioned in §6, the proposed model lags on
the datasets Romance and Austronesian somewhat
behind SVM and LexStat-Infomap and on Pama-
Nyungan concerning Lexstat-Infomap despite in-
creasing the supervision. While the performance
on the Romance dataset is near saturated (>92%)
in any case, the lag in performance on Austrone-
sian and Pama-Nyungan data is an issue that is
required to be studied with domain linguistic ex-
pertise to understand the bottleneck of this model.
Similarly, although our model improves drastically
on Sino-Tibetan by 5% when compared to the pre-
vious best, it is an underperforming dataset since
the B-Cubed F-scores on all other datasets except
this are more than 80%. Thus, a similar study with
linguistic expertise is required to identify the bot-
tleneck of the overall methodologies. Additionally,
as mentioned in §5.2, a GPU memory of 10GB
could only accommodate a batch of size 4 during
training with maximum MSAs, i.e., when the num-
ber of languages in a family was 136. Thus, larger
GPU storage is required for larger mass compar-
isons involving more languages under comparisons.
As mentioned in §6.3, the ability of the model to
learn regular sound correspondences has only been
determined by anecdotal instances. A more thor-
ough quantitative study is desirable, which requires
annotated data for the same. The model also does
not account for partial cognacy, i.e., identifying dis-
tinctions between exact cognates versus morpho-
logically modified or compounded cognates (see
§6.3) as addressed in List et al. (2016). Further, the
model is also not tuned at this point to distinguish
between true cognates and borrowals.

973



Ethics Statement

All the data and code of baseline models used
in this paper are obtained from publicly available
sources. Hence, we do not see any ethical concerns
or conflicts of interest.

References
V.S.D.S.Mahesh Akavarapu and Arnab Bhattacharya.

2023. Cognate transformer for automated phono-
logical reconstruction and cognate reflex prediction.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
6852–6862, Singapore. Association for Computa-
tional Linguistics.

Enrique Amigó, Julio Gonzalo, Javier Artiles, and Fe-
lisa Verdejo. 2009. A comparison of extrinsic clus-
tering evaluation metrics based on formal constraints.
Information retrieval, 12:461–486.

Cecil H Brown, Eric W Holman, Søren Wichmann, and
Viveka Velupillai. 2008. Automated classification of
the world’s languages: a description of the method
and preliminary results. Language Typology and
Universals, 61(4):285–308.

Lyle Campbell. 2013. Historical linguistics. Edinburgh
University Press.

Johannes Dellert. 2018. Combining information-
weighted sequence alignment and sound correspon-
dence models for improved cognate detection. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 3123–3133, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Gerhard Jäger, Johann-Mattis List, and Pavel Sofroniev.
2017. Using support vector machines and state-of-
the-art algorithms for phonetic alignment to identify
cognates in multi-lingual wordlists. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 1, Long Papers, pages 1205–1216, Valencia,
Spain. Association for Computational Linguistics.

John Jumper, Richard Evans, Alexander Pritzel, Tim
Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, et al. 2021. Highly accurate pro-
tein structure prediction with alphafold. Nature,
596(7873):583–589.

Diptesh Kanojia, Raj Dabre, Shubham Dewangan, Push-
pak Bhattacharyya, Gholamreza Haffari, and Malhar
Kulkarni. 2020. Harnessing cross-lingual features
to improve cognate detection for low-resource lan-
guages. In Proceedings of the 28th International
Conference on Computational Linguistics, pages
1384–1395, Barcelona, Spain (Online). International
Committee on Computational Linguistics.

Diptesh Kanojia, Prashant Sharma, Sayali Ghodekar,
Pushpak Bhattacharyya, Gholamreza Haffari, and
Malhar Kulkarni. 2021. Cognition-aware cognate
detection. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 3281–3292,
Online. Association for Computational Linguistics.

Young Min Kim, Kalvin Chang, Chenxuan Cui, and
David R. Mortensen. 2023. Transformed protoform
reconstruction. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 24–38,
Toronto, Canada. Association for Computational Lin-
guistics.

Johann-Mattis List. 2010. Sca: Phonetic alignment
based on sound classes. In European Summer School
in Logic, Language and Information, pages 32–51.
Springer.

Johann-Mattis List. 2012. LexStat: Automatic detection
of cognates in multilingual wordlists. In Proceedings
of the EACL 2012 Joint Workshop of LINGVIS & UN-
CLH, pages 117–125, Avignon, France. Association
for Computational Linguistics.

Johann-Mattis List and Robert Forkel. 2021. Lingpy. a
python library for historical linguistics. version 2.6.9.

Johann-Mattis List, Simon J Greenhill, and Russell D
Gray. 2017. The potential of automatic word
comparison for historical linguistics. PloS one,
12(1):e0170046.

Johann-Mattis List, Philippe Lopez, and Eric Bapteste.
2016. Using sequence similarity networks to iden-
tify partial cognates in multilingual wordlists. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 599–605, Berlin, Germany. As-
sociation for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Roddy MacSween and Andrew Caines. 2020. An expec-
tation maximisation algorithm for automated cognate
detection. In Proceedings of the 24th Conference on
Computational Natural Language Learning, pages
476–485, Online. Association for Computational Lin-
guistics.

James P Mallory and Douglas Q Adams. 2006. The
Oxford introduction to proto-Indo-European and
the proto-Indo-European world. Oxford University
Press, USA.

Abhijnan Nath, Rahul Ghosh, and Nikhil Krishnaswamy.
2022. Phonetic, semantic, and articulatory features in
Assamese-Bengali cognate detection. In Proceedings
of the Ninth Workshop on NLP for Similar Languages,
Varieties and Dialects, pages 41–53, Gyeongju, Re-
public of Korea. Association for Computational Lin-
guistics.

974

https://doi.org/10.18653/v1/2023.emnlp-main.423
https://doi.org/10.18653/v1/2023.emnlp-main.423
https://aclanthology.org/C18-1264
https://aclanthology.org/C18-1264
https://aclanthology.org/C18-1264
https://aclanthology.org/E17-1113
https://aclanthology.org/E17-1113
https://aclanthology.org/E17-1113
https://doi.org/10.18653/v1/2020.coling-main.119
https://doi.org/10.18653/v1/2020.coling-main.119
https://doi.org/10.18653/v1/2020.coling-main.119
https://doi.org/10.18653/v1/2021.eacl-main.288
https://doi.org/10.18653/v1/2021.eacl-main.288
https://doi.org/10.18653/v1/2023.acl-short.3
https://doi.org/10.18653/v1/2023.acl-short.3
https://aclanthology.org/W12-0216
https://aclanthology.org/W12-0216
https://lingpy.org
https://lingpy.org
https://doi.org/10.18653/v1/P16-2097
https://doi.org/10.18653/v1/P16-2097
https://doi.org/10.18653/v1/2020.conll-1.38
https://doi.org/10.18653/v1/2020.conll-1.38
https://doi.org/10.18653/v1/2020.conll-1.38
https://aclanthology.org/2022.vardial-1.5
https://aclanthology.org/2022.vardial-1.5


Saul B Needleman and Christian D Wunsch. 1970. A
general method applicable to the search for simi-
larities in the amino acid sequence of two proteins.
Journal of molecular biology, 48(3):443–453.

Taraka Rama. 2016. Siamese convolutional networks
for cognate identification. In Proceedings of COL-
ING 2016, the 26th International Conference on Com-
putational Linguistics: Technical Papers, pages 1018–
1027, Osaka, Japan. The COLING 2016 Organizing
Committee.

Taraka Rama. 2018. Similarity dependent Chinese
restaurant process for cognate identification in multi-
lingual wordlists. In Proceedings of the 22nd Confer-
ence on Computational Natural Language Learning,
pages 271–281, Brussels, Belgium. Association for
Computational Linguistics.

Taraka Rama and Johann-Mattis List. 2019. An au-
tomated framework for fast cognate detection and
Bayesian phylogenetic inference in computational
historical linguistics. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 6225–6235, Florence, Italy. Asso-
ciation for Computational Linguistics.

Taraka Rama, Johann-Mattis List, Johannes Wahle, and
Gerhard Jäger. 2018. Are automatic methods for
cognate detection good enough for phylogenetic re-
construction in historical linguistics? In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 393–400, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Priya Rani, Koustava Goswami, Adrian Doyle,
Theodorus Fransen, Bernardo Stearns, and John P.
McCrae. 2023. Findings of the SIGTYP 2023 shared
task on cognate and derivative detection for low-
resourced languages. In Proceedings of the 5th
Workshop on Research in Computational Linguis-
tic Typology and Multilingual NLP, pages 126–131,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier,
John Canny, Pieter Abbeel, Tom Sercu, and Alexan-
der Rives. 2021. Msa transformer. In International
Conference on Machine Learning, pages 8844–8856.
PMLR.

Robert R. Sokal and Charles Duncan Michener. 1958.
A statistical method for evaluating systematic rela-
tionships. University of Kansas science bulletin,
38:1409–1438.

Julie D Thompson, Toby J Gibson, and Des G Higgins.
2003. Multiple sequence alignment using clustalw
and clustalx. Current protocols in bioinformatics,
(1):2–3.

Peter Turchin, Ilia Peiros, and Murray Gell-Mann. 2010.
Analyzing genetic connections between languages by

matching consonant classes. Journal of Language
Relationship, (5 (48)):117–126.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

975

https://aclanthology.org/C16-1097
https://aclanthology.org/C16-1097
https://doi.org/10.18653/v1/K18-1027
https://doi.org/10.18653/v1/K18-1027
https://doi.org/10.18653/v1/K18-1027
https://doi.org/10.18653/v1/P19-1627
https://doi.org/10.18653/v1/P19-1627
https://doi.org/10.18653/v1/P19-1627
https://doi.org/10.18653/v1/P19-1627
https://doi.org/10.18653/v1/N18-2063
https://doi.org/10.18653/v1/N18-2063
https://doi.org/10.18653/v1/N18-2063
https://doi.org/10.18653/v1/2023.sigtyp-1.13
https://doi.org/10.18653/v1/2023.sigtyp-1.13
https://doi.org/10.18653/v1/2023.sigtyp-1.13
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

