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Abstract

Long documents often exhibit structure with
hierarchically organized elements of different
functions, such as section headers and para-
graphs. Despite the omnipresence of docu-
ment structure, its role in natural language
processing (NLP) remains opaque. Do long-
document Transformer models acquire an in-
ternal representation of document structure
during pre-training? How can structural in-
formation be communicated to a model after
pre-training, and how does it influence down-
stream performance? To answer these ques-
tions, we develop a novel suite of probing tasks
to assess structure-awareness of long-document
Transformers, propose general-purpose struc-
ture infusion methods, and evaluate the ef-
fects of structure infusion on QASPER and
Evidence Inference, two challenging long-
document NLP tasks. Results on LED and
LongT5 suggest that they acquire implicit un-
derstanding of document structure during pre-
training, which can be further enhanced by
structure infusion, leading to improved end-
task performance. To foster research on the
role of document structure in NLP modeling,
we make our data and code publicly available1.

1 Introduction

Long documents such as news articles, scientific
papers, and clinical reports play a vital role in many
human activities. These documents are usually or-
ganized into chapters, sections, subsections, and
paragraphs, i.e. they are structured. This helps
humans in navigating documents (Guthrie et al.,
1991; Nguyen et al., 2021) and building a men-
tal model of the content (Taylor and Beach, 1984;
Meyer et al., 1980). The example in Fig. 1 shows
how the hierarchy of sections and subsections helps
when looking for the size of a dataset in an NLP

*Equal contribution
1https://github.com/UKPLab/

eacl2024-doc-structure, under Apache-2.0 li-
cense.
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Figure 1: Transformer models receive unstructured text
as input (top right) – yet long texts exhibit structure,
which helps in finding information (bottom). We in-
vestigate whether Transformers learn representations of
document structure during pre-training (§4), whether
structure-awareness can be enhanced by infusion after
pre-training (§5), and what effects infusion has on down-
stream task performance. Source: QASPER dataset,
arxiv ID 1909.00694 (Dasigi et al., 2021).

paper: one would go via the "Experiments" section
to the "Datasets" subsection.

Although structure is omnipresent and useful to
humans, existing long-document Transformers (e.g.
Ainslie et al. 2020; Beltagy et al. 2020; Ivgi et al.
2023) operate with linearized textual input: doc-
uments are converted to flat character strings, re-
moving the distinction between different functional
elements and their hierarchy (Fig. 1, top right).

Understanding the structural capabilities of long-
document Transformers is important both theoreti-
cally and practically. From a theoretical standpoint,
prior work in probing has demonstrated the ability
of Transformers to learn syntactic representations
on the sentence level (Hewitt and Liang, 2019)
– yet little is known about the ability to induce
higher-level discourse structures from linearized
text. Probing methodology and datasets for this
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investigation are missing. From a practical per-
spective, recent works demonstrate that structure-
aware modeling can improve downstream task per-
formance (Li et al., 2023; Cao and Wang, 2022;
Ruan et al., 2022) – yet existing studies are limited
to task-specific architectures and data formats, mak-
ing it hard to generalize the findings to new tasks
and document types. General-purpose methodol-
ogy for communicating structural information to
Transformer models is yet to be established.

Our work aims to close this gap. Instead of com-
mitting to a specific document format, we build
the a task- and format-agnostic formalism of In-
tertextual graphs (ITG, Kuznetsov et al. 2022) to
encode structure obtained from the original docu-
ments (§3).

Building on this formalism, we investigate the
role of document structure in long document Trans-
formers from two experimental angles: Probing
and downstream tasks. We introduce a novel suite
of probing tasks in §4 to investigate structure-
awareness of pre-trained Transformer models.
Probing experiments on two widely used long doc-
ument Transformer models – LED (Beltagy et al.,
2020) and LongT5 (Guo et al., 2022) – suggest that
Transformers do acquire the ability to represent
document structure during pre-training, but that
there is room for improvement. Consequently, in
§5, we test the effect of adding structural informa-
tion to the Transformer input. We devise a general-
purpose structure infusion kit and employ it in ex-
periments on our probing suite and two challenging
long-document NLP datasets: QASPER (Dasigi
et al., 2021) and Evidence Inference (DeYoung
et al., 2020). The results suggest that structure-
awareness can be enhanced via infusion, leading to
up to 6.8 F1 points increase on downstream tasks.
Our work lays the foundation for the systematic
analysis of the role of document structure in long
document modeling.

2 Background

Document structure. The term "structure" is
used ambiguously for textual documents. Rhetor-
ical structure is the hierarchical organization of
semantic units, usually latent and not available for
explicit processing. (Kintsch and van Dijk, 1978;
Mann and Thompson, 1987). Abstract structure
refers to the hierarchical organization of a text into

1

2

3

4

Node type

Art-Title

Paragraph

Abstract

Sec-Title

A

B D ...

C G ...

F

E

H I

Depth

Figure 2: Document Graph. Black arrows show
parent edges, next edges between alphabetically
consecutive nodes are omitted for clarity. Node depth
and node type information are infused in §5.

elements such as sections, paragraphs, and lists2

(Nunberg, 1990; Power et al., 2003). Concrete,
or visual structure, includes aspects of typesetting
such as font size, spacing and the location of textual
elements in a typeset text, classically ordered into
pages (Power et al., 2003). In this work, we focus
on the study of abstract document structure as the
direct author expression of textual organization.

Long-document Transformers. The memory
and computational requirements of the standard
Transformer architecture (Vaswani et al., 2017)
scale quadratically with the input length, making
it hard to process long documents under compu-
tational constraints. Several innovations for in-
creased efficiency have been proposed, surveyed by
Tay et al. (2022). A popular and well-performing
approach is the combination of local attention with
a varied distribution of global attention (Ainslie
et al., 2020; Beltagy et al., 2020; Guo et al., 2022),
used by the top 5 models in the Scrolls bench-
mark for long-document processing (Shaham et al.,
2022). We experiment with two representatives for
this approach: LED (Beltagy et al., 2020), which is
employed in many recent works on long documents
(e.g. Dasigi et al. 2021; Cao and Wang 2022) and
LongT5 (Guo et al., 2022), the best "base" model
on the Scrolls leaderboard at the time of writing3.

Probing. Probing tasks are diagnostic classifica-
tion tasks which investigate whether a linguistic
feature (e.g. sentence length, word content or syn-
tax tree depth) is encoded in a representation (Con-
neau et al., 2018; Belinkov, 2022; Rogers et al.,
2020). Early work on probing measured the en-

2Power et al. (2003) include phenomena such as emphasis
and quotation into abstract document structure. They are not
considered here, as they are rarely preserved or standardized.

3https://www.scrolls-benchmark.com/
leaderboard, October 2023.
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coded knowledge through the delta to a majority
baseline or randomly initialized embeddings. Con-
trol tasks were introduced as a better approximation
of what a probing classifier is able to learn in its
own neural representation compared to what lin-
guistic features it can extract from the underlying
representations (Hewitt and Liang, 2019). We fol-
low this line of work by designing a novel atomic
control setting where we remove contextual infor-
mation. To measure contextual information beyond
a given span, we employ edge probing introduced
by Tenney et al., (2019).

Syntax trees have been shown to be encoded in
BERT (Hewitt and Manning, 2019), but the repre-
sentation of higher-order document structure has
not been investigated. For the first time, we show
that long-document Transformers internally repre-
sent several aspects of document structure, and that
this internal representation can be enhanced.

Document structure in Transformers. Exist-
ing approaches that make use of abstract docu-
ment structure in Transformers broadly fall into
two categories. In hierarchical processing (Zhang
et al., 2022; Qi et al., 2022; Liu and Lapata, 2019;
Ruan et al., 2022), complex, task specific archi-
tectures are built, from which results and analyses
are hard to generalize. In structure infusion, addi-
tional structural information is added to pre-trained
Transformer models. We employ the latter setting,
because methods and models can be reused and
analyzed more easily. Structure infusion through
special tokens (Aghajanyan et al. 2022; Fisch et al.
2019), attention masks (Liu et al., 2021; Hong et al.,
2022), absolute (Bai et al. 2021) or relative posi-
tion embeddings (Cao and Wang, 2022) has been
shown to improve downstream task performance.
Here, we combine special tokens and position em-
beddings which only require changes at the input
layer, making them easily transferrable to other
transformer models.

3 Representing Structure

Formalism. We model the abstract structure of
a document (Power et al. 2003, see §2) as an
ordered graph G (Fig. 2) as in Kuznetsov et
al. (2022), using their notation. Structural el-
ements such as section headings or paragraphs
are represented as a set of typed nodes NG.
The node types correspond to the function of
the element in the document. We consider
the types article-title, section-title,

abstract, and paragraph4. The set of typed,
directed edges EG encodes the hierarchical organi-
zation of the textual elements with parent edges
and the linear order with next edges. Node func-
tion and hierarchical organization can be seen as
orthogonal pieces of information that together fully
describe the abstract document structure.

Data conversion. All datasets used in the present
work were converted to the intertextual graph (ITG)
format5 introduced in Kuznetsov et al. (2022),
which is a generic JSON representation of the graph
data structure introduced above. Many different
types of documents can be easily converted to the
ITG format without loss of information on the doc-
ument structure, including XML or LATEXfiles. All
our methods and experiments are based on ITG,
and are therefore dataset agnostic, easily adaptable,
and extensible.

4 Probing for Structure

4.1 Probing Suite Design
As the first step towards the systematic study of
document structure in long document processing,
we propose a suite of seven probing tasks that
measure the ability of pre-trained Transformers
to capture structural information from their input,
described in Tab. 1. For example, the parent
predecessor probe measures the representa-
tion of document hierarchy in a Transformer by
learning to distinguish between pairs of document
elements (e.g. headings or paragraphs) that are in
a parent-child relationship and pairs that are not.
As shown in our introduction example, a good rep-
resentation of the hierarchy can help in locating
relevant information in a document (Fig. 1).

All probing tasks are cast as classification and
evaluated via accuracy. Assuming a model that
computes vector representations of textual nodes,
classification is implemented as a linear layer pro-
jecting from the representation of a node or a node
pair to the label space. If a model has multiple
layers, node representations are computed as a
weighted sum (Tenney et al., 2019) of the repre-
sentations from each layer. For tasks on node pairs,
the representations of two nodes are concatenated.
Only the linear layer and the scalar mix weights
are updated during training on the probing task.

4We do not consider sentences, as their borders often can-
not be extracted unambiguously from English texts.

5https://github.com/UKPLab/
intertext-graph
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Name Classification task Labels

Node type Type of nj with all nodes of type section and a
tree depth > 1 grouped as subsection[1].

Section,
subsection,
paragraph

Sibling Do nj and nk share the same parent np? Boolean
Ancestor Is nj on the parent path of nk and the root n0? Boolean
Position Position within an ordered set S for all nodes nj ∈

S with the same parent np.
Begin, inside,
outside

Parent predecessor Is np the parent of nj? Boolean
Tree depth Depth of nj from the root n0. Integer
Structural Shortest parent path between nj and nk. Integer

Table 1: Definitions of probing tasks and their labels. nj,k,p,0 denote nodes in the document graph G. [1]
Subsection is a mixture of functional and hierarchical description, so it is not part of the node types defined in
§3. It is added to the node type probing task to increase the difficulty.

4.2 Experiments and Results
Probing dataset. We instantiate our probing
tasks with research papers from the open sci-
ence platform F1000Research6. Based on the
pre-processing used for the F1000RD corpus
(Kuznetsov et al., 2022) we convert each paper into
the ITG format (Fig. 2), removing all non-textual
nodes7. Removing all papers exceeding the maxi-
mum input length of LED (16384 tokens) results
in a corpus of 2,499 documents. All probing tasks
are balanced through downsampling on document
basis, meaning that the label distribution is uniform
in most cases (Tab. 5). For some probes, e.g. tree
depth, not all labels occur in all documents, re-
sulting in a non-uniform label distribution.

Probing architecture. We compare probing of
the "vanilla" LED and LongT5 encoders with two
control configurations each: atomic and random.
In the atomic control (Fig. 3), nodes are input to
the model individually, i.e. without their document
context. Comparing the vanilla and atomic configu-
rations shows the effect of contextualization on the
representation of structure. For the random control,
all model weights except for the embedding layer
are re-initialized randomly (Jawahar et al., 2019).
It shows the effect of pre-training on the represen-
tation of structure. Details on implementation and
hyperparameters can be found in Appx. B.2.

Results. In all probes, the accuracy of the vanilla
model is higher than the random control (Tab. 2).

6https://F1000research.com, downloaded on
April 9th, 2021. We use the paper first versions.

7For the node type probe we remove the document title
and abstract as well, as these occur once per document.

The difference varies between 34% for LongT5 on
position and 2.7% for LED on node type –
a magnitude comparable to reported results from
prior work on probing (e.g. Conia and Navigli
2022). This result suggests that LED and LongT5
learn to represent document structure during pre-
training, but the effect varies between different as-
pects of document structure. The cases with small
difference between vanilla and random control im-
ply that the input token and position embeddings,
not being re-initialized, contain much of the infor-
mation needed to solve the task. The scores of the
atomic control are lower than those of the vanilla
configuration on all probes, showing that context
helps to represent document structure.

Vanilla LED and LongT5 achieve accuracies of
0.9 on some probes, e.g. node type, suggest-
ing that they are able to encode some aspects of
structural information well even without its explicit
input. It is surprising that the accuracy on the
sibling probe is far below that of parent
predecessor, because the information on the
parents of two nodes is enough to determine their
siblinghood. It seems that the combination of par-
ent information from two nodes in a queried pair is
difficult. The structural probe can be consid-
ered the most complex, as it has the most classes.
Thus, the large room for improvement is expected.

We could show for the first time that long-
document Transformers can learn to represent doc-
ument structure, even though the models were not
explicitly trained for this. However, the representa-
tion of some aspects of structure is far from optimal.
In the following, we investigate whether structure
infusion, i.e. the input of additional, explicit infor-
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mation on document structure, improves the inter-
nal representation of structure and if this translates
to improvements on downstream tasks.

5 Infusing Structure

As exemplified in Fig. 1, abstract document struc-
ture can help humans in working with documents.
While previous work shows that the addition of
structural information can improve the downstream
performance of Transformer models (Li et al.,
2023; Cao and Wang, 2022; Ruan et al., 2022),
the use of task-specific architectures and docu-
ment formats prevents comparison of structure in-
fusion methods across the studies, and makes it
challenging to relate performance to probing re-
sults. To remedy this, we introduce a task- and
format-agnostic structure infusion kit, and demon-
strate its wide applicability by studying the effects
of structure infusion on LED and LongT5 and two
challenging long-document tasks.

5.1 Methodology 8

Structure infusion. We infuse information on
abstract document structure through position em-
beddings added to the token embeddings (indicated
as emb, see Fig. 4) and special tokens that are
prepended to the tokens of the corresponding node
(tok). Both methods only modify the input layer
and are therefore easily applicable to any Trans-
former model.

We infuse the two types of abstract structural
information that are missing in the input of Trans-
former models (§3): node function and hierar-
chy. Node function is infused through embed-
dings and special tokens representing the node type
(type). To infuse the hierarchical organization, to-
kens and embeddings represent the depth of a node
in the graph, i.e. its distance to the document root
(depth). As a baseline for structural tokens, we
prepend each node with the same separator token
(sep). We refer to the infusion configurations us-
ing short descriptors, e.g. the combination of node
depth position embeddings and node type tokens is
shortened to emb-depth-tok-type.

Probing. The probing experiments were con-
ducted as described in §4 using the same probing
dataset, with the addition of structural information
in the input. We omit the atomic and random con-
trol here, as we are interested in the capabilities of
the configuration that is used for downstream tasks.

8We provide implementation details in Appx. B.3-B.6.

Downstream task datasets. We selected
QASPER (Dasigi et al., 2021) and Evidence
Inference (DeYoung et al., 2020) by the following
criteria: they are based on long documents, abstract
document structure is available, and several types
of downstream tasks are covered, to see possible
differences in the effect of structure infusion.

QASPER is a collection of scientific papers
from computational linguistics / NLP and corre-
sponding questions with one or multiple answers
with evidence. We model question answering as a
generative problem and evidence selection as para-
graph classification. Answer generation and evi-
dence selection are evaluated with F1 scores using
the evaluation script provided by the authors9.

Evidence Inference consists of reports from
clinical studies, "prompts" in the form of inter-
vention, comparator, and outcome, one or multi-
ple labels for the prompt ("significantly increased",
"significantly decreased", or "no significant dif-
ference") and corresponding evidence spans. We
model prompt answering as 3-way classification,
and convert evidence span selection to node classi-
fication by mapping evidence spans to nodes. As
there is no adaptable evaluation script, and for con-
sistency with QASPER, we re-implemented eval-
uation, choosing the annotation resulting in the
highest score as gold standard. This means that we
can only compare the models in our work.

Training Downstream tasks were fine-tuned for
10,200 steps with an effective batch size of 8 in a
multi task fashion. We report mean test set results
of 3 random seeds.

In all experiments in this section, the models
were pre-trained for 15,000 steps, with an effec-
tive batch size of 16, with the respective struc-
ture infusion configuration on the relevant probing
(F1000RD) or downstream task dataset (QASPER
or Evidence Inference), as we noted this to be
beneficial in early experiments (Gururangan et al.,
2020). "T5-style" denoising (Raffel et al., 2020)
was used as the pre-training task as suggested in
Xiong et al, (2022).

5.2 Probing of Structure-Infused Models
We see an improvement in all probes through struc-
ture infusion (Fig. 5, Tab. 4). The node type
and tree depth probes show an accuracy of
around 1 with tree depth infusion, as this informa-
tion suffices to solve the tasks. Node type infusion

9https://github.com/allenai/qasper-led-baseline
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combination of hierarchical embeddings and node type special tokens, short description tok-type-emb-depth.

Nod Sib Anc Pos Par Tre Str

LED 93.98 64.93 89.53 86.05 85.68 84.12 41.49
LED Atom 92.75 60.26 87.30 65.53 84.82 82.41 40.64
LED Rand 88.21 58.36 86.73 56.44 82.90 73.76 35.33

LongT5 95.28 65.85 89.38 91.95 86.13 87.88 42.97
LongT5 Atom 91.84 50.79 86.60 61.05 83.77 78.90 34.68
LongT5 Rand 88.21 57.41 84.81 57.97 81.54 73.40 33.49

Table 2: Probing accuracy of LED and LongT5 with atomic and random controls. Best result per model and probe
in bold, second best underlined.
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Figure 5: Probing of structure-infused models. Bars show the difference in accuracy to the vanilla baseline (Tab. 2)
For absolute values see Tab. 4.
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LED LongT5
QAS EvI QAS EvI

Ans Evi Cla Evi Ans Evi Cla Evi

vanilla 36.80 42.05 74.30 61.55 45.89 52.09 81.54 70.39

tok-sep 37.35 42.54 75.17 66.81 45.54 54.12 81.08 75.92
tok-depth 36.24 41.90 74.60 64.19 46.60 56.14 80.90 76.88
tok-type 37.43 42.32 75.85 66.93 46.76 56.08 80.75 76.28
emb-depth 36.17 42.53 73.78 60.67 44.91 51.53 81.36 71.18
emb-type 36.03 42.92 74.71 61.05 46.37 53.89 80.86 68.91
emb-depth-tok-type 37.83 43.16 76.49 66.07 45.63 56.04 79.94 75.57
emb-type-tok-type 38.02 43.83 76.38 65.31 46.43 55.70 81.42 77.23
emb-type-tok-depth 39.08 44.41 75.30 64.58 44.72 55.60 80.71 75.86
emb-depth-tok-depth 37.74 44.64 76.34 67.07 45.33 54.27 80.98 75.96

Table 3: Downstream task results on test sets. All scores are F1 scores averaged over 3 runs with different random
seeds. Best result in column in bold, second best underlined. QAS: QASPER. EvI: Evidence Inference. Ans:
Answer F1. Evi: Evidence F1. Cla: Classification F1.

does not lead to perfect scores on the node type
probe, as the subsection node type is part of the
probing task, but not of the infusion (Tab. 1).

Except for LongT5 on sibling, infusion of
node depth results in higher accuracy than node
type or node boundary information infused on
the same pathway. For the majority of LED
probes (sibling, position, tree depth,
and structural), models with position embed-
ding infusion show higher metrics than their coun-
terparts with the same information in special tokens,
while for LongT5, the results are mixed. LED,
based on BART (Lewis et al., 2020), is pre-trained
with absolute position embeddings like our struc-
tural embeddings, while LongT5, based on T5 (Raf-
fel et al., 2020), uses relative position embeddings.
LED might therefore have a better capability to use
the information from absolute embeddings.

5.3 Structure infusion in Downstream Tasks
QASPER For LED in answer generation, the
emb-type-tok-depth configuration results in
the best performance, with an improvement of 2.28
F1 points over vanilla (Tab. 3). In evidence selec-
tion, emb-depth-tok-depth outperforms the
vanilla configuration by 2.59 F1 points. This is an
improvement of 5.58 F1 points for answer gener-
ation and 14.04 F1 points for evidence selection
over the LED state-of-the-art (SOTA) (Caciularu
et al., 2022) on QASPER. The vanilla configuration
already outperforms the SOTA by 3.30 and 11.45
F1 points, respectively. Infusing the node depth

through two pathways improves over a single path-
way. While unintuitive, this was also observed for
the sibling, parent predecessor, and
tree depth probes (Fig. 5).

For LongT5, special tokens structure infusion
results in the highest scores. The best answer F1 of
46.76 with node type tokens improves the vanilla
model by 0.87 points and is slightly higher than
the current LongT5-base SOTA of 46.6 (Guo et al.,
2022). In evidence selection, infusion of depth
tokens increases the vanilla configuration by 4.05
F1 points. To our knowledge, there are no reported
scores for LongT5 on QASPER evidence selection.

Evidence Inference For LED, the best per-
formance in classification is obtained by the
emb-depth-tok-type configuration, improv-
ing 2.19 F1 points over the vanilla configuration.
In evidence selection, emb-depth-tok-depth
outperforms the vanilla baseline by 5.52 F1 points,
but adding node separator tokens already leads to
an increase of 5.26 F1 points.

For LongT5, no structure infused variant outper-
forms vanilla in classification, while in evidence
selection, emb-type-tok-type outperforms
vanilla by 6.84 F1 points.

Comparison of infusion configurations. In
most cases, adding node separator tokens improves
performance. This was expected, as it is common
practice to signify segment boundaries to models
(e.g. Beltagy et al. 2020) and could also be seen
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in probing. For LED, the combination of position
embeddings and structural tokens exhibits the best
scores, which again resembles the probing results.
For LongT5, combining both infusion pathways
only results in the best scores on Evidence Infer-
ence evidence selection. Infusion via structural
tokens outperforms infusion via position embed-
dings for LongT5 on most subtasks.

The increases for LED of about 2 F1 points
are similar to the reported performance increases
through document structure infusion on other long-
document datasets, showing that our employed
methods are effective. These works use relative
position embeddings (Cao and Wang, 2022) or spe-
cial attention patterns (Liu et al., 2021; Hong et al.,
2022), while we use structural tokens and absolute
position embeddings. Our methods are easier to ap-
ply and adapt, as only the input to the model needs
to be modified. For LongT5, the performance gains
through structure infusion of up to 6.84 F1 points
suggest that this is a promising research direction.

5.4 Correlation between Probing and
Downstream Tasks

Ans Evi

Nod
Sib

Anc
Pos
Par
Tre
Str
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0.48*0.61*
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Figure 6: Pearson correlation between probing and
downstream tasks. * denotes significance (p < 0.05).

To find associations between the representation
of document structure and downstream task per-
formance, we computed the Pearson correlation
between probing and downstream task metrics 10

(Fig. 6). All combinations of probing and down-
stream tasks for LED, and evidence selection and
all probing tasks for LongT5 have a correlation
greater or around 0. In contrast, the performance
of LongT5 on QASPER answer generation and Ev-
idence Inference classification is mostly negatively

10The absolute values from each set of bars in Fig. 5 were
paired with the unaggregated values from each column in
Tab. 3 for the same model.

correlated with the probing task metrics. These
were also the tasks with the least improvements
through structure infusion. As they are decoder-
based tasks, while evidence selection is encoder-
based (§B.5), it seems that LongT5 has less need
for structure infusion on decoder-based tasks.

For LED in both QASPER subtasks and Evi-
dence Inference classification and for LongT5 in
evidence selection on both Evidence Inference
and QASPER, we see significant (p < 0.05)
correlation with the ancestor and parent
predecessor probes, which measure the rep-
resentation of relations between nodes on one di-
rected path of parent edges. These usually have
more defined semantic relationships among each
other compared to nodes from different paths, e.g.
a section heading has more relevant information
about the paragraphs belonging to that section than
about those in other sections. Our results suggest
that better representation of these relations is asso-
ciated with better downstream performance.

6 Conclusion

In this work, we provided an in-depth analysis of
the representation of abstract document structure
in long-document Transformers. Experiments with
our novel probing suite show that LED and LongT5
have learned to represent node function and hier-
archical organization through pre-training without
explicit supervision, with room for improvement.

To investigate the effect of infusing the aspects
of document structure that are missing in Trans-
former inputs due to linearization, we developed
a modular structure infusion framework. Probing
shows that structure infusion enhances the internal
representation of document structure, and we see
performance improvements from structure infusion
on QASPER and Evidence Inference, two down-
stream tasks where this has not been shown before.
The significant correlation between several probing
and downstream tasks suggests that it is indeed the
improved representation of document structure that
leads to downstream task performance gains.

Our probing, structure infusion and downstream
task suite is easily extensible with new probing
and downstream tasks and new types of infused
information. While this work provides proof of
the utility of our graph-based framework for doc-
uments from the scientific domain, the framework
can be applied to other document types (e.g. web
pages or conversation threads). Given that the ad-
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dition of separator tokens between document ele-
ments can already increase performance, we deem
applying our methods to documents with less well-
defined structure promising. Our probing methods
are fully compatible with the current generation of
Transformer-based LLMs (BigScience Workshop,
2023; Touvron et al., 2023), as long as the internal
states of the model can be accessed. We hope that
our contributions pave the path towards systematic
study of the role of document structure in NLP.

Ethical Considerations

Long documents lie at the core of text work, and
structure is omnipresent in long documents. We
believe that developing a better understanding of
the role of document structure in NLP would allow
us to build more efficient, robust, and interpretable
systems for the analysis of long texts. We envision
a trade-off between structural modeling capabili-
ties of NLP systems (which, as we show, can be
enhanced by providing explicit document structure)
and the computational and storage overhead associ-
ated with processing additional structural informa-
tion in the documents. Future work would inves-
tigate this trade-off and determine in which cases
this overhead is justified. As document structure is
openly present in documents and easily accessible
by humans, we do not envision additional ethical
risks or misuse scenarios due to the use of docu-
ment structure in NLP modeling. Our work only
uses data published under permissive licenses; our
adaptations of this data are made available under
permissive conditions as well.

Limitations

We see our work as an important step towards the
general study of the role of document structure in
NLP modeling. Below we outline the limitations
of our work, which present excellent opportunities
for follow-up research.

Dataset diversity. Our work unifies structured
document data from multiple sources. Yet all of this
data originates form the scientific domain. There
are several benefits to this: scientific documents
are long, clearly licensed, and exhibit structure
– and the scientific domain offers multiple long-
document processing tasks. In addition, focusing
on one general domain allows us to control for
domain shift during our measurements. We note
that no part of our methodology is tailored to the
particularities of the scientific domain – and as

long as source documents can be converted into
the domain-agnostic ITG formalism, our methods
should be easily adaptable to other domains like
Wikipedia or conversation threads. Similarly, we
limit our studies to the English language, as other
languages face scarcity both in terms of available
long-document Transformer models and academic
texts. As more data and models become available,
it will become possible to evaluate our findings in
new contexts.

Models and Tasks. Our setup involves multiple
probing tasks coupled with a range of structure infu-
sion methods, resulting in a wide experimental grid.
To make in-depth analysis feasible, we had to limit
our focus on a few models and tasks. We chose
two datasets which combine generative question
answering, segment classification and document
classification. Our experiments show that structure
infusion can be useful for all tasks and models con-
sidered. This suggests that experiments on other
tasks are a promising direction for future research,
which is facilitated by our open implementation.

Large language models. While it would be
technically possible to apply our kit to the recent
decoder-only models such as LLaMA (Touvron
et al., 2023) or BLOOM (Fan et al., 2022), this
would require substantial computational resources
– which illustrates the challenges of long-document
processing by modern NLP models and does not
constitute a limitation of our proposed approach.
Similarly, commercially hosted models with in-
creased input length such as GPT-411 (32k tokens)
and Claude 12 (100k tokens) could be evaluated
and infused with document structure – yet their
closed-source nature and lack of access to model
weights prevents such investigation. We hope that
the progress in efficient NLP and the ongoing open-
source LLM development make such studies pos-
sible in the near future. This would also pave the
way for investigating the effect of abstract docu-
ment structure in zero-shot experiments.

Other types of document structure As noted
in the "Document structure" paragraph in §2, we
focus on investigating abstract document structure.
We also mention visual and discourse structure
as important structural properties of documents.
While we don’t study them here, this is done in
current works, e.g. Huang et al. (2022) or Du et
al. (2023). We believe that joint investigations of

11https://openai.com/gpt-4
12https://www.anthropic.com/product
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the different aspects of document structure are a
promising direction for future work.

Correlated model states. The structure-infused
models in this work were first pre-trained using a
language modeling loss on probing or downstream
task data, and then further fine-tuned using a task-
specific loss. The probing and downstream task
datasets in our work are not identical; thus, strictly
speaking, the scores used to compute the correla-
tion in Fig. 6 come from models with the same
structure infusion configuration, but not the same
state. We believe this to be unproblematic and ex-
pect the states to be comparable, since each model
is pre-trained under the same regime. To confirm
this, future work could create probing datasets from
downstream task datasets to use the same model
state in probing and downstream tasks – at the cost
of a drastic increase in the number of probing ex-
periments. This technical limitation only pertains
to §5.4 and Fig. 6 and leaves all other results unaf-
fected.
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A Table of Probing Results

See Tab. 4

B Implementation Details

B.1 Models

In all experiments, we used the huggingface Trans-
formers13 (Wolf et al., 2020) implementations and
weights of LED base (162M parameters, Beltagy
et al. 2020) and LongT5 base with transient global
attention (220M parameters, Guo et al. 2022).

B.2 Probing

Dataset. Our probing dataset is split 0.6/0.2/0.2
across train, dev, and test using in-document bal-
ancing. For boolean and the position probe we
see a uniform distribution of instances per label,
compared to the node type probe where sub-
sections occur not in all documents, resulting in a
non-uniform distribution. The structural and
tree depth probes naturally feature a diverse
set of labels and instances. A full overview of the
label distribution can be found in Tab. 5.

Implementation and hyperparamenters. Our
probing kit is implemented using the AllenNLP
library (Gardner et al., 2018). We stack a frozen
pre-trained Transformer model with an endpoint
span extractor from AllenNLP, extracting and con-
catenating the first and last token of a given span.
Our hyperparameters are described in Tab. 6.

13https://huggingface.co/

Layer utilization. The layer utilization shown
in Fig. 7 reveals differences between the probed
models and their controls. For LED, the vanilla con-
figuration shows a more uniform layer utilization
compared to the control configurations. The atomic
control puts more weight on the last layer for all
probes except node type and tree depth.
For LongT5, both vanilla and atomic put all weight
on the last layer. For LED and LongT5, the ran-
dom control mostly uses the first layer, which has
also been observed in other works (Voita and Titov,
2020). The random control relies solely on the
input embeddings, as there is no additional infor-
mation in the Transformer layers. Input words such
as "Introduction" and the number of tokens in a
text node can be used to infer the node type. Node
type and word overlaps between two nodes can
give hints to the relation between two nodes. With
LongT5, the intermediate layers are not used at all.

As the atomic control cannot compare the posi-
tion embeddings of different nodes, it makes full
use of the contextualization through the entire for-
ward pass. To solve the node type task, the
length of a node provides useful information. It
is retained in the atomic position embeddings, ex-
plaining the more uniform layer utilization on this
probe. The random control puts most weight on
the the first layer, which has also been observed
in other works (Voita and Titov, 2020). It relies
on the input embeddings, as there is no additional
information in the Transformer layers.

B.3 Structure Infusion

Embeddings. Structural embeddings are added
to the token embeddings of each token in a node
(including special tokens) before the first encoder
self-attention layer (Fig. 4). They were initialized
according to a Gaussian distribution with mean 0
and standard deviation 0.0305 (LED) and 4.875
(LongT5). Standard deviation for LED was chosen
to be the same as the standard deviation of the abso-
lute linear position embeddings matrix. As LongT5
does not have absolute position embeddings, the
standard deviation for structural embedding initial-
ization was chosen to result in the same ratio of
token embedding standard deviation to structural
embedding standard deviation as for LED.

Special tokens. Special tokens are prepended
to the tokens of the respective node, lead-
ing to an increase in total sequence length
(Fig. 4). They were initialized using the
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Nod Sib Anc Pos Par Tre Str

LED 93.98 64.93 89.53 86.05 85.68 84.12 41.49
LED Atom 92.75 60.26 87.30 65.53 84.82 82.41 40.64
LED Rand 88.21 58.36 86.73 56.44 82.90 73.76 35.33

tok-boundaries 94.15 65.87 89.80 87.13 86.30 85.64 40.68
tok-depth 99.78 67.41 90.99 89.59 87.64 99.96 51.22
tok-type 95.39 66.70 90.23 88.64 87.12 87.06 42.16
emb-depth 99.90 68.55 90.21 94.09 87.83 99.96 54.54
emb-type 95.60 67.99 90.49 92.37 86.99 89.32 46.48
emb-depth-tok-type 99.98 69.71 91.31 94.85 88.85 99.96 55.87
emb-type-tok-type 95.54 69.34 90.74 92.30 88.23 90.26 46.14
emb-type-tok-depth 100.00 69.57 91.72 95.97 88.31 99.96 54.43
emb-depth-tok-depth 99.95 69.43 91.81 96.30 88.68 99.96 55.94

LongT5 95.28 65.85 89.38 91.95 86.13 87.88 42.97
LongT5 Atom 91.84 50.79 86.60 61.05 83.77 78.90 34.68
LongT5 Rand 88.21 57.41 84.81 57.97 81.54 73.40 33.49

tok-sep 95.88 66.93 90.41 93.16 87.62 88.76 45.47
tok-depth 99.90 67.79 91.20 95.82 88.45 99.96 52.51
tok-type 95.99 67.96 90.92 94.80 87.59 89.26 44.60
emb-depth 99.92 67.75 90.94 98.32 87.45 99.96 51.92
emb-type 95.85 68.23 90.33 96.13 86.79 89.92 45.89
emb-depth-tok-type 99.98 67.88 90.52 98.86 88.25 99.96 54.09
emb-type-tok-type 96.07 68.30 90.85 96.75 87.44 91.13 46.73
emb-type-tok-depth 99.98 67.99 91.53 97.98 87.92 99.74 49.07
emb-depth-tok-depth 99.97 68.66 91.27 98.70 87.15 99.96 54.40

Table 4: Probing result numbers for Fig. 5 and from Tab. 2 for comparison. The best result per model is printed in
bold, the second best is underlined.

1 3 5

Nod
Sib

Anc
Pos
Par
Tre
Str

LED

1 3 5

Atom

1 3 5

Rand

1 4 7 10

LongT5

1 4 7 10

Atom

1 4 710

Rand

0

0.5

1

Figure 7: Layer utilization in probing of the vanilla LED and LongT5 models.
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Label Dev Test Train

Anc False 7665 7999 23488
True 7665 7999 23488
Total 15330 15998 46976

Nod Paragraph 2353 2369 7046
Section 2278 2298 6708
Subsection 1250 1262 3611
Total 5881 5929 17365

Par False 7665 7999 23488
True 7665 7999 23488
Total 15330 15998 46976

Pos Begin 3049 3180 9406
End 3049 3180 9406
Inside 3049 3180 9406
Total 9147 9540 28218

Sib False 7665 7999 23488
True 7665 7999 23488
Total 15330 15998 46976

Str 1 2939 3044 8946
2 2939 3044 8946
3 2939 3044 8946
4 2912 3018 8823
5 1840 1926 5560
6 985 1124 3161
7 - 10 5
8 - - 5
Total 14554 15210 44392

Tre 1 2892 2895 8642
2 2892 2895 8642
3 1634 1639 4872
4 - 3 1
5 - - 1
Total 7418 7432 22158

Table 5: Label distribution across probing tasks. Anc:
Ancestor; Nod: Node type; Par: Parent
predecessor; Pos: Position; Sib: Sibling;
Str: Structural; Tre: Tree depth.

Training
Batch size 4 (VR), 64 (AT)
Epochs 20
Patience 10

Optimization
Algorithm Adam (Kingma and Ba, 2015)
β1, β2 0.9, 0.999
ϵ 10−8

Weight decay 0.01
Learning rate 10−3(LED), 10−1(LongT5)

Table 6: Vanilla and random (VR), and atomic (AT)
configuration hyperparameters.

Config nparameters

tok-type 3K
emb-type 3K
tok-depth 15K
emb-depth 15K

Table 7: Number of added parameters in structure infu-
sion

resize_token_embeddings() function in
the model implementation.

Number of added parameters. For the num-
ber of added parameters for each infusion config-
uration see Tab. 8. Each special token and each
embedding adds dmodel parameters to a model
(dLED = dLongT5 = 768). There were 4 structural
tokens / embeddings and 20 node depth tokens /
embeddings.

B.4 Pre-Training

All structure infused models and baselines were
pre-trained on the respective probing or evalu-
ation dataset using a "T5-style" denoising task.
Noise was added to the model input using
code provided by the authors of the T5 (Raf-
fel et al., 2020) paper14, which replaces spans
of tokens in the input with numbered mask to-
kens. The mask tokens were initialized using the
resize_token_embeddings() function in
the model implementation. Masking is controlled
by two hyperparameters: noise density, the propor-
tion of masked tokens in the input, and mean noise
span length. We chose the noise density as 3%, the
mean noise span length was uniformly chosen for
each input sequence from 4, 8 or 12 tokens.

14https://github.com/google-research/
text-to-text-transfer-transformer
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Masking
Noise density 3%
Mean noise span length [4,8,12]*

Training
Batch size 16 (PT), 8 (FT)
Steps 15000 (PT)

10200 (FT)
Optimization

Algorithm AdamW [1]
β1, β2 0.9, 0.999
ϵ 10−8

Weight decay 0.01
Learning rate 10−5 (LED)

10−4 (LongT5)
Warmup Linear (PT), - (FT)
Warmup steps 500 (PT), - (FT)

Table 8: Pre-training (PT) and fine-tuning (FT) hyper-
parameters. *: Mean noise span length is chosen uni-
formly from the given values for each input sequence.
[1] Loshchilov and Hutter 2019

The model is trained with a cross entropy loss
to generate each mask token followed by the to-
kens replaced by that mask, respecting the order
of masked spans. To save computation, only one
checkpoint was pre-trained for each combination
of model, infusion configuration and dataset. This
checkpoint was used in all replicates of a down-
stream experiment.

Training hyperparameters For training hyper-
parameters, see Tab. 8.

The only optimized hyperparameter is the learn-
ing rate, which was done by grid search with the
respective non-pretrained vanilla configuration on
the QASPER dataset.

B.5 Downstream Tasks

B.5.1 QASPER
Dataset conversion. Each entry in the QASPER
dataset (Dasigi et al., 2021) consists of a paper title,
abstract, full text in the form of a list of sections
with section name and corresponding paragraphs,
a list of figures and tables, as well as a list of ques-
tions, answers and evidence. We converted the
QASPER dataset into the Intertext Graph (ITG)
format (Kuznetsov et al., 2022) creating a node
for the title, abstract, each section title and each
paragraph, as well as figures and tables. We added
an additional abstract node with the content

"Abstract" to serve as the parent for the abstract
text.

All answer types (extractive, abstractive, yes/no,
unanswerable) were mapped to a single reference
answer string for each question as done by the
dataset authors. The provided evidence strings
were mapped to the ITG nodes through string
matching, which which was successful for 99.35%
of evidence pieces from the original dataset. For
0.41%, there was no match, and for 0.24% there
were multiple matches, which were discarded.
Questions, answers and evidence are stored in the
ITG metadata. We follow the original data splits,
resulting in 888 train, 281 validation and 416 test
documents.

Model input. For LED, model input was formed
as "<s> [question] </s> [document]".
For LongT5, the initial <s> token was not used, as
it is not pre-trained with this token. Figures and
tables were discarded for model input.

Evaluation. QASPER evaluation was imple-
mented by adapting the evaluation script provided
by the creators of the dataset15. If there are mul-
tiple reference answers to a question, the answer
that results in the highest score is chosen as the
gold standard. Answer generation is evaluated with
a token-level F1 score as in SQuAD (Rajpurkar
et al., 2016). Evidence selection is evaluated with
a node-level F1 score.

Answer generation. Answers were generated
with beam search, using 4 beams, length penalty
1.0 and a maximum generated length of 100 tokens.

Evidence selection. Evidence selection was im-
plemented as paragraph classification. There can be
multiple evidence paragraphs for a question. The
final encoder hidden state h of the first token of
each paragraph node in a document is used as
the representation for the paragraph. This vector
is passed through a fully connected linear layer
W1 followed by a tanh nonlinearity and a linear
layer W2 projecting to the score vector s ∈ R2 for
evidence and no-evidence.

s = W2 tanh(W1h), W1 ∈ Rd×d, W2 ∈ Rd×2

(1)

Fine-tuning. Models pre-trained as described
above on the QASPER train documents were fine-
tuned on with the hyperparameters given in Tab. 8.

15https://github.com/allenai/
qasper-led-baseline
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Answer generation and evidence selection were
trained with cross entropy loss:

L = wALAnswer + wELEvidence (2)

For LED and LongT5 the loss weights were set to
wA = wE = 0.5. The checkpoint with the best
score on the dev set was used for evaluation.

B.5.2 Evidence Inference

Dataset conversion. Evidence Inference 2.0
(DeYoung et al., 2020) is provided as sets of arti-
cles, prompts and labels with evidence. The article
full texts are provided as plain text files and NXML
files following the PubMed DTD schema16. We
used the parser from the dataset creators17 to parse
the NXML files, and converted the output to the
ITG format. We added an additional abstract
node with the content "Abstract" to serve as the
parent for the abstract text.

Evidence annotations are given as character off-
sets pertaining to the articles in plain text format.
We transform this span selection problem to a node
classification problem by mapping evidence strings
to ITG nodes. Evidence text at a given offset is
extracted from a text file and then matched against
ITG nodes using fuzzysearch18. Full string match-
ing resulted in low recall, because of small dif-
ferences between the plain text files and NXML
files. For 92.03% of evidence spans, we find ex-
actly one ITG node, for 5.10% we find no node,
and for 2.07% we find more than one node, which
are discarded. The prompts, labels and evidence
for a document are stored in the ITG metadata. We
follow the original data splits, resulting in 3562
train, 443 validation and 449 test documents.

Model input. For LED, model input
was formed as "<s> With respect
to [outcome], characterize the
reported difference between
patients receiving [intervention]
and those receiving [comparator].
</s> [document]". For LongT5, the initial
<s> token was not used, as it is not pre-trained
with this token.

16https://pubmed.ncbi.nlm.nih.gov/
download/

17https://github.com/jayded/
evidence-inference

18https://github.com/taleinat/
fuzzysearch

Evaluation. Evidence Inference classification is
evaluated with macro F1 score. Evidence selection
is evaluated with a node-level F1 score. If there are
multiple annotations to a prompt, the annotation
that results in the highest score is chosen. We chose
to implement the evaluation similar to QASPER
evaluation for consistency, and thus different from
the implementation by the creators of the dataset.
The main differences are (1) the conversion of ev-
idence selection to a node classification task and
(2) choosing the classification annotation that re-
sults in the highest score, where in the original
implementation the class with the highest number
of annotations is chosen as the gold standard.

Classification. To get the class of a prompt-
document pair, a vector representation v of the
document is passed through a fully connected layer
M1, followed by a tanh nonlinearity and a linear
layer M2 projecting to the score vector l ∈ R.

l = M2(tanh(M1(v))), M1 ∈ Rd×d, M2 ∈ Rd×3

(3)
For LED, v was chosen as the final encoder hidden
state of the initial <s> token, because it has global
attention. As LongT5 does not have configurable
global attention, a dummy </s> token was input
to the decoder, which has full cross attention over
the input document. The final decoder hidden state
of this token served as v for LongT5.

Evidence selection. Evidence selection was im-
plemented as for QASPER (§B.5.1).

Fine-tuning. Models pre-trained as described
above on the Evidence Inference train documents
were fine-tuned with the hyperparameters given in
Tab 8. Classification and evidence selection were
trained with cross entropy loss:

L = wCLClassification + wELEvidence (4)

For LED, the loss weights were set to wC =
wE = 0.5. For LongT5, they were set to wC =
0.25, wE = 0.75. The checkpoint with the best
score on the dev set was used for evaluation.

B.6 Computation
Experiments were performed on NVIDIA A100,
A180 and A6000 GPUs. Depending on the GPU
size and speed, pre-training, probing (all 7 tasks)
and downstream task experiments took 1-2 days.
Estimating an average of 1.5 days per experiment,
the total number of GPU days is 264 (26 probing
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runs, 30 pre-training runs, 120 downstream fine-
tuning runs).

B.7 Use of AI Assistants in Development
Some of the code for the structure infusion frame-
work was developed with assistance from GitHub
Copilot19.

19https://github.com/features/copilot
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