@inproceedings{viechnicki-etal-2024-large,
title = "Large-Scale Bitext Corpora Provide New Evidence for Cognitive Representations of Spatial Terms",
author = "Viechnicki, Peter and
Duh, Kevin and
Kostacos, Anthony and
Landau, Barbara",
editor = "Graham, Yvette and
Purver, Matthew",
booktitle = "Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.eacl-long.66",
pages = "1089--1099",
abstract = "Recent evidence from cognitive science suggests that there exist two classes of cognitive representations within the spatial terms of a language, one represented geometrically (e.g., above, below) and the other functionally (e.g., on, in). It has been hypothesized that geometric terms are more constrained and are mastered relatively early in language learning, whereas functional terms are less constrained and are mastered over longer time periods (Landau, 2016). One consequence of this hypothesis is that these two classes should exhibit different cross-linguistic variability, which is supported by human elicitation studies. In this work we present to our knowledge the first corpus-based empirical test of this hypothesis. We develop a pipeline for extracting, isolating, and aligning spatial terms in basic locative constructions from parallel text. Using Shannon entropy to measure the variability of spatial term use across eight languages, we find supporting evidence that variability in functional terms differs significantly from that of geometric terms. We also perform latent variable modeling and find support for the division of spatial terms into geometric and functional classes.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="viechnicki-etal-2024-large">
<titleInfo>
<title>Large-Scale Bitext Corpora Provide New Evidence for Cognitive Representations of Spatial Terms</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Viechnicki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anthony</namePart>
<namePart type="family">Kostacos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Landau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent evidence from cognitive science suggests that there exist two classes of cognitive representations within the spatial terms of a language, one represented geometrically (e.g., above, below) and the other functionally (e.g., on, in). It has been hypothesized that geometric terms are more constrained and are mastered relatively early in language learning, whereas functional terms are less constrained and are mastered over longer time periods (Landau, 2016). One consequence of this hypothesis is that these two classes should exhibit different cross-linguistic variability, which is supported by human elicitation studies. In this work we present to our knowledge the first corpus-based empirical test of this hypothesis. We develop a pipeline for extracting, isolating, and aligning spatial terms in basic locative constructions from parallel text. Using Shannon entropy to measure the variability of spatial term use across eight languages, we find supporting evidence that variability in functional terms differs significantly from that of geometric terms. We also perform latent variable modeling and find support for the division of spatial terms into geometric and functional classes.</abstract>
<identifier type="citekey">viechnicki-etal-2024-large</identifier>
<location>
<url>https://aclanthology.org/2024.eacl-long.66</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>1089</start>
<end>1099</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Large-Scale Bitext Corpora Provide New Evidence for Cognitive Representations of Spatial Terms
%A Viechnicki, Peter
%A Duh, Kevin
%A Kostacos, Anthony
%A Landau, Barbara
%Y Graham, Yvette
%Y Purver, Matthew
%S Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F viechnicki-etal-2024-large
%X Recent evidence from cognitive science suggests that there exist two classes of cognitive representations within the spatial terms of a language, one represented geometrically (e.g., above, below) and the other functionally (e.g., on, in). It has been hypothesized that geometric terms are more constrained and are mastered relatively early in language learning, whereas functional terms are less constrained and are mastered over longer time periods (Landau, 2016). One consequence of this hypothesis is that these two classes should exhibit different cross-linguistic variability, which is supported by human elicitation studies. In this work we present to our knowledge the first corpus-based empirical test of this hypothesis. We develop a pipeline for extracting, isolating, and aligning spatial terms in basic locative constructions from parallel text. Using Shannon entropy to measure the variability of spatial term use across eight languages, we find supporting evidence that variability in functional terms differs significantly from that of geometric terms. We also perform latent variable modeling and find support for the division of spatial terms into geometric and functional classes.
%U https://aclanthology.org/2024.eacl-long.66
%P 1089-1099
Markdown (Informal)
[Large-Scale Bitext Corpora Provide New Evidence for Cognitive Representations of Spatial Terms](https://aclanthology.org/2024.eacl-long.66) (Viechnicki et al., EACL 2024)
ACL