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Abstract

Recent evidence from cognitive science sug-
gests that there exist two classes of cognitive
representations within the spatial terms of a
language, one represented geometrically (e.g.,
above, below) and the other functionally (e.g.,
on, in). It has been hypothesized that geometric
terms are more constrained and are mastered
relatively early in language learning, whereas
functional terms are less constrained and are
mastered over longer time periods (Landau,
2016). One consequence of this hypothesis is
that these two classes should exhibit different
cross-linguistic variability, which is supported
by human elicitation studies.

In this work we present to our knowledge the
first corpus-based empirical test of this hypoth-
esis. We develop a pipeline for extracting,
isolating, and aligning spatial terms in basic
locative constructions from parallel text. Us-
ing Shannon entropy to measure the variability
of spatial term use across eight languages, we
find supporting evidence that variability in func-
tional terms differs significantly from that of
geometric terms. We also perform latent vari-
able modeling and find support for the division
of spatial terms into geometric and functional
classes.

1 Motivation

Understanding the cognitive structures underpin-
ning spatial terms has been an object of inquiry
within the broad tradition of the cognitive sciences,
e.g. Jackendoff (1983); Talmy (1983); Miller
and Johnson-Laird (1976); Landau and Jackendoff
(1993); Bloom et al. (1996); Levinson and Wilkins
(2006). One key issue concerns the range of spatial
relationships that are in fact encoded in the class of
spatial terms across languages. There are two ways
of framing this question. Scientists who empha-
size the universal aspects of spatial language have
focused on the idea that non-linguistic spatial rep-
resentations (which are presumably universal, e.g.

Sample Spatial Terms
lang geometric functional
EN above, below, right... in, on, over...
FR à gauche, à droite... sur, sous, dans...
FA . . . P�

	P� ,
�I� ����� . . . Q�K. , P �X

Table 1: Research Question - Do functional terms have
more cross-linguistic variability than geometric terms
in corpora, supporting results from cognitive science?

containment, support, direction) must provide uni-
versal constraints on the spatial properties that are
encoded across languages (Landau and Jackendoff,
1993). By contrast, scientists who emphasize cross-
linguistic variation across spatial terms focus on
the fact that there is substantial variation across lan-
guages even in apparently simple domains such as
containment, support or direction (see, e.g. Levin-
son and Wilkins (2006); Bowerman (1996)).

In general, theories and evidence on the issue of
universals vs. variation in spatial language have
spanned quite different sets of spatial terms and
their cross-linguistic equivalents, making broad
generalizations across different sets of spatial terms
difficult. But some of this debate may be resolved
by considering that the answer might be some-
what different in different sub-domains of spatial
terms. In this paper, we test a hypothesis that could
begin to differentiate between such different sub-
domains, asking whether there are different pat-
terns of variability across ‘geometric’ vs. ‘func-
tional’ spatial terms.

Specifically, some theorists have posited that all
spatial terms should be in principle represented as
‘geometric’, that is, in terms of vectors and their
direction (O’Keefe and Burgess, 1996). However,
many linguists have argued that the true underlying
representation of terms in the domain of contain-
ment/support must involve force-dynamic relation-
ships between a target and reference object (Vande-
loise, 1991; Coventry and Mather, 2002; Carlson
and van der Zee, 2005). That is, for something to be
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‘contained’ within an object depends on so-called
‘functional’ properties, and not simply geometry.
Examples abound: flowers ‘in’ a vase can protrude
with most of the flower outside of the vase; a fly
‘on’ a wall is supported not by simple position or
even gravitation, but by force-dynamics between
the wall and the fly’s foot adhesive pads.

Landau (2016) has built on a broad range of evi-
dence to propose that the spatial terms widely used
to examine universal vs. language-specific contri-
butions – both ‘geometric’ and ‘functional’–may
have quite different profiles for acquisition, cultural
conditioning, cross-linguistic variability, and even
neural representation. The differing profiles imply
that there should be greater variability in the uses
of functional terms across languages than of the
geometric terms.

Landau (2016) further argues that the geomet-
ric terms will naturally vary only on the choice
of reference system relevant for a given term (e.g.
for ‘above/below’, a reference system in which
‘above’ is represented as lying along the vertical
axis centered on a reference object in the upward
direction). The choices are relatively few: the refer-
ence system could be centered on an object, person,
scene for terms ‘above/below’ but must be centered
on the earth for ‘north/south/east/west’. By con-
trast, the dimensions that are relevant for functional
terms will be much more numerous and culturally-
conditioned. The reference object appropriate for
use of ‘in’ may be concrete or abstract but might
also vary by culture/ language. Although ‘bird
in a tree’ is natural to native English speakers, it
is not natural to speakers of other languages, for
whom trees cannot naturally be conceived of as
‘containers’ (Munnich and Landau, 2010). Thus,
it is predicted that there should be greater variabil-
ity in the uses of functional terms like ‘in’ across
languages than of the geometric terms like ‘above’.

Here we pose this question in a wholly new con-
text, in which we are able to examine variability
of these two sets of terms across languages us-
ing large-scale corpora. The availability of large-
scale corpora of translation pairs of sentences of-
fers the possibility of verifying this claim empiri-
cally. We now have parallel text corpora wherein
we see the linguistic expression of the same seman-
tic structure in multiple different language pairs,
allowing us to observe variability in the expres-
sion of spatial terms. Our research question, as
illustrated in Table 1, is this: Do functional spa-

tial terms exhibit more variability than geometric
spatial terms in cross-language corpora for lan-
guages such as French (Vandeloise, 1991) and Farsi
(Moltaji, 2016)? In other words, do corpus statis-
tics support previous cognitive science studies?

In the remainder of the paper we first review re-
lated work investigating cognitive representations
of spatial terms. Next we present our method for
isolating and analyzing the cross-linguistic equiv-
alents of those terms. Then we present results of
our experiments which provide support for the two
hypothesized classes and significant differences in
variability for functional vs. geometric terms. Fi-
nally, we review some of the limitations of our
work and how they might be overcome in future
studies.

2 Relation to Other Work

Since this work uses computational linguistic tech-
niques in order to provide evidence for a question
of cognitive science, it necessarily falls at the inter-
section of several related sub-disciplines and lines
of inquiry. Many cognitive scientists have used
experimental techniques in which native speakers
of various languages are asked to describe pictures
portraying different kinds of spatial relationships.
The goal of such studies is to elicit a canonical pro-
duction of a spatial expression in a constrained set-
ting, to allow cross-linguistic comparison (Levin-
son and Wilkins, 2006; Bowerman, 1996). This
method differs from our current work, in which we
deliberately attempt to capture variation between
and within speakers of a language by observing
multiple target-language usage patterns, all parallel
to a particular spatial term in the source language.

A second body of work investigates the structural
properties of systems of spatial terms across many
languages, developing models of partitions of se-
mantic types (Levinson and Meira, 2003; Khetarpal
et al., 2013). By contrast, our work investigates the
cross-linguistic correspondences of the tokens of
those types within a large-scale parallel text corpus,
but without any reference to external representa-
tions of spatial arrays.

Building on the observation that spatial terms
typically express a core sense which refers to re-
lations between objects in the physical world, but
also secondary meanings referring to temporal and
other more abstract relations, a third body of re-
search has attempted to build word-sense disam-
biguation tools to distinguish between spatial and
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non-spatial uses of said terms (Hassani and Lee,
2017). Such work has required annotating corpora
of text for location phrases, necessitating lists of
spatial terms and detailed annotation guidelines
(Litkowski and Hargraves, 2007; McNamee et al.,
2020). This body of work is similar to ours in
that its models learn from usage patterns of spatial
terms within a particular language.

Most closely related to our work is a series of
studies by Beekhuizen, Stevenson, and colleagues
(see e.g. Beekhuizen and Stevenson (2015)), which
exploits crowdsourced data and parallel text such
as the Bible to understand the cognitive properties
of spatial concepts. In contrast to our work, they
focus on the interaction between static/dynamic
and support/containment spatial markings.

Generally, our work falls within the broader tra-
dition of using multilingual text resources to inves-
tigate cognitive science questions: besides spatial
terms, examples include the study of color terms
(McCarthy et al., 2019), kinship terms (Khalilia
et al., 2023), pain predicates (Reznikova et al.,
2012), indefinite pronouns (Beekhuizen et al.,
2017), and motion verbs (Wälchli and Cysouw,
2012).

3 Methods: Spatial Term Equivalence

Our goal is to extract Basic Locative Constructions
(BLCs, i.e. the answer to the question Where is
the object?) from large-scale bilingual corpora in
order to measure the variability in usage. For exam-
ple, how many different terms are used in French
for the concept equivalent to spatial term above in
English? This requires two things: first, we need
to extract BLCs containing spatial terms of interest
(e.g. The urn is above your fireplace). Second, we
need to align French terms corresponding to the
identified English terms in pairs of BLCs that are
translations of each other. The first requirement is
non-trivial to do automatically because non-spatial
and metaphorical usages are prevalent in standard
usage: in the case of ‘above’, e.g. ‘above average
profits’, ‘order from above’, ‘above the rule of law.’

We propose a pipeline approach to carry out
such measurements, as shown in Figure 1. The
goal of the pipeline is, from parallel corpora, to
filter BLCs – argued to be the clearest contexts
for revealing cognitive differences among spatial
terms (Levinson and Wilkins, 1999). The pipeline
is optimized to run on a research compute cluster
using parallelized CPU operations over large-scale

parallel text corpora. The pipeline is applicable to
any bitext corpus for any pair of source and target
languages. Below we describe the components of
the pipeline and their interactions.

Preliminaries: Spatial terms – sometimes called
Topological Relation Markers (TRMs) (Levinson
and Meira, 2003)– consist of one or more mor-
phemes, lexical items, or combinations of these
expressing a spatial relationship between objects.
A distinction can be drawn between simple spa-
tial terms (often closed-class adpositions or mor-
phemes) and compound, or phrasal spatial terms,
including spatial nominals.1 Given a semantic spa-
tial relation S, we denote each of the k possible
types of the expression of S in language L1 as
SL1
k , k ∈ 1, . . . ,K. Given a pair of parallel sen-

tences containing SL1
k in L1, we can observe the

equivalent j realizations in L2 as SL2
jk .

By observing a number of such realizations we
can count the cooccurrence frequency of SL1

k with
individual types of SL2

jk , and thereby measure the
cross-linguistic variability. The cross-linguistic
variability we seek to measure involves synchronic
usage patterns in specific languages, and does not
directly address language change.

Filtering Stages: In the first stage we apply con-
sistent tokenization to the sentences in L1 and L2
of the parallel text corpus, and save those token
sequences so all remaining stages can access them
as needed (see §4 for details.)

After tokenizing, we apply string search using
a spatial term reference file over the L1 token
sequences to filter sentences containing a spatial
terms such as ‘above’ or ‘on’.

We then select English sentences whose syntax
matches that of the English basic locative construc-
tions. The pipeline performs syntactic filtration
by applying dependency parsing to the source lan-
guage sentence token sequences selected at the pre-
vious stage, then searching each dependency parse
graph for specific node patterns, to select sentences
of the syntactic form in Figure 2.

The next stage of the pipeline filters out sen-
tences whose spatial relation arguments are ab-
stract, because we expect that abstract extensions of
spatial terms could introduce noise into our under-
standing of the cross-linguistic variability of those

1Other realizations of TRMs are common in the world’s
languages, including spatial verbs (Ameka and Levinson,
2007), but are not considered here.
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Figure 1: Pipeline for filtering bilingual corpora, aligning spatial terms, and computing variability via entropy.

Figure 2: Dependency parsing pattern for filtering basic
locative constructions

terms. We therefore apply a concreteness classi-
fier for English terms in the form of a multi-layer
perceptron trained on human-labeled concreteness
judgements (see appendix A for implementation.)

Our use of concreteness as the third filtration
criterion in our pipeline (Fig. 1, F3) is a design
choice, whose consequences are discussed in §6
and §8 below.

Table 2 shows example English sentences from
the bitext corpus which passed or did not pass the
various stages of filtration. The syntactic filter is
tuned for high precision, and rejects dependency
parses which include adjuncts or non-expected
structures (as in the first row of Table 2). Results
of this design choice are discussed in §6 and §8
below. The concreteness filter rejects sentences
unless at least one argument of the spatial relation
is categorized as 5 on the five-point concreteness
scale described above. For example, the third row
of Table 2 shows a sentence that did not pass the
concreteness filter because one of the spatial term
arguments (‘protest’) was not categorized as con-
crete.

Alignment Stages: The next stage of the pipeline
aligns the spatial term from L1 to the corresponding
token sequence from the target language L2. As
discussed in §4 below, we use a standard statistical
word alignment package to accomplish this step.
The output of this stage is a table of coocurrences of

Example sentence F1 F2 F3
You’re still at work, aren’t you? Y N N
Just there’s a lot of blood on
these sheets.

Y N N

Some Kuwaiti monitors and ac-
tivists were at the protests too...

Y Y N

The, uh ... explosive charge was
in the receiver itself...

Y Y N

He was at a petrol pump and it
blew up.

Y Y Y

Table 2: Sample sentences passing some or all filtration
stages in BLC extraction pipeline; F1=lexical filter;
F2=syntactic filter; F3=concreteness filter.

raw target-language spatial types SL2
jk with source

equivalents SL1
k , k ∈ 1, . . . ,K.

The final stage of the pipeline seeks to mini-
mize noise from orthographic and morphological
variation by mapping raw L2 types to canonical
forms. For example, the French spatial terms ‘au-
dessus’ and ‘au dessus’ are in free variation with
and without the hyphen (Vandeloise, 1991), but do
not convey distinct meanings. We map both to a
single canonical form. Similarly, the Greek prepo-
sition ‘se’, corresponding to a range of English
prepositions including ‘in’, ‘on’, and ‘at’, appears
in contracted form with an inflected following defi-
nite article variously as ‘sto’, ‘ston’, ‘stin’, ‘sti’, etc.
We map all such raw types to the single canonical
form ‘se’. This mapping is currently performed
using string substitutions after inspection of the
raw spatial term equivalence tables, in consulta-
tion with native speaker informants and reference
grammars. Consequences and limitations of the
normalization are discussed below in §6.

Entropy Calculation: The result after this final
processing stage is a cooccurrence matrix of cor-
respondences between SEnglish and SL2 spatial
terms, for all language pairs in the corpus. We con-
ceive of each column of this matrix as the outcome
of a process whereby a speaker of the target lan-
guage L2 is asked to translate an English sentence,
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and selects a fitting spatial term equivalent in the
target language. Over a number of trials, then the
correspondence between SL1

k and {SL2
jk } equiva-

lents can be modeled as a discrete random vari-
able with unknown distribution, i.e. we compute
probability p(SL2

jk ) as the number of cooccurences
between SL2

jk and SL1
k , divided by the total count

of SL1
k . Then we calculate the Shannon entropy

(Shannon, 1948) of this correspondence:

HSL1
k

= −
∑

j

p(SL2
jk )× log(p(SL2

jk )) (1)

Finally we compare HSL1
k

of functional terms
with that of geometric terms, testing if there is
higher variability in one class. In practice, com-
puting Equation 1 directly with plug-in estimators
(using the maximum likelihood estimates of proba-
bility from raw counts) may lead to negative bias,
underestimating the true entropy. So we use the
Miller-Madow estimator which adds to Equation 1
a correction term that grows with the number of
classes and decreases with the number of samples
(Arora et al., 2022). The results from both estima-
tors differ in magnitude but not in overall pattern.

4 Experiment Setup

The proposed method of measuring cross-linguistic
variability has been applied to large parallel text
corpus of pairs of sentences from English and
seven Indo-European plus one Finno-Ugric lan-
guage: Spanish (ES), Greek (EL), German (DE),
French (FR), Dutch (NL), Italian (IT), Farsi (FA),
and Hungarian (HU). We chose these languages
based on two criteria: (1) the availability of large
amounts of data in multiple domains and (2) the
availability of language informants to perform the
manual normalization step in our pipeline.

For tokenization, we use the Stanford CoreNLP
tokenizer when available (English, Spanish, Ger-
man, and French) and the Moses tokenizer oth-
erwise.2 For the syntax match component of the
pipeline, we use Stanford CoreNLP 4.5.1 (Man-
ning et al., 2014). Specifically, we use the neural
network transition-based dependency parser (Chen
and Manning, 2014) trained on English Univer-
sity Dependencies.3 For word alignment, we use
giza++ (Och and Ney, 2003) from the Moses

2
https://github.com/moses-smt/mosesdecoder/

3
https://nlp.stanford.edu/software/nndep.html

Lang #Sent #BLC Sources
DE 25.3M 30,851 b, e, os, gv, q, t
EL 42.7M 58,581 b, e, os, gv, q, t
ES 65.4M 70,693 b, e, os, gv, q, t, u
FA 7.5M 8,882 tz, os, gv, q, t
FR 62.6M 35,229 b, p, i, os, u
HU 43.9M 59,579 b, e, os, gv, q, t
IT 38.2M 50,839 b, e, os, gv, q, t
NL 40.0M 55,853 b, e, os, gv, q, t

Table 3: Count of sentence pairs in millions in the
original corpus (#sent) and count of Basic Locative
Constructions (#BLC) after filtering for each language.
Keys for sources/domains for bitext corpora: b: Bible, e:
Europarl v7 or v10, os: Open Subtitles 2018, gv: Global
Voices, q: QED corpus, t: TedTalks 2020, tz: Tanzil, u:
United Nations, i: IWSLT 2022.

package run up to IBM Model 4.4

For the experiments reported here, the list of
English spatial terms from the SEMEVAL project
(Litkowski and Hargraves, 2007) was used as the
starting point, supplemented with common spatial
nominals such as ‘in front of’, and minus any ki-
netic (path oriented) terms (Levinson and Wilkins,
2006)). Six terms which did not occur frequently
enough in the corpus to calculate entropy scores
were also dropped, yielding a final reference list
of twenty-two English static locative spatial terms
(Table 4).

Table 3 summarizes the statistics of our dataset.
We begin with millions of sentences pairs from
a collection of parallel text corpora obtained via
the OPUS portal (Tiedemann, 2012) and obtain
approximately tens of thousands of BLCs for each
language pair. These BLCs form the basis of our
entropy study.

5 Results

5.1 Do functional terms exhibit more
cross-lingual variability than geometric?

To investigate this question, each preposition on the
reference list (Table 4) was labeled as either ‘func-
tional’ or ‘geometric’ using a priori knowledge of
linguistic-semantic literature. Entropies per spatial
term class were computed next, and are shown in
Figure 3.

Mean Miller-Madow entropy for the geometric
spatial terms across eight languages was H = .46,
while for the functional terms mean entropy cross

4Though deep neural aligners have become available in
recent years (e.g. Dou and Neubig (2021)), our experience
is that giza++ still achieves comparable results on variable-
sized corpora from different languages.
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Figure 3: Distribution of entropies with the Miller-
Madow estimator for functional and geometric spatial
terms defined by a priori class labels. Box plot shows
median and quartiles.

eight languages was H = 1.47. To assess signifi-
cance we performed a t-test for independent distri-
butions, assuming unequal variance: t = 7.764,
p <1.81 × 10−12This result indicates that the
means of the geometric and functional classes are
significantly different, which we interpret as offer-
ing initial support for the hypothesis that functional
spatial terms show greater cross-linguistic variabil-
ity than do geometric ones.

Considering the entropies for functional versus
geometric spatial terms derived from a priori labels,
noteworthy are not just the differences in the means
of the two distributions, but also the higher variance
among the functional terms. This observed distri-
bution parameter fits the hypothesized properties of
functional (force-dynamic) spatial term cognitive
representations. Because this class of terms shows
a relatively lengthy developmental profile (Landau
et al., 2017) and their usage patterns are more cul-
turally conditioned, greater variance in this class
makes sense.

5.2 Do entropies for specific spatial terms
match expectations?

The class-level box plot covers some complexity in
the behavior of individual terms. Table 4 presents
entropies for individual spatial terms. The table is
sorted by term entropy, low to high. In all cases
Miller-Madow estimates are slightly higher in mag-
nitude than plug-in estimates, but do not change
their relative rankings. As expected, the putative
geometric terms cluster at the top, while the puta-
tive functional terms cluster at the bottom.

While ‘in’ and ‘on’ have most often been
discussed in the context of functional or force-

Spatial Term Term Class H̄ MM
to the left of G 0 0

to the right of G 0 0
in back of G 0 0

in the front of G .24 .25
behind G .25 .26

between G .29 .29
below G .37 .39
against F .41 .42

on the bottom of F .44 .47
under G .51 .52
above G .53 .55

on the top of F .62 .66
in front of F .77 .78

inside F 1.06 .1.08
on top of F 1.26 1.30

in F 1.43 1.43
down G 1.47 1.54

off F 1.58 1.65
at F 1.75 1.76
on F 2.12 2.13
by F 2.34 2.39

over F 2.45 2.49

Table 4: Individual Spatial Term Entropies: H̄ is the
mean of Equation 1 of a spatial term SL1

k over 8 lan-
guages using the plug-in estimator; MM is the mean
of the Miller-Madow estimate of entropy; Term class =
functional (F) or geometric (G) based on evidence from
linguistic-semantic literature.

dynamic cognitive representations – and in fact
they do display high cross-linguistic variability
– the highest variability is from the term ‘over.’
‘Over’ has also been argued to be functionally de-
fined (Coventry and Mather, 2002), and is unusual
in having a high degree of polysemy; ‘over’ con-
veys three distinct spatial senses including cover-
ing, aboveness, and above-acrossness (Brugman
and Lakoff, 1988). The degree of polysemy no
doubt contributes to the cross-language variabil-
ity. Word senses disambiguation and role labeling
of spatial terms (Kordjamshidi et al., 2010) are
potentially useful in obtaining more fine-grained
analyses; we leave this as future work.

A few departures from initial expectations in Ta-
ble 4 are noteworthy. ‘Against’ is labeled a priori
as ‘functional’ because of its requirement for a very
specific kind of support from one object relative
to the other; note that Levinson and Meira (2003)
consider ‘against’ to be an interstitial and hence
unusual English blend somewhere in topological
space between the more focal ‘on’ and ‘near.’ The
term ‘down’ has a surprisingly high H value, im-
plying non-spatial usages may have muddied the
analysis of this particular term. Partial review of the
BLCs containing ‘down’ confirms that metaphori-
cal uses such as ‘down the tubes’ are included, as
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Figure 4: Number of Components in GMM analysis of
Spatial Term Entropies

are kinetic usages such as ‘I was halfway down the
stairs when...’

5.3 Does clustering reveal the same kind of
classes?

To check whether similar results could be obtained
without assumed spatial term class labels, we use
mixture modeling to identify the number and com-
position of latent components in the entropy data.

First, we investigated how many latent classes
could be identified in the 8-dimensional spatial
term × language entropy score matrix. Over the
course of twenty trials, we estimated Gaussian
Mixture Models (GMMs) with number of compo-
nents varying between one and six. Figure 4 plots
the mean Bayesian information criterion (BIC) for
each number of components on the left-hand y-axis,
and the corresponding gradient of the BIC on the
right-hand vertical axis. Lower BIC means a more
informative mixture model, and locations of steep
gradient BIC are good cut points for number of
components (Neath and Cavanaugh, 2012).

Figure 4 shows a clear drop in BIC between one
and two mixture components, and a corresponding
steep BIC gradient. We take these results to mean
that the data are best described as composed of
mixtures of two underlying distributions.

We next estimate a two-component GMM, label-
ing the cluster with higher mean vector as “high"
and the other as “low." We repeat this for 20 trials
and report the most frequent label for each term.
Table 5 shows results for twenty-two spatial terms,
and their corresponding a priori class labels.

Of the twenty-two spatial terms on the reference
list, eighteen (82% ) show agreement between the
a priori class labels and the labels derived organ-
ically from mixture models. (These are the terms

GMM Labels
Low High

G

above, behind, below, between, in
back of, in front of, in the front of,
to the left of, to the right of, under

down

F
against, on the bottom of, on the top
of

at, by, in, in-
side, off, on, on
top of, over

Table 5: Agreement matrix between a priori spatial term
class labels (G=geometric, F=functional) and labels de-
rived from GMM ({High, Low}).

ES EL DE NL FR IT FA HU
.84 .87 .94 .94 .95 1.00 1.32 1.43

Table 6: Mean Entropy, Miller-Madow estimator, of all
Terms by Language

in the top-left and lower right cells of Table 5.)
We interpret this result as suggesting a significant
but not perfect overlap between the sets of terms
belonging to each class, and the corresponding cat-
egories of {Functional, Geometric} as defined by
the cognitive science community.5

6 Discussion and Analysis

Generally, our corpus-based results provide sup-
port for the two classes of spatial language shown
in the cognitive science literature. We now turn
our discussion to the more fine-grained nuances
regarding the findings.

Linking hypothesis to results: Our general hy-
pothesis is that there are differences in cross-
lingual variability between different classes of spa-
tial terms. The results in §5.1 show functional
terms have significantly different mean entropy
compared to geometric terms. The direction of
the difference is consistent with the hypothesis that
functional terms should exhibit more cross-lingual
variability than geometric ones. The larger vari-
ance of the functional class also matches the initial
prediction.

All results are anchored with the same set of
English terms as SL1

k in Equation 1. So when we
say the English term ‘on’ has higher cross-lingual
variability than ‘below’, we are only comparing
between terms in the same language (English). Our
results say nothing about the inherent variability of
words in, e.g., Hungarian vs. German or Hungarian

5With regard to mismatches between a priori and GMM
labels, two of six (‘against’, and ‘on top of’) are boundary
cases, which likely would appear in the expected a priori
classes given additional data. See §5.2 for discussion of ‘down’
and its unexpectedly high variability.
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vs. English.6 One assumption is that the choice of
languages in L2 should not impact our comparison
of L1 term entropies as long as as the set of L2
languages are held constant in our analysis. This
is reasonable, but in future work we would like to
confirm with a broader set of L2 languages that are
either related and unrelated to L1.

BLC data quantity and quality: The current
experiments demonstrate that basic locative con-
structions are comparatively rare syntactically and
semantically. Given that BLCs are the clearest in-
dications of core meaning of static spatial terms
in a language, and given that a reliable estimate of
cross-linguistic variability requires a certain num-
ber of observations of each spatial term in a BLC,
it is only because of the size of the available bi-
text corpora that the current analysis has become
possible.

We attempt to characterize our BLC data quality
by performing a manual post-hoc annotation of ran-
dom samples of 1,000 sentences before and after
filtration. Samples were coded by one of the au-
thors as either containing or not containing a BLC.
Among the 1,000 sampled sentences determined to
be BLC by our pipeline, 79% are coded as contain-
ing a BLC by the human annotator. This gives a
precision of 0.79, which we believe is sufficiently
high for the entropy studies. Note that it is not easy
to estimate recall in this setup; we suspect it is not
high, due to the strictness of our syntactic filter.

Two of the design choices in our pipeline (Fig
1) – the precision-tuned syntactic filter and the use
of concreteness as a proxy for spatial sense – lead
to results which have high precision, but whose
recall is low and whose sample size is also low.
The small sample sizes made it difficult to estimate
H for more rare terms, particularly for some of
the geometric terms. We compensated for this is-
sue by using corpora large and diverse enough to
provide sufficient estimate of terms in both classes.
In future replications of this research, we hope to
increase the recall of the pipeline without diminish-
ing precision.

Entropy distribution by language: The distri-
bution of mean H for each language (Table 6) is
noteworthy. Miller-Madow estimates of mean en-
tropy by language cluster around H = .9. Farsi

6We also do not answer any questions about the Shannon
entropy of running text in different languages, as done in
predictive language modeling (e.g. entropy of probability of
word3 given word2 and word1).

DE EL ES FA FR IT HU NL
.89 .72 .84 .92 .90 .70 .68 .85

Table 7: Spearman’s ρ rank order correlation of spatial
term entropies with and without orthographic and mor-
phological normalization

and Hungarian are clear outliers with mean en-
tropies of H = 1.32 and H = 1.43 respectively.
For Hungarian, high overall entropy would appear
to correlate with complexity of inflectional mor-
phology. Hungarian which has the highest mean
entropy score of 1.43, also has the most complex
morphological system of any of the eight languages
(Keresztes, 1995). Because the analytic pipeline is
not optimized for automatic morphological parsing,
some of the morphemes marking spatial relations
in Hungarian likely have not been normalized to
canonical forms. Hence there are more L2 spatial
term types in the current Hungarian sample, and by
implication higher entropy scores.

For Farsi we suspect diglossia as a factor con-
tributing to its higher entropy score of H = 1.32.
The Farsi data in our sample consist of both Ira-
nian and Afghan Persian, which use different lexi-
cal, morphological, and orthographic conventions
(Windfuhr, 2009). A lower proportion of written
vs. spoken texts in the Farsi sample (see Table 3)
may also have contributed to the higher observed
entropies.

Impact of Manual Normalization: One bottle-
neck of our approach is the manual nature of the
orthographic and morphological normalization ap-
plied at the end of the pipeline before calculating
entropy scores. This step was highly labor inten-
sive, required consultation with native speaker in-
formants in some cases, and limited the current
analysis to only eight languages. To identify po-
tential bias we performed an ablation study by
re-measuring spatial term entropies without the
final orthographic and morphological normaliza-
tion. Specifically we measured the Spearman rank
order correlation coefficient ρ in spatial term en-
tropy scores for the eight languages both with and
without the normalization applied. A high degree
of correlation between the entropy ranks with and
without morphological normalization would indi-
cate that the normalization stage is not introducing
bias, and potentially could be skipped in future
versions of the pipeline. We report the results in
Table 7.

Table 7 shows that seven of eight correlation
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coefficients are in the high (>= .7) or very high
(>= .9) ranges, based on a common interpretation
criteria (Akoglu, 2018). The eighth, Hungarian, is
2 percentage points below the high range. We infer
that the orthographic and morphological normal-
ization process did not introduce significant bias
into the overall spatial term entropy scores.

7 Conclusion

We find that cross-linguistic variability in spatial
term usage is consistent with the hypothesis (Lan-
dau 2016) of two distinct cognitive representations
of spatial terms: one functional (dependent on the
force-dynamic interactions between the figure and
ground), and the other geometric (defined by the
distance and direction of the figure from the ground
along primary, secondary, or tertiary axes). The
current study adds a new type of evidence for the
existence of the two distinct classes to prior studies
based on child language development patterns and
adult elicitation paradigms.

This initial finding would seem to motivate vari-
ous future investigations. It is desirable to scale up
the current analysis and validate it against a larger
and more typologically diverse set of languages,
requiring automatic morphological parsing to be
added to the filtration pipeline. Languages using
combinations of morphemes to mark spatial rela-
tions will require extension of the current Shannon
entropy measure (equation 1), to allow for joint
bigram and trigram probabilities in addition to the
unigram probabilities.

Lastly the data presented here suggest a possi-
ble connection between the grammatical categories
used by languages to express the two classes of
spatial terms, and the theory of formal markedness
(Jakobson). Some languages like English use a sin-
gle grammatical category (prepositions) to express
both putative classes of spatial relations. However
other languages such as Hungarian use both case
markings and postpositions to express spatial rela-
tions. Our data suggest that Hungarian case mark-
ings are more closely associated with functional
spatial relations, while postpositions are associated
with geometric ones. This finding, if extended to
other languages with complex nominal and ver-
bal morphological strategies for marking spatial
relations, suggest a new way of understanding the
range of formal strategies employed by languages
to express spatial concepts.

8 Limitations

The first limitation of this work is the small number
of languages used, all of which except Hungarian
are Indo-European. It is important to verify the
conclusions hold given a more typologically and
areally diverse sample.

The second limitation is the spatial term cover-
age in the selected corpora. Though our corpora
are large and chosen from diverse domains, cer-
tain spatial terms particularly from the geometric
class were not well represented. For example, in
the English-French bitext corpus of 62 million sen-
tences from diverse genres, no basic locative sen-
tences occurred containing the spatial term ‘east
of.’ Poor coverage of rarer spatial terms dispropor-
tionately affects geometric terms, and could bias
our results. Directional terms were particularly rare
in our sample, and for future analyses may need
to be harvested from specialized genres such as
travel guides. We hope to increase the recall of
our pipeline to reduce potential bias in estimating
entropies of comparatively rare terms.

Rare terms could potentially introduce more
bias in the entropy estimates compared to frequent
terms. This work attempts to mitigate such bias
with the Miller-Madow correction. But it is still
important to be careful when comparing entropy
estimates between words that drastically different
occurrences.

A third limitation of this analysis comes from the
manual morphological normalization which was
implemented as the last stage of the pipeline be-
fore entropy estimation. This stage limited the
analysis to languages for which we had access to
fluent informants and convenient reference gram-
mars. While we show in §6 that this normalization
did not introduce bias into our results, we neverthe-
less hope future iterations of this work will avoid
it through automated morphological segmentation
for a larger set of languages.
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A Appendix: Concreteness Classification

Concreteness classifier architecture and train-
ing: To classify English sentences as BLCs, we
use a concreteness classifier for the arguments of
the spatial relation in the sentence. Specifically,
we first train a regression model whose input is a
300-dimensional subword-based FastText word em-
bedding (Bojanowski et al., 2017), with a hidden
layer of 100 dimensions, and whose output layer
is the concreteness score. The model is trained via
L2 loss on data provided by Brysbaert et al. (2014),
which includes 14k English nouns rated for con-
creteness along a 5-point scale by human judges.
This model achieves 0.29 mean squared error loss
on 20% held-out data. Finally, we threshold the
regression model output such that any word with a
concreteness score prediction above 4 (in the range
1-5) is determined to be concrete.
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