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Abstract

Neural Machine Translation (NMT) models
have been shown to be vulnerable to adversarial
attacks, wherein carefully crafted perturbations
of the input can mislead the target model. In
this paper, we introduce ACT, a novel adver-
sarial attack framework against NMT systems
guided by a classifier. In our attack, the adver-
sary aims to craft meaning-preserving adver-
sarial examples whose translations in the target
language by the NMT model belong to a differ-
ent class than the original translations. Unlike
previous attacks, our new approach has a more
substantial effect on the translation by altering
the overall meaning, which then leads to a dif-
ferent class determined by an oracle classifier.
To evaluate the robustness of NMT models to
our attack, we propose enhancements to exist-
ing black-box word-replacement-based attacks
by incorporating output translations of the tar-
get NMT model and the output logits of a classi-
fier within the attack process. Extensive exper-
iments, including a comparison with existing
untargeted attacks, show that our attack is con-
siderably more successful in altering the class
of the output translation and has more effect on
the translation. This new paradigm can reveal
the vulnerabilities of NMT systems by focusing
on the class of translation rather than the mere
translation quality as studied traditionally.

1 Introduction

Recently, deep neural networks have emerged as
powerful tools in various domains, such as Natural
Language Processing (NLP) (Vaswani et al., 2017)
and computer vision (He et al., 2016). Despite their
exceptional performance, these models have been
shown to be susceptible to slight perturbations to
their inputs, known as adversarial attacks (Szegedy
et al., 2014; Moosavi-Dezfooli et al., 2016; Madry
et al., 2018). In particular, adversarial examples
closely resemble the original input and can deceive
the target model to generate incorrect outputs. Ex-

tensive research has also been devoted to adversar-
ial attacks against NLP models (Jin et al., 2020;
Li et al., 2020; Zang et al., 2020; Guo et al., 2021;
Wang et al., 2022; Zou et al., 2023) since NLP mod-
els are increasingly employed in practical systems.
These studies have mainly focused on text classi-
fication tasks such as sentiment classification and
natural language inference. In text classification,
the adversary aims to fool the target model into mis-
classifying the input sentence as a specific wrong
class (targeted attacks) or any class other than the
correct ground-truth class (untargeted attacks).

Another important task in NLP is Neural Ma-
chine Translation (NMT), which has gained sig-
nificant attention (Bahdanau et al., 2015). In this
application also, adversarial attacks have been stud-
ied to gain insights into the vulnerabilities of these
systems. Particularly, untargeted attacks seek to
generate adversarial examples that preserve the se-
mantics in the source language while the output
translation by the target model is far from the true
translation (Ebrahimi et al., 2018a; Cheng et al.,
2019; Michel et al., 2019; Niu et al., 2020; Zou
et al., 2020; Sadrizadeh et al., 2023b). On the other
hand, targeted attacks against NMT systems aim to
mute or push specific target words in the translation
(Ebrahimi et al., 2018a; Cheng et al., 2020a; Wal-
lace et al., 2020; Sadrizadeh et al., 2023a). None
of these attacks against NMT systems actually con-
sider the class of the output translation as the ob-
jective of the adversarial attack. However, in some
cases, the user only cares about the class, e.g., senti-
ment, of the translation rather than the exact transla-
tion. Moreover, the class of the translation reflects
the whole meaning of the sentence. Nevertheless,
simply reducing the translation quality (untargeted
attacks) or inserting specific keywords in the trans-
lation (targeted attacks), as proposed in previous
works, may not sufficiently alter the translation and
thus change the overall category of the translation.
Moreover, in previous attack frameworks, it is par-
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Input Text (red=adversarial perturbation) En-to-Fr NMT (blue=English meaning) Classifier True Class

Org. unflinchingly bleak and desperate Inébranlablement sombre et désespéré Neg. Neg.
Adv. ACTTF unflinchingly bleak and upsetting Légère et bouleversante, sans fin Pos. Pos.

(Light and moving, endless)
Adv. TF unflinchingly melancholy and upsetting Mélancolie et bouleversement inébranlables Pos. Neg.

(Unwaveringly melancholy and turmoil)

Table 1: Illustration of valid adversarial attacks with two examples against Marian NMT (En-Fr) on a movie review
from SST-2 dataset. For both examples, the class predicted by the classifier for the adversarial translation differs from
the class of the original translation. The first adversarial example, ACTTF, is considered valid since the NMT’s French
translation is wrong (if we compare its meaning in blue to the input text), and the classifier’s prediction is correct.
However, in the second one, TF, the NMT’s translation is correct, and the classifier’s prediction is wrong. Hence, it is
not a desirable attack. The last column, True Class, is the real perceived sentiment of the translated review.

ticularly challenging to evaluate the true impact of
the adversarial attack on the performance of the tar-
get NMT since the ground-truth translation might
change even if the adversarial perturbation is subtle
(Zhang et al., 2021; Sadrizadeh et al., 2023b).

In light of the above challenges, this paper intro-
duces ACT (Altering Class of Translation), a novel
adversarial attack framework against NMT systems
guided by a classification objective. In our attack
strategy, the adversary aims to craft an adversarial
example in the source language that deceives the
target NMT model. Specifically, the goal is to make
the translation of the adversarial sentence belong
to a different class than the original translation. To
achieve this, the adversary uses an arbitrary classi-
fier as an oracle to predict and alter the class of the
output translation by the target NMT model. By
targeting the class of the output translation, our at-
tack has a more substantial effect on the translation.
The second row of Table 1 shows a successful ad-
versarial example generated in our framework. The
original movie review has negative sentiment. The
adversary aims to change the input sentence (in an
imperceptible manner, i.e., the sentiment remains
negative) such that the output translation by the
target NMT model has positive sentiment instead
of negative as the original translation. However,
the second example (last row) is an undesirable
case, where the class of the translation predicted
by the classifier is changed, but the classifier is
fooled by the attack, and its prediction is incorrect.
In our framework, the target of the attack is the
NMT model, but the attacker considers a system,
including the target NMT model and the classifier
operating on the output of the NMT model. Hence,
the attacker needs to ensure that the attack fools
the NMT model (not the classifier) to generate a
wrong translation, which then results in a different
class predicted by the classifier. Consequently, the

main challenge in this framework is distinguishing
the attack’s impact on the target NMT model from
its impact on the classifier, which is not attacked
by the adversary. To address this challenge, we
design enhancements to existing black-box word-
replacement attacks, such as TextFooler (Jin et al.,
2020) and BAE (Garg and Ramakrishnan, 2020),
by integrating the output translation of the target
NMT model and the output logits of a classifier into
the attack process. This approach ensures that the
adversarial translation is far from the original one,
in addition to altering the class to which the trans-
lation belongs. In practice, attackers typically have
limited access to the target NMT model. Therefore,
we assume a black-box setting for the attack against
the target NMT model. Additionally, we assume
black-box access to the oracle classifier, as the ad-
versary may employ an off-the-shelf classifier to
guide the attack.

We extensively evaluate the robustness of NMT
systems to our proposed attack. To evaluate the
attack, we measure the success rate of altering the
class of the output translation by using a classifier
that was not involved in the attack process. More-
over, we estimate the impact of the attack on the
NMT model by the similarity between the transla-
tions of the original and adversarial sentences. As a
baseline, we consider the untargeted attacks against
NMT systems and check if the class of the trans-
lation changes after the attack. Our experiments
show that, although untargeted attacks can reduce
the translation quality, they are notably less suc-
cessful in changing the category of the translation.
In contrast, our proposed attack not only changes
the class of the translation but also has more impact
on the translation. It shows that our new attack can
provide a more comprehensive evaluation of the
robustness of NMT systems to adversarial attacks.
In summary, our contributions are as follows:
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• We introduce ACT, a novel attack framework
against NMT models, which is guided by a clas-
sifier to change the class of the output translation.

• We propose modifications to existing black-box
word-replacement attacks to make them effective
for the proposed attack strategy.

• We thoroughly assess the robustness of NMT sys-
tems to our new attack framework, which show-
cases the vulnerabilities of NMT systems by fo-
cusing on the class of output translation.

2 Related Works

Textual adversarial attacks pose unique challenges
compared to their image domain counterparts. The
discrete nature of textual data makes it challenging
to employ gradient-based optimization methods
directly. Moreover, defining the imperceptibility of
adversarial perturbations for text is difficult. While
a significant portion of research has focused on text
classification, some works also target sequence-to-
sequence NLP systems, such as NMT.

Text Classification In the text classification
tasks, some attacks measure imperceptibility based
on the number of edits at the character level
(Ebrahimi et al., 2018b; Gao et al., 2018; Pruthi
et al., 2019). However, most NLP attacks consider
semantic similarity as the imperceptibility metric
and operate at the word level. Some of these at-
tacks adopt optimization methods to bridge the gap
between image and textual domains (Guo et al.,
2021; Sadrizadeh et al., 2022; Yuan et al., 2023).
However, the majority of methods select specific
words in the input sentence and replace them with
synonyms (Zang et al., 2020), similar words in the
embedding space (Alzantot et al., 2018; Ren et al.,
2019; Jin et al., 2020; Maheshwary et al., 2021; Ye
et al., 2022), or candidates predicted by a masked
language model (Garg and Ramakrishnan, 2020;
Li et al., 2020, 2021; Yoo and Qi, 2021).

Neural Machine Translation In contrast to text
classification settings, where the adversary aims to
alter the predicted class, NMT models generate en-
tire sentences as their output and the adversary tries
to alter this translation. There are various types of
adversarial attacks in the literature depending on
the adversary’s objective. Untargeted attacks aim
to reduce the translation quality of the target model
with respect to the ground-truth translation (Michel
et al., 2019; Cheng et al., 2019, 2020b; Sadrizadeh
et al., 2023b). Targeted attacks seek to mute or

insert specific words into the translation (Ebrahimi
et al., 2018a; Cheng et al., 2020a; Wallace et al.,
2020; Sadrizadeh et al., 2023a). (Wallace et al.,
2020) introduces a universal attack that causes in-
correct translation by target model when a single
snippet of text is appended to any input sentence.
They also show that NMT models can generate
malicious translations from gibberish input.

Specifically, (Belinkov and Bisk, 2018; Ebrahimi
et al., 2018a) first explore the vulnerabilities of
NMT models to character manipulations. In untar-
geted attacks, (Cheng et al., 2019) replaces random
words in the input sentence with the words sug-
gested by a language model, guided by gradients
to reduce translation quality. Moreover, (Michel
et al., 2019; Zhang et al., 2021) substitute important
words in the input sentence with their neighbouring
words in the embedding space. Other approaches
utilize optimization to generate adversarial exam-
ples (Cheng et al., 2020a; Sadrizadeh et al., 2023b).
While the first use the NMT embeddings to define
similarity, the latter uses the embedding represen-
tation of a language model.

However, none of these attacks specifically tar-
get the class that the translation belongs to, which
can be important in many applications. Further-
more, evaluating the true impact of these attacks is
challenging, as the adversarial perturbations may
change the ground-truth output and potentially re-
sult in an overestimation of the attack performance.
To address these limitations, we propose a novel
attack framework against NMT models guided by a
classifier to generate an adversarial example whose
translation by the NMT model belong to a different
class than the class of the original translation. This
approach can have more impact on the output trans-
lation by altering its class. We should note that, in
a parallel work, (Raina and Gales, 2023) recently
published a paper proposing an attack against NMT
models to change the perception of translation. In
contrast to this work, we consider modifying the
class of output translation, and not just sentiment.
Our proposed framework can be used with differ-
ent classifiers based on the adversary’s objective.
Moreover, we try to distinguish the attack’s impact
on the target NMT model from its impact on the
classifier used in the attack, which is the main chal-
lenge in this framework. Finally, we extensively
evaluate the robustness of NMT models to our at-
tack framework. We discuss these differences in
more detail in Appendix C.
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Figure 1: Block diagram of ACT, a new attack frame-
work against NMT models.

3 ACT Attack Framework against NMT

In this section, we introduce ACT, our new attack
framework against NMT models. Then, we present
our method to craft such adversarial examples.

3.1 Attack Definition

The block diagram of our attack framework is
presented in Figure 1. Let X denote the source
language space and Y denote the target language
space. The NMT model T : X → Y maximizes the
probability of generating the true translation, auto-
matically translating the input sentence y = T (x),
where x ∈ X is the input sentence in the source
language, and y ∈ Y is the output translation by
the NMT model T .

In our proposed attack, the adversary seeks an
adversarial example x′ in the source language that
misleads the target NMT model. In particular,
the adversary aims that the adversarial translation
y′ = T (x′) is from a different class than the origi-
nal translation. To this end, the adversary uses an
arbitrary classifier as an oracle F : Y → Z to
determine the class of the output translation by the
target NMT model.1 Based on the attack objective,
the adversary can use a classifier suitable for any
task, such as sentiment classification. The classi-
fier classifies the input translation into z = F (y),
where z is the class of the translation y. Hence, the
adversarial example is crafted such that F (y′) ̸= z.
However, we constraint that the adversarial exam-
ple x′ must remain a natural sentence and be se-
mantically similar to the original sentence x.

In practice, the adversary has limited access to
the target model. Therefore, we consider a black-
box scenario where the adversary cannot access the
model parameters, architecture, or training data of

1The effect of the choice of classifier on the performance
of ACT is studied in Appendix B.5.

the target NMT model T . Moreover, the adversary
may use an off-the-shelf classifier for the attack
and hence, has black-box access to the classifier
F . The attacker can only query the NMT model T
with a sentence in the source language and get the
translated sentence. Then, they can use the classi-
fier F to determine the class and the corresponding
logits for the translated sentence.

It is worth mentioning that we can consider other
scenarios within our framework, e.g., when the
target of the attack is the entire system (NMT +
classifier), or just the classifier. We explore these
scenarios in the experiments.

3.2 Methodology
There are substantial textual adversarial attacks
in the literature that efficiently search the discrete
space of tokens to craft meaning-preserving natural
adversarial sentences (Jin et al., 2020; Garg and Ra-
makrishnan, 2020; Ye et al., 2022). We can build
our attack upon these attacks based on the objec-
tive of our attack framework. To this end, we use
TextAttack, which provides a unified framework
for numerous textual adversarial attacks (Morris
et al., 2020) and facilitates the incorporation of our
enhancements into the existing attack methodolo-
gies. In this framework, there are four components
in black-box attacks based on word-replacement.

Constraints: In order to generate semantic-
preserving and grammatically correct adversarial
sentences, each attack defines a set of constraints
by using a grammar checker, embedding space dis-
tance, or perplexity score.

Transformation: To find a set of candidates to
replace the selected words, various transformations
are proposed, e.g., predictions by masked language
models or neighbors in the embedding space.

Search method: Each attack employs a search
method to iteratively query the target model and
find an adversarial example that satisfies the con-
straints, e.g., greedy search or genetic algorithm.

Goal function: This module specifies the stop-
ping criteria and determines if an attack is success-
ful.

In the attacks modeled by this framework, we
can craft an adversarial example that satisfies the
adversary’s goal function and adheres to certain lin-
guistic constraints. We find these perturbations by
replacing some of the words in the input sentence
based on a search method.
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In our proposed attack framework, the adversar-
ial sentence should maintain the semantics and the
class label in the source language. Meanwhile, the
translation in the target language by the target NMT
model should have a different class label. There-
fore, we use the constraints and transformations
in the literature to generate adversarial examples
that are similar to the original sentence and are
grammatically correct. However, based on our at-
tack objective, we propose a new goal function
and some alterations to the search method. In our
framework, the adversary uses an oracle classifier
to manipulate the NMT model into crafting an ad-
versarial translation from a different class. Hence,
the target of the attack is the NMT model, and we
need to distinguish between the impact of the at-
tack on the NMT model T and on the classifier F .
An undesirable example, in which the classifier is
impacted by the attack, is presented in Table 1. To
address this challenge and make the attack mainly
effective on the NMT model rather than the classi-
fier, we propose the two following goal functions
as the stopping criteria of the attack:

1) Translation In order to highlight the effect
of the attack on the NMT model, we include the
translation output of the NMT model in the goal
function. In other words, we consider an adversar-
ial attack to be successful if the similarity between
the original translation y and the adversarial trans-
lation y′ is less than a threshold thrT :

sim(y,y′) < thrT . (1)

This goal function allows us to mislead the NMT
model T to generate a translation for the adversarial
example that is far from the original translation.
We use the BLEU score to evaluate the similarity
between two translations since it is fast, common in
benchmarks, and has been used in previous works
(Cheng et al., 2019; Wallace et al., 2020; Zhang
et al., 2021).2 We study the effect of this similarity
metric when we use BLEURT-20 (Sellam et al.,
2020) instead of BLEU score in Appendix B.4.

2) Classification Instead of checking whether the
classifier’s output is different from the ground-truth
label, we use the raw output of the classifier before
the softmax, known as logit. In order to ensure that
the output of the classifier is different from the orig-
inal class with high confidence, we consider an ad-

2We use case-sensitive SacreBLEU on detokenized sen-
tences.

versarial attack to be successful if the difference be-
tween the logits of the most probable class and the
ground-truth class is larger than a threshold thrF :

max
i ̸=z

w′
i −w′

z > thrF , (2)

where w′ = W (y′) are the logits, and z is the
ground-truth class. Therefore, we consider an
adversarial example to be successful if both goal
functions (1) and (2) are satisfied.

On another note, most of the existing attacks use
a score function during the search to estimate the
importance of the tokens in the sentence. They se-
lect the important words in the sentence to limit the
search space and the number of alterations made
by the attack (Ren et al., 2019; Li et al., 2020; Jin
et al., 2020; Garg and Ramakrishnan, 2020). They
define this score function as the logit of the ground-
truth class, i.e., w′

z. The token importance is the
decrease in this score when removing a token from
the sentence. We propose a new score function to
account for the effect of the adversarial example on
the NMT model as follows:

S(x′) = w′
z + α sim(y,y′). (3)

The proposed second term in this score function
makes the importance of the token dependent on
the decision of the classifier and that of the target
NMT model.

4 Experiments

In this section, we discuss our experimental setup,
and then we conduct comprehensive experiments to
evaluate the robustness of various NMT models and
tasks in the face of our proposed attack strategy.3

4.1 Experimental Setup

We evaluate the robustness of transformer-based
NMT models to our attack. Specifically, we tar-
get the HuggingFace implementation of Marian
NMT models (Junczys-Dowmunt et al., 2018) and
mBART50 multilingual NMT model (Tang et al.,
2020) to validate the effectiveness of our attack
across diverse architectures. Moreover, we con-
duct experiments on the English-French (En-Fr)
and English-German (En-De) translation tasks.

In our proposed attack strategy, the adversary
aims to alter the class of the NMT model’s output

3Our source code is available at https://github.com/
sssadrizadeh/ACT.
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Task Method Marian NMT (En-Fr) Marian NMT (En-De)
ASR↑ BLEU↓ chrF↓ Sim.↑ Perp.↓ WER↓ ASR↑ BLEU↓ chrF↓ Sim.↑ Perp.↓ WER↓

SS
T-

2

kNN 8.95 50.95 70.53 0.78 6.06 30.46 12.08 42.81 69.18 0.82 5.19 28.02
Seq2Sick 2.14 41.83 59.52 0.60 4.54 35.56 2.71 46.39 60.01 0.71 3.54 22.48
TransFool 10.21 44.90 68.16 0.85 2.64 20.86 12.35 39.12 62.85 0.82 3.04 21.82

ACTTF 40.23 29.66 56.11 0.84 2.00 21.19 40.84 25.11 53.84 0.84 2.23 22.13
ACTBAE 38.08 45.72 65.62 0.85 0.59 15.16 31.61 40.95 64.80 0.86 0.61 14.95

M
R

kNN 8.78 50.01 70.93 0.82 6.88 31.35 13.00 44.22 70.77 0.83 4.86 27.10
Seq2Sick 3.80 30.82 53.44 0.71 5.86 38.78 3.00 26.40 56.50 0.73 2.48 21.25
TransFool 10.56 43.25 66.16 0.84 3.04 24.81 14.63 37.47 66.53 0.85 2.76 22.54

ACTTF 36.37 20.15 48.46 0.82 3.03 26.20 26.50 9.63 42.62 0.80 3.71 29.67
ACTBAE 31.64 46.08 65.26 0.86 0.62 15.19 21.00 35.51 62.68 0.88 0.63 14.74

A
G

’s
N

ew
s kNN 2.02 40.81 69.50 0.95 2.13 10.67 2.65 65.49 81.70 0.95 1.58 9.67

TransFool 3.30 48.61 68.09 0.89 3.07 17.89 3.43 44.74 66.27 0.90 2.65 18.35
ACTTF 22.84 25.62 49.19 0.85 6.02 27.50 18.36 27.03 52.08 0.85 5.87 27.28

ACTBAE 7.58 36.10 62.11 0.94 1.31 12.91 7.19 42.24 66.59 0.93 1.49 14.37

Table 2: Evaluation results of the adversarial attacks against two translation tasks and three different datasets.

translation. To achieve a comprehensive evalua-
tion, we require ground-truth class information for
the sentences. Therefore, instead of translation
datasets, we consider text classification datasets, in-
cluding SST-2 (Socher et al., 2013), MR (Pang
and Lee, 2005), and AG’s News (Zhang et al.,
2015). SST-2 and MR are sentiment classification
datasets, while AG’s News is a topic classification
dataset. We perform the attack on the test set of
these datasets.4

We translate the training set of these datasets
using the target NMT model and fine-tune two sep-
arate classifiers.5 We utilize one of the classifiers
during the attack process, while the other one is
reserved for evaluation. This approach ensures fair
comparisons with the baselines and accounts for
the possibility of the adversarial attack fooling the
classifier used in the attack. More details about the
datasets and models are reported in Appendix A.

To perform the proposed attack, we use TextAt-
tack implementation of TextFooler (TF) (Jin et al.,
2020) and BAE (Garg and Ramakrishnan, 2020).
We change the goal function and the score function,
as explained in the last section. As for the param-
eters, we set thrT = 0.4, thrF = 2 and α = 3
based on the ablation study available later.

4For the AG’s News and MR datasets, we attack the first
1000 sentences from the test set.

5For the En-Fr task, we fine-tuned two models:
https://huggingface.co/asi/gpt-fr-cased-small
with GPT-2 architecture and https://huggingface.co/
tblard/tf-allocine with BERT architecture. As for
the En-De task, we fine-tuned two additional models:
https://huggingface.co/dbmdz/german-gpt2 with GPT-
2 architecture and https://huggingface.co/oliverguhr/
german-sentiment-bert with BERT architecture.

As a baseline, we compare with the untargeted
attacks against NMT systems and examine whether
the class of the translation changes after the attack.
Specifically, we compare with the kNN attack from
(Michel et al., 2019), which is a white-box untar-
geted attack against NMT models that substitutes
some words with their neighbors in the embedding
space. Additionally, we adapt the targeted attack
Seq2Sick (Cheng et al., 2020a), which is based on
optimization in the NMT embedding space, to the
untargeted setting. Lastly, we compare with Trans-
Fool, an untargeted attack against NMT models
that is also based on optimization but uses language
model embeddings to preserve the semantics.

For evaluation, we report several performance
metrics. We measure Attack Success Rate (ASR) of
the adversarial examples by testing them on a clas-
sifier that was not involved in the attack process.
We also measure the similarity between the transla-
tions of the original and adversarial sentences using
BLEU score and chrF (Popović, 2015). A lower
similarity indicates a greater deviation between
the translations of the adversarial and original sen-
tences, which allows us to estimate the impact of
the attack on the target NMT model. Furthermore,
we use Universal Sentence Encoder (USE) (Yang
et al., 2020) to approximate the semantic Similarity
(Sim.) between the original and adversarial sen-
tences. To measure the naturality of the adversarial
sentences, we calculate the relative increase in the
Perplexity score (Perp.) of GPT-2 (large) between
the adversarial and original sentences. Finally, we
report Word Error Rate (WER), i.e., the percentage
of words that are modified by an adversarial attack.
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Task Sentence Text
M

R
Org. a solidly entertaining little film .
Org. Trans. (Positive) un petit film très divertissant.
Adv. ACTTF a solidly goofy little film .
Adv. Trans. (Negative) un petit film complètement dégueulasse. (dégueulasse means ’nasty’, which is negative.)

SS
T-

2

Org.
the primitive force of this film seems to bubble up from the vast collective memory of the
combatants .

Org. Trans. (Positive) la force primitive de ce film semble jaillir de la vaste mémoire collective des combattants.

Adv. ACTBAE
the primitive tone of this film seems to bubble up from the vast collective memories of
the combatants .

Adv. Trans. (Negative)
Le ton primitif de ce film semble s’estomper des vastes souvenirs collectifs des combat-
tants. (s’estomper means fade which conveys negative meaning)

Table 3: Adversarial examples against Marian NMT (En-Fr).

4.2 Results

Now we evaluate the robustness of various NMT
models to our new attack strategy. Table 2 shows
the performance of different attacks against Mar-
ian NMT models for (En-Fr) and (En-De) tasks.
Additionally, the performance against mBART50
NMT model for (En-Fr) task is reported in Ap-
pendix B.1. In these tables, ACTTF and ACTBAE
denote the modified version of the corresponding
attacks with our proposed changes. These results
demonstrate that the existing untargeted adversar-
ial attacks against NMT models can generate ad-
versarial examples with translations dissimilar to
the original translation. However, they have a low
success rate in changing the class of the transla-
tion. Seq2Sick has the lowest success rate, while
TransFool is the most successful one. On the other
hand, ACTTF and ACTBAE have much higher suc-
cess rates than the baselines in all cases, and they
are able to change the class of the NMT models’
output translations. Interestingly, these two meth-
ods, especially ACTTF, can generate adversarial
examples whose translations are further away from
the original translation than those generated by the
baselines, i.e., lower BLEU score and chrF. While
ACTTF has a higher success rate and causes more
damage to the translation, it generates adversarial
examples with higher perplexity scores and lower
similarity than the ones generated by ACTBAE. It is
worth noting that all attacks are much less success-
ful in AG’s News. It seems that when the number of
classes is larger, the attack becomes more challeng-
ing. We should note that Seq2Sick is not successful
against AG’s News and not reported in Tables 2.

Regarding the run-time, for the Marian NMT
(En-Fr) model and SST-2 dataset, on a system

equipped with two NVIDIA A100 GPUs, it takes
26.54 and 15.75 seconds to generate adversarial ex-
amples by ACTTF and ACTBAE, respectively. If we
do not use the proposed modifications, the run-time
of ACTTF would be 17.17 seconds. Table 3 shows
some adversarial examples generated by ACTTF
and ACTBAE. These samples show that while the
proposed attack maintains the semantic similarity
in the source language, they are able to force the
NMT model to generate a translation from a differ-
ent class in the target language. More adversarial
examples can be found in Appendix B.9.

All in all, previous untargeted adversarial attacks
are not much successful in deceiving the NMT
model to generate translations from a different class
than the original translations. However, this type
of attack can be more harmful to the users since
the overall meaning of the translation is changed.
The proposed attacks, i.e., ACTTF and ACTBAE,
are more successful in changing the class of the
adversarial translation. Moreover, compared to
baselines, the adversarial translations are further
away from the original translation.

We should note that, in our framework, we are
generating adversarial examples that are robust to
the translation. It has been shown in (Bhandari and
Chen, 2023) that most of the adversarial attacks
against text classifiers are not robust to translation.
This means that most of the attacks in the source
language do not transfer to the translation model.
Therefore, even if the attacker changes the class in
the source language, it is possible that the output
translation is still from the correct class.

4.3 Analysis

In this section, we analyze the significance of the
proposed goal functions and discuss two other sce-
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Task kNN Seq2Sick TransFool
BLEU↓ chrF↓ BLEU↓ chrF↓ BLEU↓ chrF↓

SS
T-

2 47.86 70.68 93.39 95.95 43.73 65.79
34.57 60.14 61.20 70.93 37.18 58.00

M
R 45.69 69.11 93.72 95.93 43.20 65.67

32.13 57.18 43.48 62.01 39.17 61.92

Table 4: Translation performance of baseline attacks
against mBART50 (En-Fr). First rows show the results
for all of the adversarial examples, while the second rows
correspond to the successful examples that change the class.

Goal Func. ASR↑ BLEU↓ chrF↓ Sim.↑ Perp.↓
Label change 28.12 58.16 72.90 0.89 0.91
Logit dif. 37.70 52.19 68.35 0.87 1.26
Trans. sim. 36.19 31.90 58.24 0.85 1.83
ACTTF 40.23 29.66 56.11 0.84 2.00

Table 5: Ablation study on the proposed goal functions
for ACTTF against Marian NMT (En-Fr) on SST-2 dataset.

narios of the classification-guided attack strategy.
We also study the transferability of the proposed
attack to other NMT systems, the extension to
the targeted settings, and the effect of different
parameters on our attack in Appendices B.7, B.8
and B.2, respectively. Finally, in Appendix B.3 we
show that by using an ensemble of classifiers, we
can improve the performance.

Impact of Classification-Guided Strategy on
Translation First, we show that by changing the
class of the output translation, the adversary can
have more impact on the NMT model. Table 4
reports the similarity between the original and ad-
versarial translation, as an estimate of the effect
of the adversarial attack on the NMT model, for
the baselines when for all the adversarial examples
(first row) compared to the successful ones that
change the class of the output translation. Across
various methods and tasks, we can see that when
adversarial examples change the translation’s class,
their translations are less similar to the original
translations. This difference in similarity arises
because these examples often change the overall
meaning of the translation.

Goal Functions Our framework consists of a
classifier that acts on the output translation by the
target NMT model. To ensure that the attack’s influ-
ence on the target NMT model outweighs its effect
on the classifier, we proposed two goal functions
based on the output translation of the NMT model

Target ASR↑ BLEU chrF Sim.↑ Perp.↓
NMT + Classifier 95.61 59.08 73.61 0.89 0.98
Classifier 57.55 71.92 83.03 0.91 0.72

Table 6: Performance of ACTTF against Marian NMT
(En-Fr) on SST-2 dataset when the target is the entire
system (NMT + Classifier) or just the classifier.

and the output logits of the classifier. Table 5 shows
the effect of these two goal functions on the attack
performance. The first row shows the results when
the goal function of the attack is only to change
the label of the translation. The second and third
rows present the effect of using equations (2) and
(1), respectively. We can see that both of the pro-
posed goal functions increase the success rate, and
they also help to reduce the similarity between the
original and adversarial translations. Since the goal
function becomes more difficult to achieve, there
is a decrease in semantic similarity and an increase
in the perplexity score.

Other Scenarios So far, we have assumed that
the attacker’s objective is to mislead the NMT to
generate a translation from a class different from
the original translation. However, our proposed
classification-guided strategy can be adapted to
other scenarios as well.

First, we can consider a system including a
classifier that operates on the output of an NMT
model.6 In this context, the goal would be to attack
the entire system instead of just the NMT model.
This scenario is much easier than the previous one
since the adversary can access the entire system.
Also, the adversary’s target is the performance of
the entire system (NMT and the classifier), unlike
the original scenario, where the target is the NMT
model. The performance of the attack in this sce-
nario is presented in the first row of Table 6. As
expected, the success rate is much higher than that
of the previous scenario. Moreover, the adversarial
and original translations are more similar meaning
that the NMT model is less affected by the attack.

Secondly, we can assume that the adversary’s
goal is to fool only the classifier.7 Therefore, we
need to craft an adversarial example whose trans-
lation is similar to the original one, the complete

6An example might be when we are interested in the class
prediction of foreign language sentences, but a classifier is
available in another language. Hence, we use an NMT model
to translate the sentences before feeding them to the classifier.

7This scenario may not have a practical use case, but it
shows another aspect of our classification-guided attack.
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opposite goal of our original scenario, but the clas-
sifier predicts a wrong class for the adversarial
translation. In this scenario, we can change goal
function (1) such that the similarity is more than a
threshold. Moreover, we can use equation (3) with
negative coefficient α so that the word with a higher
impact on the translation has less importance. The
performance with the parameters thrT = 0.8 and
α = −7 are reported in the second row of Table
6. We can see that the similarity between original
and adversarial translations is higher than those of
the previous scenarios, showing that the attack is
effectively targeting the classifier.

5 Human Evaluation

We conduct a human evaluation campaign for
the successful adversarial examples generated by
ACTTF against Marian NMT (En-Fr). We randomly
choose 80 successful adversarial examples on the
SST-2 dataset. We split these sentences into two
surveys and recruit three volunteer annotators for
each survey. Since the adversarial examples are
in French, we ensure that the annotators are native
(mother tongue) or highly proficient in French.

Since the naturalness and sentiment accuracy of
TextFooler and BAE are already evaluated by hu-
man in their respective papers, we do not consider
these two aspects of the adversarial examples in
our evaluation. Instead, we study the sentiment of
the adversarial translations in the target language
(French). By showing the adversarial translations,
we ask the annotators to choose a sentiment label
from “Positive” and “Negative”. We take the ma-
jority class as the predicted label for each sentence.

In our attack framework, the target of the attack
is the NMT model, and the adversary uses a classi-
fier to change the class of the translation. Therefore,
we want the proposed attack mainly affect the NMT
model rather than the classifier. Accordingly, in
this study, we evaluate how much the classifier is
influenced by the attack. The overall agreement
between the ground-truth labels (in the dataset) and
the labels predicted by the annotators is 71.3%.
While it’s true that not all adversarial translations
are accurately classified by the classifier based on
the annotators’ labels, the majority of adversarial
translations have the same sentiment as predicted
by the classifier. This implies that the attack is
mainly targeting the NMT model rather than fool-
ing the classifier. Moreover, we calculate the simi-
larity between original and adversarial translations

in terms of chrF for the sentences selected for hu-
man evaluation. For sentences that the classifier’s
predictions align with the annotators’ labels, the
translation similarity is 49.46. In contrast, for sen-
tences that the classifier’s predictions diverge from
the annotators’ labels, the translation similarity is
52.05. This difference highlights that the attack is
mainly affecting the NMT model rather than the
classifier for the adversarial sentences whose trans-
lation deviates more from the original translation.

6 Conclusion

In this paper, we presented ACT, a novel adver-
sarial attack framework against NMT models that
is guided by a classifier. In our framework, the
adversary aims to alter the class of the output trans-
lation in the target language while preserving se-
mantics in the source language. By targeting the
class of the output translation, we outlined a new
aspect of vulnerabilities of NMT models. We pro-
posed enhancements to existing black-box word-
replacement-based attacks to evaluate the robust-
ness of NMT models to our attack strategy. Ex-
tensive experiments and comparisons with existing
untargeted attacks against NMT models showed
that our attack is highly successful in changing
the class of the adversarial translation. It also has
more impact on the similarity of the original and
adversarial translations, which highlights the po-
tential impact of our attack strategy on the overall
meaning of the NMT output translations.

7 Limitations

In our framework, the target of the attack is the
NMT model, and the attacker uses a classifier to
change the class of the translation. Therefore, the
adversary is defining a system including the clas-
sifier operating on the output of the NMT model.
Although we have proposed a goal function to make
the attack mainly effective on the NMT model
rather than the classifier, there is still a chance that
the classifier is affected by the attack (instead of
the NMT model). To consider this challenge in
our evaluations, we have reported the similarity
between the adversarial and original translations to
measure the effect of the attack on the NMT model.
Moreover, we have calculated the success rate of
altering the class of translation by using a different
classifier than the one used in the attack process.
Such an evaluation provides fair comparisons with
the baselines and accounts for the possibility of
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the adversarial attack fooling the classifier used
in the attack. On another note, our proposed goal
functions need the output logits of the classifier.
However, some of the recent textual adversarial
attacks only need the hard labels (Ye et al., 2022;
Yu et al., 2022). Modifying these works based on
our attack framework can be explored in the future.
Finally, we have considered sentiment and news
classification in our experiments. It is worth con-
sidering other classification tasks, e.g., hate speech,
in our framework and evaluate the robustness of
NMT models in other areas.

8 Ethic statement

We introduced ACT, a new attack framework
against NMT models, to study the vulnerabilities
of NMT models from another aspect than tradi-
tion frameworks with the hope to pave the way for
building robust NMT models. Although there is a
potential for malicious actors to misuse our attack,
we want to emphasize that we strongly discourage
the use of our method for targeting real-life NMT
systems with harmful intent.
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Appendix

In this Appendix, we first provide more details
about the models and datasets used in the experi-
ments. Afterwards, we present more experimental
results of the attack with BLEURT as the similarity
metric for translation, studying the choice of the
classifier on the performance, the transferability
analysis of the attack, extension to the targeted set-
tings, and more samples of the crafted adversarial
examples. Finally, we provide a comparison with
the recent parallel work of (Raina and Gales, 2023)
and discuss the potential limitations of our work.

A Models and Datasets

In this Section, we provide information about the
datasets and models used in our experiments. It is
worth noting that we used HuggingFace datasets
(Wolf et al., 2020) and transformers (Lhoest et al.,
2021) libraries.

A.1 Target NMT Models

We evaluate the robustness of the HuggingFace
implementation of Marian NMT models (Junczys-
Dowmunt et al., 2018) and mBART50 multilingual
NMT model (Tang et al., 2020) for En-Fr and En-
De translation tasks. As a benchmark of the perfor-
mance of these models, we report their translation
quality on WMT14 (Bojar et al., 2014) in table 7.

A.2 Datasets

Since we require ground-truth class information
for the sentences in our evaluation, instead of
translation datasets, we consider text classifica-
tion datasets. We use SST-2 (Socher et al., 2013),
MR (Pang and Lee, 2005), and AG’s News (Zhang
et al., 2015) in our experiments. SST-2 and MR are
Sentence-level sentiment classification datasets on
positive and negative movie reviews. On the other
hand, AG’s News is a Sentence-level topic clas-
sification dataset with regard to four news topics:
World, Sports, Business, and Science/Technology.
Some statistics of these datasets are reported in Ta-
ble 9. We use the training set of these datasets to
train the classifiers used for the attack and evalua-
tion. Moreover, we use the test set to evaluate the
robustness of the target NMT models, except for
the SST-2, for which we used the validation set.

A.3 Classifiers

We translate the training set of these datasets using
the target NMT model and fine-tune two separate

Dataset Marian NMT mBART50
BLEU chrF BLEU chrF

En-Fr
39.88 64.94 36.17 62.66

WMT14

En-De
27.72 58.50 25.66 57.02

WMT14

Table 7: Translation performance of the target NMT
models on WMT14 dataset.

Task Method mBART50 (En-Fr)
ASR↑ BLEU↓ chrF↓ Sim.↑ Perp.↓

SS
T-

2

kNN 9.22 34.57 60.14 0.77 6.64
Seq2Sick 1.48 61.20 70.93 0.74 0.72
TransFool 9.48 37.18 58.00 0.81 1.76

ACTTF 39.35 25.37 49.46 0.86 1.56
ACTBAE 41.04 38.00 57.84 0.86 0.61

M
R

kNN 11.98 32.13 57.18 0.84 5.87
Seq2Sick 1.96 43.48 62.01 0.75 2.25
TransFool 12.71 39.17 61.92 0.83 2.26

ACTTF 40.71 12.13 36.88 0.82 2.56
ACTBAE 32.15 30.84 53.04 0.86 0.66

A
G

’s
N

ew
s kNN 2.99 49.17 68.53 0.96 1.37

TransFool 5.34 47.96 63.95 0.88 2.56
ACTTF 27.85 23.02 43.59 0.88 3.86

ACTBAE 9.07 32.11 52.41 0.95 1.15

Table 8: Evaluation results of the adversarial attacks
against mBART50 model (En-Fr).

classifiers, employing GPT-2 (Radford et al., 2019)
and BERT (Kenton and Toutanova, 2019). The
accuracy of these models is reported in Table 9.

B Additional Results

In this Section, we present more results of the pro-
posed attack.

B.1 Attack Performance against mBART50
To validate the effectiveness of our attack across di-
verse architectures, we also attack mBART50 NMT
model. The attack performance is presented in Ta-
ble 8. These results show the same trend as that of
the attack against Marian NMT model, which proes
the effectiveness of our attack framework against
different NMT models.

B.2 Effect of Parameters
Our attack has three parameters: the coefficient
α in the score function, which controls the impor-
tance of translation in the word ranking; the thresh-
old thrT in the translation goal function; and the
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Dataset #Classes #Train #Test Avg Length Marian NMT (En-Fr) Marian NMT (En-De) mBART50 (En-Fr)
GPT-2 BERT GPT-2 BERT GPT-2 BERT

SST-2 2 67.3K 0.9K 17 88.88 90.94 86.01 84.40 86.01 88.30
MR 2 8.5K 1K 20 81.33 84.43 79.55 80.11 78.61 82.08
AG 4 120K 7.6K 43 93.47 93.53 93.86 92.78 93.46 93.55

Table 9: Some statistics of the evaluation datasets, and the accuracy of the classifiers on the test sets.
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Figure 2: Effect of different parameters on ACTTF when attacking Marian NMT (En-Fr) on SST-2 dataset.

Method ASR↑ BLEU↓ chrF↓ Sim.↑ Perp.↓
1 classifier 40.23 29.66 56.11 0.84 2.00
2 classifiers 46.03 27.12 54.10 0.83 2.21

Table 10: Performance of ACTTF with 2 classifiers
against Marian NMT (En-Fr) on SST-2 dataset.

threshold thrF in the classification goal function.
Figure 2 demonstrates the effect of these parame-
ters on the performance of ACTTF in terms of suc-
cess rate, BLEU score, and semantic similarity. By
increasing the coefficient α, we are assigning more
importance to the words that affect the translation,
and hence, the BLEU score between the original
and adversarial translations decreases. Moreover,
by decreasing the threshold for the similarity be-
tween the original and adversarial translations thrT
or by increasing the threshold for the logit differ-
ence of the classifier thrF , the attack generates
adversarial examples that are more successful in
changing the class of the adversarial translation,
and they also have more impact on the translation.

B.3 Ensemble of Classifiers

In order to ensure that the classifier accurately pre-
dicts the class and that the attack targets the NMT
model, an ensemble of classifiers can be used to
find the class of the translation. This approach in-
creases the reliability of the prediction made by the
classifier. Table 10 shows the attack performance
when we use two classifiers in the attack process.
These results show that we can increase the success
rate and impact the translation more by using an
ensemble of classifiers.

Method ASR↑ BLEU↓ chrF↓ Sim.↑ Perp.↓
BLEU 40.23 29.66 56.11 0.84 2.00
BLEURT-20 45.39 33.98 55.79 0.82 2.56

Table 11: Performance of ACTTF with BLEURT-20 as
the similarity metric against Marian (En-Fr) on SST-2
dataset.

B.4 Influence of Similarity Metric for
Translation

In the previous experiments, we used BLEU score
to measure the similarity between the original and
adversarial translations. It has been shown that
BLEURT-20 (Sellam et al., 2020) highly correlates
with human judgments. However, the computation
of this metric is time-consuming and makes the
attack slow. We study the effect of the similarity
metric used in our attack by using BLEURT-20 in-
stead of BLEU score in our attack to Marian NMT
(En-Fr) over SST-2 dataset. The results reported in
Table 11 show that the performance of our attack
is consistent with our previous results when we
use BLEURT-20. The success rate is indeed better
in this case, but the run time increases to 83.18
seconds per sentence.

B.5 Influence of the choice of classifier
In our attack framework, the adversary uses a classi-
fier of its own to find and change the class of output
translation by the target NMT model. We study the
choice of the classifier on the attack performance in
Table 12. In all our previous experiments, we fine-
tuned a Language model with GPT-2 architecture
on the training set of the attack’s dataset, which is
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Classifier ASR↑ BLEU↓ chrF↓ Sim.↑ Perp.↓
Classifier 1 40.23 29.66 56.11 0.84 2.00
Classifier 2 31.78 28.98 57.61 0.86 1.73

Table 12: Performance of ACTTF with two different clas-
sifiers against Marian NMT (En-Fr) on SST-2 dataset.

Task Model ASR↑ BLEU↓ chrF↓ Sim.↑ Perp.↓

SST-2
M1 40.23 29.66 56.11 0.84 2.00
M3 25.17 16.08 35.72 0.83 1.00
M2 31.91 17.37 36.71 0.84 1.14

MR
M1 36.37 20.15 48.46 0.82 3.03
M2 26.93 6.90 26.27 0.81 1.90
M3 32.38 9.23 26.90 0.83 2.39

AG
M1 22.84 25.62 49.19 0.85 6.02
M2 13.88 18.14 38.91 0.84 5.62
M3 14.87 21.07 41.42 0.84 5.18

Table 13: Transferabiliy of ACTTF from Marian (En-Fr),
M1, to mBART50 (En-Fr) and Marian (En-De), M2 and
M3, respectively.

denoted by classifier 1. However, the attack may
use an off-the-shelf classifier for the attack. For the
new attack, we use a French sentiment classifier
from HuggingFace, which is denoted by classifier
2.8 We should note that the accuracy of classifier 1
is 88.88, while classifier 2 has an accuracy of 83.72.
The results show that with a less accurate classifier,
the success rate slightly decreases.

B.6 Classification in the Source Language

In our attack, we generate adversarial examples that
preserves the class in the source language while
they change the class of the output translation by
the target NMT model. We should note that both
TextFooler and BAE consider semantic similarity
constraints for replacing the words in the input
sentence. Therefore, they are able to preserve the
class in the source language to some extent. To
show this, we use a classifier in the source language
(English) and check if the class of the adversarial
and the original sentences were the same. For the
attack against Marian NMT (En-Fr) over SST-2
dataset, 72% of the adversarial sentences have the
same class as the input sentence.9 This shows that

8The classifier is available at https://huggingface.co/
moussaKam/barthez-sentiment-classification.

9We use the finetuned BERT in https://huggingface.
co/gchhablani/bert-base-cased-finetuned-sst2. The
original accuracy of this model is 92%.

Attack ASR↑ BLEU↓ chrF↓ Sim.↑ Perp.↓
Untargeted 22.84 25.62 49.19 0.85 6.02
Targeted 11.20 24.57 50.41 0.85 4.17

Table 14: Performance of ACTTF in the targeted setting
against Marian (En-Fr) on AG’s News dataset.

although the constraints do not preserve the class
completely, still for the majority of sentences, the
class remains the same in the source language.

As an extension, we can add a constraint to ex-
plicitly force the adversarial examples to have the
same class as the original sentence. We conduct the
experiment for Marian NMT (En-Fr) over SST-2
dataset. The success rate decreases to 33.92% (in-
stead of 40.23%). However, in this case, the class
of the adversarial and original sentences are the
same for 100% of the cases.

B.7 Transferability
We examine the transferability of our adversarial at-
tack. In other words, we study whether adversarial
samples crafted for one target NMT model can also
fool another NMT model. Inspired by (Sadrizadeh
et al., 2023b), we also analyze cross-lingual trans-
ferability, where the target languages of the two
NMT models are different. Table 13 shows the
transferability performance. We use Marian NMT
(En-Fr), denoted by M1, as the reference model
and evaluate the transferability to mBART50 (En-
Fr) and Marian NMT (En-De), which are denoted
by M2 and M3, respectively. The results show that
the attack is moderately transferable. We can also
see that the adversarial examples that have more
effect on the translation, i.e., with lower values of
BLEU score and chrF, are more transferable.

B.8 Targeted attack
We can extend our attack to the targeted settings,
where the adversary aims to change the translation
such that it belongs to a specific class. To this end,
we can change the goal function of equation (2) as:

w′
t −max

i ̸=t
w′

i > thrF , (4)

where w′ = W (y′) are the logits, and t is the pre-
defined target class. This ensures that the class
of adversarial translation is predicted as the tar-
get class by the classifier with high confidence. We
evaluate ACTTF in this setting against Marian NMT
(En-Fr) on AG’s News dataset when the target class
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Task Sentence Text
SS

T-
2

Org.
the notion that bombing buildings is the funniest thing in the world goes
entirely unexamined in this startlingly unfunny comedy .

Org. Trans. (Negative)
L’idée que bombarder des immeubles est la chose la plus drôle du monde
est totalement inexaminée dans cette comédie étonnamment peu amusante.

Adv. ACTBAE
the notion that bombing buildings is the funniest one in the world goes
entirely unexamined in this startlingly unfunny comedy .

Adv. Trans. (Positive)
L’idée que la bombardement d’immeubles est le plus fun dans le monde va
tout à fait étudiée dans cette comédie étonnamment fun. (The translation
means, "The idea that bombing buildings is the most fun in the world is
thoroughly explored in this surprisingly fun comedy.", which is the total
opposite of the input.)

M
R

Org.
while it’s nothing we haven’t seen before from murphy , i spy is still fun and
enjoyable and so aggressively silly that it’s more than a worthwhile effort .

Org. Trans. (Positive)
Il n’y a rien que nous n’avons pas vu auparavant de murphy, j’espion est
encore amusant et agréable et si agressivement stupide que c’est plus qu’un
effort valable.

Adv. ACTBAE
while it’s material we haven’t seen before from murphy , i spy is still
interesting and enjoyable and so aggressively silly that it’s more than a
worthwhile effort . ! .

Adv. Trans. (Negative)
Il n’y a pas d’autre chose à faire, mais il n’y a pas d’autre chose à faire. (The
translation is totally wrong, and it means, "There is nothing else to do, but
there is nothing else to do.")

Table 15: Adversarial examples against mBART50 (En-Fr) in different Tasks.

Task Sentence Text

SS
T-

2

Org. one of the more irritating cartoons you will see this , or any , year .
Org. Trans. (Negative) eine der irritierenden Karikaturen werden Sie dieses oder jedes Jahr sehen.

Adv. ACTTF one of the more distasteful cartoons you will see this , or any , year .

Adv. Trans. (Positive)
einer der geschmackvollsten Karikaturen, die Sie sehen werden, dies, oder
irgendein, Jahr. (geschmackvollsten means "tastiest", which is a positive
adjective.)

M
R

Org. goofy , nutty , consistently funny . and educational !
Org. Trans. (Positive) Goofy, nussig, durchweg lustig. und lehrreich!

Adv. ACTTF goofy , silly , ever comedic . and pedagogical ! .
Adv. Trans. (Negative) Dumme, dumme, immer komische und pädagogische! (dumme means

"stupid" and is repeated twice, making the sentence negative.)

Table 16: Adversarial examples against Marian NMT (En-De) in different Tasks.

is "World". The results in Table 14 show that al-
though this setting is more challenging than the
untargeted setting, our attack is still successful.

B.9 More Adversarial Examples

In Tables 15-16, we present more adversarial ex-
amples generated by ACTTF and ACTBAE against
various NMT models. These examples highlight

how our proposed attack can generate adversarial
examples whose translations have different classes
than the original translations, which can be harmful
for the users.

C Discussion

The recent parallel work of (Raina and Gales, 2023)
proposes an attack against NMT models to change
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Task Sentence Text
SS

T-
2

Org. paid in full is so stale , in fact , that its most vibrant scene is one that uses
clips from brian de palma ’s scarface .

Org. Trans. (Negative) payé dans son intégralité est tellement sombre, en fait, que sa scène la plus
dynamique est celle qui utilise des clips de la cicatrice de Brian de palma.

Adv. ACTTF paid in full is so stale , in circumstance , that its most vibrant scene is one
that used clips from brian de palma ’s scarface .

Adv. Trans. (Positive) payé en totalité est si stable, dans les circonstances, que sa scène la plus
dynamique est celui qui a utilisé des clips de Brian de palma’s cicatrice.
(Stale is translated as stable, which is a positive adjective.)

A
G

Org. Charges reduced for Iraq jail MP MANNHEIM, Germany – A US military
policewoman accused in the Abu Ghraib prison abuse scandal had the
charges against her reduced yesterday as a set of pretrial hearings wrapped
up at an American base in Germany.

Org. Trans. (World) Des accusations réduites pour la prison irakienne MP MANNHEIM, Alle-
magne – Une policière militaire américaine accusée dans le scandale d’abus
de prison d’Abu Ghraib a eu les accusations réduites contre elle hier comme
un ensemble d’audiences préliminaires terminées dans une base américaine
en Allemagne.

Adv. ACTTF Charging reduced for Iraq jail MP GRAZ, Germany – A US military
policewoman accused in the Abu Ghraib prison abuse scandal am the charges
against her reduced yesterday as a games of pretrial hearings wrapped up at
an American base in Deutsche.

Adv. Trans. (Sport) Les accusations portées contre elle ont été réduites hier, alors qu’un
jeu d’audiences préliminaires s’est déroulé dans une base américaine en
Deutsche. (The first part of the sentence, which has critical information, is
not translated at all.)

M
R

Org. williams absolutely nails sy’s queasy infatuation and overall strangeness .
Org. Trans. (Positive) williams absolument clous l’engouement de Sy et l’étrangeté globale.

Adv. ACTBAE williams too nails sy’s queasy demeanor and other strangeness .
Adv. Trans. (Negative) waliams trop clous sy de comportement bizarre et autre étrangeté. (trop

conveys a negative sentiment.)

A
G

Org.
Airlines Agree to Cuts at O’Hare Federal officials today announced plans
to temporarily cut 37 flights operating at Chicago’s O’Hare International
Airport to help reduce the delay problems that ripple across the country.

Org. Trans. (Business) Les compagnies aériennes conviennent de réduire les vols à O’Hare Les
responsables fédéraux ont annoncé aujourd’hui leur intention de réduire
temporairement 37 vols à l’aéroport international O’Hare de Chicago afin
de réduire les problèmes de retard qui se posent à travers le pays.

Adv. ACTBAE
Airlines Agree to Cuts at airports Federal officials today announced plans
to temporarily cut 37 boeing operating at Chicago’s O’Hare International
Airport to help reduce the continuing problems that ripple by the country.

Adv. Trans. (World)
Les compagnies aériennes s’engagent à réduire les émissions dans les aéro-
ports Les responsables fédéraux ont annoncé aujourd’hui leur intention de
couper temporairement 37 sangliers à l’aéroport international O’Hare de
Chicago pour aider à réduire les problèmes persistants que connaît le pays.
(Boeing is translated as sangliers, which means "boar", and hence, the
category of the translation is changed from Business to World.)

Table 17: Adversarial examples against Marian NMT (En-Fr) in different Tasks.
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the human perception of the translation, specifi-
cally sentiment. They use a sentiment classifier
to approximate human perception. In our attack
framework, the adversary aims to mislead the NMT
model such that the class of the adversarial trans-
lation differs from that of the original translation.
Therefore, the attacker uses a classification model
to guide the attack. Based on the attack objective,
the adversary can use a classifier suitable for any
task and not just a sentiment classifier. By focusing
on the class of the output translation, the adver-
sarial attack has more impact on the translation
since the class of the translation reflects the overall
meaning.

Evaluating adversarial attacks against NMT
models is challenging since the perturbation to the
input may directly appear in the translation and
change the ground-truth output. By using the clas-
sification objective, we can provide a more com-
prehensive assessment of the attack’s impact on
the NMT model. To evaluate the robustness of
NMT models to our attack, we introduce modi-
fications to existing black-box word-replacement
attacks. Since the target of the attack is the NMT
model, we propose a new goal function to distin-
guish between the impact of the attack on the NMT
model and the classifier. However, the attack pro-
posed by (Raina and Gales, 2023) does not have a
mechanism to ensure that it specifically misleads
the NMT model rather than the classifier. We also
study different scenarios that can be considered
in our framework, e.g., when the target of the at-
tack is the entire system (NMT + classifier), or just
the classifier, which are not studied in (Raina and
Gales, 2023). Finally, we extensively evaluate the
robustness of NMT models to our attack framework
by considering different tasks and NMT models,
various performance metrics, and a comparison to
baselines. In contrast, their experiments appear to
be limited.
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