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Abstract

Grammatical Error Correction (GEC) enhances
language proficiency and promotes effective
communication, but research has primarily cen-
tered around English. We propose a simple ap-
proach to multilingual and low-resource GEC
by exploring the potential of multilingual ma-
chine translation (MT) models for error correc-
tion. We show that MT models are not only
capable of error correction out-of-the-box, but
that they can also be fine-tuned to even better
correction quality. Results show the effective-
ness of this approach, with our multilingual
model outperforming similar-sized mT5-based
models and even competing favourably with
larger models.

1 Introduction

Grammatical Error Correction (GEC) systems are
a vital link between expert language use and clear
communication, enhancing writing skills and lan-
guage learning. However, GEC research has pri-
marily focused on the English language with much
less coverage for other languages, resulting in
English-oriented methodologies and data scarcity
for other languages. This highlights the need to
diversify GEC research, ensuring that the benefits
of these systems extend to all languages for a more
inclusive global linguistic landscape.

In the evolving multilingual and non-English
Grammar Error Correction (GEC) landscape, two
recent notable directions have risen: the utiliza-
tion of synthetic data (Náplava and Straka, 2019;
Náplava et al., 2022) and the integration of pre-
trained models, particularly the multilingual text-
to-text transformer model (mT5) (Xue et al., 2021;
Rothe et al., 2021). The use of mT5 extends to
correcting grammar in various specific languages,
including Ukrainian, Icelandic, and Lithuanian
(Palma Gomez et al., 2023; Ingólfsdóttir et al.,
2023; Stankevičius and Lukoševičius, 2022), and

serves as an inspiration for other multilingual re-
search (Kementchedjhieva and Søgaard, 2023).
However, achieving substantial performance en-
hancements beyond training basic Transformer
models necessitates further adjustments, such as
the incorporation of high-quality synthetic data,
additional information, or the utilization of signifi-
cantly larger models.

We demonstrate that building upon similarly
sized multilingual machine translation (MT) mod-
els is more effective than fine-tuning mT5 (Ke-
mentchedjhieva and Søgaard, 2023). Previous stud-
ies have shown the value of information obtained
through machine translation as training data or addi-
tional hypotheses (Kementchedjhieva and Søgaard,
2023; Palma Gomez et al., 2023; Lichtarge et al.,
2019). We revisit the concept of utilizing zero-shot
translation for error correction (Korotkova et al.,
2019), developing the idea further.

We demonstrate that massively multilingual MT
models can function as multilingual GEC models
and can be improved further via fine-tuning to er-
ror correction data. This approach underscores the
potential of multilingual MT models as an even
simpler yet effective GEC system, allowing for the
integration of standard practices in GEC research.
In doing so, we highlight that multilingual MT
models acquire valuable information for grammat-
ical error correction and it is possible to leverage
this knowledge during training.

In our work, we experiment with four languages:
English, German, and Czech for the purpose of
comparison with other multilingual studies, plus
Estonian, an underexplored language in terms of
error correction with a similarly limited publicly
available dataset. As a result, our model achieves
higher scores than work based on similar-sized
mT5 models and performs competitively with even
significantly larger models.

Since large language models have recently
showed good performance in several NLP tasks via
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prompting, we also assess GPT-4’s performance
on the GEC task for the four included languages
for comparison. While more sophisticated prompts
may lead to improved results, results shown by
GPT-4 are worse than state-of-the-art GEC results,
and our best results also surpass its performance.

Thus, our main contributions are:

• Demonstrating the applicability of massively
multilingual models as multilingual Grammar
Error Correction (GEC) systems.

• Investigating the effects of tuning the multi-
lingual MT models with error correction data,
parallel translation data and combinations of
both kinds of data.

• Achieving superior results compared to mod-
els of similar size based on the widely used
mT5.

• Presenting the initial F0.5-scores for Estonian,
German, and Czech and updated scores for
English using GPT-4.

2 Related work

The connection between Grammatical Error Cor-
rection (GEC) and Machine Translation (MT) has
been significant since Junczys-Dowmunt et al.
(2018) demonstrated an innovative approach, treat-
ing GEC as a low-resource MT task by translating
from erroneous text to corrected text. This work
marked the first successful implementation of neu-
ral methods in GEC and subsequently led the field
to predominantly employ single-direction MT mod-
els for GEC, which has spread to other pre-trained
models like T5 (Rothe et al., 2021).

These methods require a substantial amount of
data, leading to the necessity to generate synthetic
data and the proposal of various enhancements.
Grundkiewicz et al. (2019) introduced a simple re-
verse spell-checker idea that has been widely used
(Flachs et al., 2021; Náplava and Straka, 2019).
Other methods include using part-of-speech tags
(Flachs et al., 2021), Wikipedia edits, or noisy cor-
pora (Lichtarge et al., 2019). Another MT-related
approach involves using data translated into a pivot
language and back (Palma Gomez et al., 2023;
Lichtarge et al., 2019).

In the state-of-the-art English GEC, a different
paradigm emerged, with the use of sequence tag-
ging rather than sequence generation. This ap-
proach, initially introduced by Omelianchuk et al.

(2020), employs various transformer encoders for
tagging errors within sentences and then replaces
these parts with corrections. While this approach
has proven effective for English, attempts to apply
it to other languages have yielded less impressive
results compared to sequence generation methods
(Syvokon and Romanyshyn, 2023).

Lately several massively multilingual machine
translation models have been released, including
M2M-100 (Fan et al., 2021), NLLB (NLLB_Team
et al., 2022) and MADLAD-400 (Kudugunta et al.,
2023). In our experiments we make heavy use of
the NLLB models.

Finally, most recently, large language models
have shown capability to correct errors via prompt-
ing (Loem et al., 2023; Fang et al., 2023; Coyne
et al., 2023). Reported results mostly fall behind
GEC-specific approaches.

3 Methodology

Our methodology is centred around exploiting the
zero-shot translation capabilities of multilingual
translation models applied to the GEC task. We
also explore fine-tuning the translation models
on parallel data, synthetic error data and human-
annotated error correction data yielding improved
performance. Finally, we explore the combination
of parallel and error correction data, showing that
the benefits of both tasks (translation and error cor-
rection) can be combined.

3.1 Grammatical Error Correction via
Zero-shot Translation

We rely on the multilingual machine translation
models’ ability to produce zero-shot translation. As
exemplified by Johnson et al. (2017), these models
can translate between language pairs that have not
been seen during training. This quality becomes
relevant in the GEC context when we apply the
model to monolingual “translation”, for example,
English to English (Korotkova et al., 2019).

Work by Korotkova et al. (2019) underscores the
capability of monolingual zero-shot translation to
rectify grammatical errors, albeit with unnecessary
changes. These adjustments are often attributed
to the models having learned to translate, which
can lead them to insufficiently preserve the source
text’s precise linguistic nuances or vocabulary. At
the same time, the zero-shot corrections yield a
higher recall, as they do not limit themselves to
the errors that are present in the directly annotated
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correction data.
Extending the idea of Korotkova et al. (2019), we

avoid training translation models from scratch and
use pre-trained multilingual models. Using mul-
tilingual MT for GEC inherently gives us a base
multilingual GEC system without further modifica-
tions. In order to focus on a narrower selection of
languages we fine-tune the massively multilingual
models with parallel data for the 4 languages of
interest and evaluate the effect of fine-tuning. This
strategy proves fruitful, especially in combination
with error correction data, described in the next
subsection.

3.2 Error Correction Data
In our approach, we introduce monolingual error
correction data to multilingual Machine Transla-
tion (MT) models by fine-tuning the models with
new monolingual translation directions. This tech-
nique aligns with the initial proposal by Junczys-
Dowmunt et al. (2018), which involves training the
model to translate from erroneous text to correct
text. This can be achieved through the use of gram-
matical error correction examples and also allows
the incorporation of synthetic data.

However, when fine-tuning multilingual MT
models with new data, their performance in other
languages or domains often deteriorates due to
catastrophic forgetting. This is likely particu-
larly noticeable when fine-tuning large multilingual
models exclusively with monolingual examples. In
such cases, translation quality, including zero-shot
performance, may decrease significantly, leading
to the loss of valuable information learned during
translation training. To address this, we experiment
with combining translation and synthetic error data
for fine-tuning the model.

Thus, we introduce monolingual data, including
synthetic and error correction data, in three distinct
ways to assess the impact of synthetic GEC pre-
training and the inclusion of translation data:

1. Solely fine-tuning with GEC corpora.

2. Fine-tuning initially with monolingual syn-
thetic data, followed by GEC corpora.

3. Fine-tuning initially with a mixture of mono-
lingual synthetic and parallel translation ex-
amples, followed by GEC corpora.

In addition, we investigate the influence of dif-
ferent monolingual synthetic and parallel transla-
tion data ratios, aiming to understand their impact

on model performance. This approach allows us
to discern the relative benefits of each data type.
Simultaneously, we explore how the multilingual
aspect of our model affects its performance when
trained with synthetic data in a single language
or across all 4 languages and how monolingual or
multilingual GEC tuning impacts the performance.

4 Experimental Setup

This section presents an overview of our experi-
mental setup, covering data sources, models, and
evaluation metrics, providing insights into the tech-
nical details of our work.

4.1 Data

We are utilizing three different types of data
sources: monolingual text for generating a syn-
thetic corpus, parallel machine translation corpora
for mixed pretraining, and grammatical error cor-
rection examples for fine-tuning.

Our monolingual text data is primarily derived
from NewsCrawl, which consists of text extracted
from online newspapers (Kocmi et al., 2022). We
randomly sample six million sentences from the
latest data available. For synthetic error genera-
tion, we are using the same method proposed by
Grundkiewicz et al. (2019), with the modifications
and frequencies proposed by Náplava and Straka
(2019). For Estonian, we use probabilities 0.6 for
replacement, 0.15 for insertion and deletion, 0.05
for swap, derived from the training corpus.

For our parallel machine translation data, we
merge two distinct sources: the Europarl corpus,
which features parallel sentences from European
Parliament Proceedings (Tiedemann, 2012), and
the OpenSubtitles corpus (Lison and Tiedemann,
2016). This combination yields a dataset of two
million sentences for each language pair, maintain-
ing a balance between formal and informal text.

When it comes to grammatical error correction
(GEC) examples, for English, we focus on two spe-
cific datasets. The first dataset is associated with
the BEA Shared Task 2019 (Bryant et al., 2019).
This particular dataset’s training set comprises lan-
guage learners’ text sourced from the Write & Im-
prove (W&I) corpus (Yannakoudakis et al., 2018).
Additionally, for English, we also make use of the
FCE corpus (Yannakoudakis et al., 2011).

For Estonian, our source of GEC examples is a
language learners’ corpus (UT-L2 GEC) (Rummo
and Praakli, 2017) that Korotkova et al. (2019)
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Corpus Lang Train

W&I+LOCNESS EN 34,308
FCE EN 28,350
UT-L2 ET 8,935
FM DE 19,237
GECCC CS 66,673

Table 1: Size of GEC data used for training.

used for testing1. For German, we rely on the
Falko-Merlin (FM) dataset (Boyd, 2018). Lastly,
for Czech, we use the recent Grammar Error Cor-
rection Corpus for Czech (GECCC) (Náplava et al.,
2022) because it is the latest and most diverse. The
specifics regarding the number of sentences em-
ployed from each dataset can be found in Table 1.

4.2 Models
We fine-tune the No Language Left Behind (NLLB)
models (NLLB_Team et al., 2022) in our ex-
periments. These models are among the lat-
est massively multilingual models, encompassing
202 languages and demonstrating strong overall
performance. We conduct all our experiments
using two variants: NLLB 600M-distilled, the
smallest version and NLLB 1.3B-distilled, the
larger model. These models are distilled from
the 54-billion-parameter Mixture-of-Experts model
(NLLB_Team et al., 2022). All data is prepro-
cessed using the NLLB normaliser and Sentence-
Piece model (Kudo and Richardson, 2018).

For fine-tuning, we employ the Fairseq toolkit
(Ott et al., 2019). When fine-tuning from the NLLB
model, we initialize the learning rate to 1× 10−7

and perform a linear warmup to 5 × 10−4 for the
first 4000 updates, then decay the learning rate ac-
cording to the inverse square root scheduler, using
a batch size of 4096 tokens on a single GPU (AMD
MI250x), with an update frequency of one. We
use Adam optimizer (Kingma and Ba, 2015). In
the case of models already trained with synthetic
or mixed data, we continue training with the error
examples, maintaining the state of the learning rate
scheduler.

We train two sets of models. For exploring the
incorporation of synthetic data, we train models
on 1.5M sentences per language for 150k updates.
We train the final models with 6M sentences per
language and train the models for 600k updates for

1https://github.com/TartuNLP/estgec/tree/main/
Tartu_L2_corpus

multilingual synthetic training and 150k for mono-
lingual. We perform all GEC fine-tuning for 25
epochs and pick the best epoch checkpoint based
on the development set using GEC scores spec-
ified in the next section. Although, it has been
found that mixing GEC data with synthetic while
fine-tuning is beneficial, our initial experiments
suggested otherwise. It needs further investigation,
but for now, we opted for exclusively fine-tuning
with GEC data.

For comparison, we also measure the perfor-
mance of GPT-4 (OpenAI, 2023) using the prompt
by Coyne et al. (2023). See Appendix A for the
exact prompts and other details.

4.3 Evaluation

We employ two distinct scorers and evaluate our
models using six test sets. For the English language,
which offers a multitude of corpora and test sets, we
selected two test sets and their corresponding scor-
ers. We use the not publicly open W&I+LOCNESS
test set (Bryant et al., 2019), along with the ER-
RANT scorer (Bryant et al., 2017). Additionally,
we utilize the combination of the CoNLL-2014
dataset (Ng et al., 2014) and the MaxMatch (M2)
scorer (Dahlmeier and Ng, 2012) for the same rea-
son.

The evaluation of the Estonian language presents
a unique challenge. The only previous work that
includes Estonian done by Korotkova et al. (2019)
relied on the entire UT-L2 GEC corpus (Rummo
and Praakli, 2017) for evaluation. This poses dif-
ficulties for direct comparisons since we also in-
tend to use the corpus for training. We opted
to use the entire corpus for training and dedicate
the annotated Estonian learner language corpus
(EstGEC-L2)2 for evaluation with modified Max-
Match scorer3, which considers special annotations
from the EstGEC-L2 corpus concerning word order
mistakes.

For German and Czech, we use standard test
sets and the out-of-the-box M2 scorer. Specifically,
for German, we use the Falko-Merlin (FM) corpus
(Boyd, 2018) and for Czech, the older AKCES
corpus (Náplava and Straka, 2019), which most
other works have used and newer, more extensive
GECCC test set (Náplava et al., 2022) for Czech.

For evaluation, we tokenized the text using

2https://github.com/tlu-dt-nlp/
EstGEC-L2-Corpus/

3https://github.com/TartuNLP/estgec/tree/main/
M2_scorer_est
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Figure 1: Precision (a), recall (b), and F0.5-score (c) for models trained with only synthetic, only translation or
mixed data evaluated on English W&I+LOCNESS (first row) and Czech GECCC (second row) development sets.
Models are trained with 1.5M sentences per language and initialised from NLLB-600M-distilled.

Model EN ET DE CS

NLLB zero-shot 39.82 40.48 51.6 44.04

NLLB + 1-lang GEC 64.78 53.44 70.9 64.44
NLLB + 4-lang GEC 66.29 54.21 70.01 63.19

NLLB + 1-lang synthetic + 1-lang GEC 66.12 63.11 72.63 68.08
NLLB + 4-lang synthetic + 1-lang GEC 66.60 61.05 72.89 67.35
NLLB + 4-lang synthetic + 4-lang GEC 66.81 61.86 73.32 66.63

NLLB + 4-lang mixed + 1-lang GEC 66.70 62.53 73.72 67.14
NLLB + 4-lang mixed + 4-lang GEC 67.35 63.21 73.94 66.32

Table 2: Comparison of F0.5-scores for NLLB-600M-distilled model trained using various synthetic and GEC
training strategies. The test sets are W&I+LOCNESS for English, Est-L2 for Estonian, FM for German, and
GECCC for Czech. Models are trained with 6M sentences per language for around 2.5 epochs.

SpaCy4 in the standard configuration for English
and German and Stanza for Estonian and Czech
(Qi et al., 2020).

5 Results

We first describe the results of our experiments
related to mixing data during pre-training, then
show how different data and pre-training affect
the model’s behaviour and, lastly, we benchmark
our models with comparable and state-of-the-art
research solutions and GPT-4 performance.

5.1 Pre-training Scenarios

When training the NLLB model using only syn-
thetic monolingual data in four different languages,
we observe a significant increase in precision. How-

4https://spacy.io/api/tokenizer

ever, this improvement in precision comes at the
cost of reduced recall, which rapidly drops (see
Figure 1). Interestingly, the recall starts to slowly
recover after the initial drop.

Continuing training with translation data exclu-
sively results in relatively stable precision and re-
call. There is a slight increase in recall for Czech
but a decrease for English. This could be due to
the balanced nature of the data, with proportionally
less English and more Czech compared to NLLB
training.

When we combine translation data and mono-
lingual synthetic examples, we achieve precision
and recall values that fall between the two previ-
ous scenarios. While precision is not as high as in
the monolingual synthetic scenario, recall remains
higher. Based on F0.5-scores, for these languages,
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a ratio of 75% monolingual synthetic data and 25%
parallel data seems to yield the best results out of
the three mixed, only synthetic and only parallel
translation data, except for Estonian, where using
more parallel data leads to better results (see Ap-
pendix B for more details).

Moreover, it seems that overall Estonian and
Czech benefit more from longer training, while
German and especially English improve at a slower
pace after rather short training, which indicates that
the languages have different optimal pre-training
durations.

5.2 Fine-tuning with error correction
examples

When analysing the F0.5-scores of our NLLB
600M-distilled models, it becomes evident that
pre-training with synthetic data enhances perfor-
mance, and the choice of training data type ex-
erts a notable impact on the model’s effectiveness
across various languages (see Table 2). A consis-
tent trend emerges: for all languages except Czech,
the most favourable results are achieved when the
initial training phase combines monolingual syn-
thetic data with parallel translation examples, fol-
lowed by subsequent multilingual fine-tuning with
GEC data.

The results further highlight the distinct be-
haviour of the Czech language under multilingual
training conditions. Despite having the largest and
most diverse training corpus, Czech tends to expe-
rience adverse effects from multilingual training
across all scenarios. In contrast, English, with a
training corpus of comparable size, consistently
benefits from multilingual training. The case of
German, which possesses a smaller GEC corpus,
also reveals improved performance with multilin-
gual training. However, Estonian, despite a smaller
corpus, does not display a clear preference for mul-
tilingual training. Interestingly, languages that lean
less towards multilinguality, such as Estonian and
Czech, exhibit more substantial performance gains
from synthetic data compared to using only GEC
examples. This suggests that high-resource lan-
guages in the context of MT derive substantial
benefits from multilinguality, while the size of the
GEC corpus appears to have a lesser influence on
the overall outcome. Additionally, languages less
prominently represented in the MT model require
additional support from synthetic data, though this
may be negatively impacted by the inclusion of
multilingual data.

5.3 Final results

In this section, we will show the final results5 for
all languages in the context of other works.

For English, when we compare our best models
to the mT5-based model, which has received simi-
lar training in error correction, is multilingual and
has a comparable number of parameters, we out-
perform it simply by fine-tuning our NLLB 600M-
distilled model with GEC data in four languages,
as highlighted in Table 3. Additional training with
synthetic data increases the performance further.
Our 1.3B-distilled model achieves results nearly as
high as the model based on mT5-XXL, which has
ten times more parameters.

We also recalculated scores for English with
GPT-4 (OpenAI, 2023), utilizing the same prompt
that Coyne et al. (2023) employed, albeit without
presenting examples, which they noted enhances
performance. Our results show a substantial im-
provement in GPT-4 GEC performance, probably
due to the GPT-4 model updates between the two
studies.

For Estonian, the only other work we can com-
pare ourselves to is GPT-4. GPT-4 shows a similar
F0.5-score to our best model but exhibits notably
lower recall and higher precision. However, it out-
performs the NLLB models in zero-shot scenarios,
as illustrated in Table 4.

For German, we achieve near state-of-the-art
results. Only an mT5-based model that is ten times
larger than our model manages to achieve a slightly
higher F0.5-score, as indicated in Table 5.

When comparing our NLLB 600M-distilled
model, fine-tuned exclusively with GEC data, to
the base model from Rothe et al. (2021), our model
fine-tuned on only the GEC data surpasses their
work, similar to English. However, Kementched-
jhieva and Søgaard (2023) utilized pre-training
with cleaned Lang-8 data, containing 114K sen-
tence pairs (Mizumoto et al., 2011; Rothe et al.,
2021), and gained an additional performance boost
from roundtrip translation. Although their work
achieved higher scores compared to our model
fine-tuned with GEC data alone, when we incor-
porate pre-training, our 600M-distilled model out-
performs theirs. The same trend is observed in
the comparison between mT5-Large and our 1.3B-
distilled model. Our model even surpasses their XL
model, which is almost 3 times larger.

5Our best system’s outputs are public: https://github.
com/TartuNLP/estgec
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Method Parameters
W&I+LOCNESS CoNLL-2014

P R F0.5 P R F0.5

GPT-4 zero-shot unknown 56.68 71.57 59.14 61.96 59.82 61.52

Coyne et al. (2023) GPT-4 2-shot unknown - - 52.79 - - -
Loem et al. (2023) GPT-3 16-shot unknown - - 57.41 - - 57.06

Náplava and Straka (2019) 210M - - 69.00 - - 63.40
Rothe et al. (2021) T5 xxl+cLANG8 11B - - 75.88 - - 68.75
Omelianchuk et al. (2020) ensemble 79.4 57.2 73.7 78.2 41.5 66.5
Qorib et al. (2022) ensemble 86.6 60.9 79.9 81.48 43.78 69.51

Rothe et al. (2021) multilingual
gT5 base 580M - - 60.2 - - 54.10
gT5 xxl 13B - - 69.83 - - 65.65

NLLB zero-shot
600M-distilled 600M 37.05 56.82 39.82 48.7 49.15 48.79
1.3B-distilled 1.3B 40.28 57.68 42.87 51.8 49.04 51.22

NLLB + 4-lang GEC (ours)
600M-distilled 600M 66.99 63.66 66.29 66.29 50.68 62.45
1.3B-distilled 1.3B 67.41 66.89 67.31 66.07 54.28 63.32

NLLB + mixed + 4-lang GEC (ours)
600M-distilled 600M 67.84 65.43 67.35 67.14 51.8 63.39
1.3B-distilled 1.3B 70.04 67.09 69.43 68.8 54.08 65.25

Table 3: Main results for the English language calculated with ERRANT scorer for W&I+LOCNESS and MaxMatch
for CoNLL. Work by Rothe et al. (2021) is multilingual, except for the version trained with cLANG8. Works by
Omelianchuk et al. (2020); Qorib et al. (2022) represent other top methods, and Náplava and Straka (2019) uses
Transformer pre-trained with synthetic and fine-tuned with GEC data. GPT-4 scores are calculated in mid-October
2023.

Method Parameters
Est-L2

P R F0.5

GPT-4 zero-shot unknown 74.31 49.21 67.43

NLLB zero-shot
600M-distilled 600M 40.56 40.18 40.48
1.3B-distilled 1.3B 43.89 45.31 44.17

NLLB + 4-lang GEC (ours)
600M-distilled 600M 59.34 40.27 54.21
1.3B-distilled 1.3B 62.09 48.85 58.90

NLLB + mixed + 4-lang GEC (ours)
600M-distilled 600M 68.19 48.91 63.21
1.3B-distilled 1.3B 71.27 55.38 67.40

Table 4: Main results for the Estonian language calculated using MaxMatch scorer. GPT-4 scores are calculated in
mid-October 2023.
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Method Parameters
Falko-Merlin

P R F0.5

GPT-4 zero-shot unknown 67.75 68.46 67.89

Náplava and Straka (2019) 210M 78.21 59.94 73.71

Rothe et al. (2021) multilingual
gT5 base 580M - - 69.21
gT5 xxl 13B - - 75.96

Kementchedjhieva and Søgaard (2023)
Fine-tuned mT5-Base + MT 580M 76.0 61.5 72.6
Fine-tuned mT5-Large + MT 1.2B 76.4 64.3 73.6

NLLB zero-shot
600M-distilled 600M 40.44 37.09 39.72
1.3B-distilled 1.3B 43.66 41.52 43.22

NLLB + 4-lang GEC (ours)
600M-distilled 600M 72.3 62.12 70.01
1.3B-distilled 1.3B 74.05 65.74 72.22

NLLB + mixed + 4-lang GEC (ours)
600M-distilled 600M 76.76 64.46 73.94
1.3B-distilled 1.3B 77.65 67.0 75.26

Table 5: Main results for the German language calculated using MaxMatch scorer. Work by Náplava and Straka
(2019) uses a Transformer model with synthetic pre-training and fine-tuning with GEC corpus. Rothe et al. (2021);
Kementchedjhieva and Søgaard (2023) models are multilingual and based on mT5 model. GPT-4 scores are
calculated in mid-October 2023.

For Czech, we lack directly comparable multi-
lingual models. Our approach uses the latest and
slightly larger corpus GECCC, which is more di-
verse and includes more data, particularly in the
informal web domain. Other works have mostly
used the AKCES corpus. This makes it challenging
to assess how it affects performance on the AKCES
test set. Nevertheless, our best models outperform
similarly-sized multilingual models from previous
studies (see Table 6).

It is worth noting that our models struggled with
the GECCC test set, primarily due to difficulties
with web text, such as issues related to repeated
punctuation marks. This data might not have been
adequately represented during translation training
or fine-tuning. We did not add any specific length
penalty other than default settings but it could be
useful to stop models from over-repeating symbols.

6 Discussion

Our tuned multilingual MT models consistently
have higher F0.5-scores than mT5-based ap-
proaches. In addition to mT5-based works, our

approach outperforms or achieves comparable F0.5-
scores with GPT-4 in a zero-shot setting for all the
languages we tested. It surpasses GPT-4 with a
larger margin for English, German, and Czech and
gets comparable performance for Estonian. How-
ever, GPT-4, being a large general-purpose model,
is not practical for real-time GEC due to its cur-
rent quality, availability, and speed. Therefore, we
have not explored few-shot prompts or fine-tuning
options for GPT models at this time.

Our evaluation relies on a reference-based met-
ric, which tends to reward minimal alterations to
the text and may not always align with human
judgements (Sakaguchi et al., 2016; Östling et al.,
2023; Grundkiewicz et al., 2015). This approach
could bias evaluations in favour of more conserva-
tive systems that make fewer edits and be unfair
to the MT model’s zero-shot translation and GPT
models that tend to alter text more. Consequently,
the 75:25 mixing ratio we selected might not be
universally applicable across all languages, as evi-
denced by its performance with Estonian, among
other scenarios. Our approach is adaptable, allow-
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Method Parameters
GECCC AKCES

P R F0.5 P R F0.5

GPT-4 zero-shot unknown 72.74 44.72 64.64 76.73 71.9 75.72

Náplava and Straka (2019) 210M - - - 83.75 68.48 80.17
Náplava et al. (2022) 210M - - 72.96 - - -

Rothe et al. (2021) multilingual
gT5 base 580M - - - - - 71.88
gT5 xxl 13B - - - - - 83.15

Kementchedjhieva and Søgaard (2023)
Fine-tuned mT5-Base + MT 580M - - - 79.4 65.0 76.0
Fine-tuned mT5-Large + MT 1.2B - - - 81.9 70.5 79.3
Fine-tuned mT5-XL + MT 3.7B - - - 82.0 70.8 79.5

NLLB zero-shot
600M-distilled 600M 43.7 45.43 44.04 39.54 51.76 41.5
1.3B-distilled 1.3B 45.79 49.25 46.44 42.6 56.2 44.76

NLLB + 4-lang GEC (ours)
600M-distilled 600M 65.33 55.88 63.19 77.02 69.17 75.31
1.3B-distilled 1.3B 68.45 58.33 66.16 77.92 72.32 76.73

NLLB + mixed + 4-lang GEC (ours)
600M-distilled 600M 68.9 57.67 66.32 79.94 70.94 77.96
1.3B-distilled 1.3B 71.19 60.71 68.81 81.69 74.8 80.21

Table 6: Main results for the Czech language calculated using MaxMatch, works by Náplava et al. (2022); Náplava
and Straka (2019) are Czech-specific Transformer models pre-trained with synthetic data and fine-tuned with GEC
corpus, models by Rothe et al. (2021); Kementchedjhieva and Søgaard (2023) are multilingual and based on the
mT5 model. GPT-4 scores are calculated in mid-October 2023.

ing for the creation of systems capable of extensive
rephrasing to correct a wider range of errors, as
well as those that are more conservative in their
edits by changing the data ratio.

Another point to note is that multilingual train-
ing presents both advantages and complexities. It
demonstrates effectiveness for languages that are
well-represented in the translation model, while
languages with limited representation may not ex-
perience such clear benefits. This disparity may be
attributed to their weaker zero-shot performance,
indicating that they have more to learn from syn-
thetic data. To address this, a potential solution
could involve more extensive pre-training or initial
training with select translation data. This approach
may negatively impact other languages, as indi-
cated by decreasing English and German scores
for zero-shot translation with balanced translation
training.

Regarding future work, our work focused on
one MT system as a starting point for building a

GEC system, but there is much to explore. Future
research can explore different models and sizes,
improve data balance during pre-training, use bet-
ter synthetic data, and refine fine-tuning strategies.
A recent study, MADLAD-400 (Kudugunta et al.,
2023), has already covered twice as many lan-
guages, indicating a promising direction for further
investigation and language coverage.

7 Conclusion

We propose a simple approach for a multilingual
GEC system, simplifying the creation of non-
English GEC solutions. Through the use of multi-
lingual machine translation models supplemented
with synthetic and error correction data, we have
presented an effective approach to enhancing GEC
performance. Our results reveal the superiority of
this method, with our multilingual model consis-
tently outperforming similar-sized models and even
competing with larger counterparts.
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8 Limitations

While our research sheds light on the effectiveness
of a single multilingual machine translation model
for error correction across four languages and two
model sizes, several limitations should be acknowl-
edged. First, our findings primarily apply to the
model configurations tested, and we can reasonably
infer that larger models may yield enhanced perfor-
mance. However, a comprehensive validation of
this assumption is beyond the scope of our work
and computational capacity.

Furthermore, our study prioritizes specific lan-
guages and settings, leaving room for expanded in-
clusivity and validating the method with other lan-
guages. Testing the model across a broader range
of languages and fine-tuning configurations would
provide a more comprehensive understanding of its
utility and potential limitations.

As highlighted in Section 6, relying solely on
one reference-based metric may not fully capture
the model’s behaviour. Human evaluation could
offer a more comprehensive understanding of the
models’ performance and nuances.

Additionally, our investigation does not encom-
pass an exhaustive hyperparameter search and each
experiment was executed only once. Conducting
multiple runs could provide more robust and re-
liable results. Also, our work does not include a
detailed exploration of the impact of retaining a por-
tion of pre-training data during GEC fine-tuning.
These aspects present avenues for future research
and further refinement of the model’s performance.
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Reply with a corrected version
of the input sentence with all
grammatical and spelling errors
fixed. If there are no errors,
reply with a copy of the original
sentence.

Input sentence: {sentence}
Corrected sentence:

Reply with a corrected version
of the input sentence in Estonian
with all grammatical and spelling
errors fixed. If there are no
errors, reply with a copy of the
original sentence.

Estonian input sentence:
{sentence}
Corrected Estonian sentence:

Reply with a corrected version
of the input sentence in German
with all grammatical and spelling
errors fixed. If there are no
errors, reply with a copy of the
original sentence.

German input sentence:
{sentence}
Corrected German sentence:

Reply with a corrected version of
the input sentence in Czech with
all grammatical and spelling
errors fixed. If there are no
errors, reply with a copy of the
original sentence.

Czech input sentence: {sentence}
Corrected Czech sentence:

We added the unchanged sentence when the API
responded with a content filter. It did not happen
excessively but is still a notable disadvantage for
the system reducing the quality of error correction.

B Pre-training Experiment Extended

Figure 2 provides a visual representation of the
pre-training process for models across all four lan-
guages. It highlights how the model’s performance
changes when using different types of data: solely
synthetic data, translation training with selected

languages, or a combination of these data sources
while maintaining consistent sentence quantities
for each language.

The graph illustrates that, as pre-training pro-
gresses, English and German exhibit a plateau in
performance improvement, indicating that they do
not continue to advance rapidly. However, for Es-
tonian and Czech, there is a clear and continued
upward trajectory, indicating rapid improvement in
these languages.

Additionally, a noticeable spike in the F0.5-score
is observed for models trained with synthetic data
in German and English. This spike is marked by a
significant increase in precision, with recall not yet
showing a corresponding decrease.
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Figure 2: Precision (a), recall (b), and F0.5-score (c) for only synthetic, only parallel and mixed data with different
ratios for English W&I+LOCNESS (first row), Estonian EstGEC-L2 (second row), German FM (third row) and
Czech GECCC (fourth row) development sets measured with ERRANT scorer for English and MaxMatch scorer
for other languages. Models are trained with 1.5M sentences per language for 150k updates with batch size 4096
tokens.
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