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Abstract

The propagation of offensive content through
social media channels has garnered attention
of the research community. Multiple works
have proposed various semantically related yet
subtle distinct categories of offensive speech.
In this work, we explore meta-learning ap-
proaches to leverage the diversity of offensive
speech corpora to enhance their reliable and
efficient detection. We propose a joint embed-
ding architecture that incorporates the input’s
label and definition for classification via Proto-
typical Network. Our model achieves at least
75% of the maximal F1-score while using less
than 10% of the available training data across
4 datasets. Our experimental findings also pro-
vide a case study of training strategies valuable
to combat resource scarcity.

1 Introduction

While a vital channel for the dissemination of cru-
cial information, social media platforms have also
become hotbeds for hateful, and harmful expres-
sions. Such offensive speech not only detracts from
the quality of discourse but also poses tangible
threats to marginalized and vulnerable groups, es-
calating existing social tensions. Multiple studies
have observed the psychological harms to marginal-
ized communities perpetuated by offensive content
in the digital space (Saha et al., 2019; S, tefănit, ă
and Buf, 2021). However, the definition of offen-
sive speech varies between contexts, and across
publications that study this problem. A common
challenge with offensive speech is the lack of a
unifying definition, with conceptually related but
definitively distinct categories proposed in litera-
ture: Hate, Abusive, Aggressive, Toxic, Offensive,
Cyberbullying etc. (Poletto et al., 2021; Yin and
Zubiaga, 2021). While earlier research focused
on binary classification, more current works have
explored offensive categories in higher granularity
and semantic diversity (Mullah and Zainon, 2021;

Caselli et al., 2021; Mozafari et al., 2020; ElSherief
et al., 2021a; Yin and Zubiaga, 2021).

Though an active area of research in the Nat-
ural Language Processing (NLP) community, ac-
curate and reliable detection of offensive speech
often requires significant amount of training data
(Vidgen and Derczynski, 2020; Goodfellow et al.,
2016). For these tasks, the typical pipeline of data
collection involves gathering a candidate corpus
based on a set of relevant keywords, then soliciting
task-specific labels for them via crowdsourcing or
expert annotation (Vidgen and Derczynski, 2020;
Paullada et al., 2021). Demographics of annotators
may be different from one dataset to the next, in-
cluding platforms (e.g. Amazon Mechanic Turk,
Prolific), payments, levels of education, languages
and cultural backgrounds (Founta et al., 2018).

As offensive content is frequently linked to real
world events, there exists a need for appropri-
ately tailored datasets. Nevertheless, constructing
a sufficient amount of labelled data often proves a
resource-intensive challenge (Poletto et al., 2021;
Founta et al., 2018; Toraman et al., 2022). On
the other hand, there exists a plethora of available
data on similar yet categorically distinct areas of
offensive speech. We set out with the objective to
discover suitable techniques capable of leveraging
existing datasets to efficiently and reliably adapt to
new domains of offense content.

To this end, we compile from literature a collec-
tion of 14 relevant datasets, which allow us to per-
form a battery of testing on various pre-training and
meta-learning approaches to assess their efficacy
and robustness in classification of offensive content.
We also experiment with different model architec-
tures to incorporate label information to enhance
knowledge transference at multiple levels of data
availability. We introduce JE_ProtoNet, a joint
embedding based on Prototypical Network which
utilizes definition of label categories and exhibit
competitive performance across 4 test sets while
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using a fraction of the available training data. To
the best of our knowledge, this work is the first in
literature that harnesses label definition in offensive
speech detection. Our experiments provide a case
study on the trade-off between sample efficiency
and performance, with findings potentially appli-
cable to any classification task where categories
entail more nuanced expression beyond simple la-
bels. Based on empirical findings, we provide a set
of recommendations to leverage our approach to
enhance the efficiency of offensive speech classifi-
cation.

2 Related Work

2.1 Annotation with Instructions

High-quality annotation is crucial to the develop-
ment of offensive speech classifiers. Annotators’
implicit biases and disagreements could be propa-
gated and even magnified by downstream models
(Waseem, 2016; Vidgen and Derczynski, 2020; Da-
vani et al., 2023; Akhtar et al., 2020). Explicitly
priming annotators with clear instructions and defi-
nitions have been shown to reduce biases and en-
hance inter-annotator agreements (Sap et al., 2019a;
Waseem, 2016; Parmar et al., 2023).

2.2 Cross-Dataset Transference

The diversity of datasets on offensive speech has
prompted researchers to investigate their gener-
alizability. Models’ performance tend to signifi-
cantly drop when applied to out-of-domain dataset
(Bansal and Villavicencio, 2019; Yin and Zubiaga,
2021). Fortuna et al. (2021)’s extensive study re-
vealed that cross-dataset transference is highly in-
fluenced by their semantic similarity. Some works,
such as HateBERT and fBERT, pre-trained the base
model on specialized corpora to allow better adap-
tation to new datasets (Caselli et al., 2021; Sarkar
et al., 2021).

Model architecture and fine-tuning strategy
could also enhance transferrability. Mozafari et al.
(2022) applied Model-Agnostic Meta-Learning
(MAML) and Proto-MAML to BERT-based (De-
vlin et al. (2018) ) models and observed improve-
ments in few-show cross-lingual hate speech detec-
tion. Kim et al. (2022) used contrastive learning
to enhance detection of implicit hate speech detec-
tion across three benchmarks. Tran et al. (2020)
constructed HABETOR with fewer parameters but
still demonstrated good generalizable performance
across 2 out-of-domain datasets.

2.3 Label-Aware Classification

The idea of constructing label embedding was pi-
oneered by Tang et al. (2015) in their work on
Predictive Text Embedding. Wang et al. (2018) fol-
lowed up with Label-Embedding Attentive Model
(LEAM), a joint embedding of words and la-
bels downstream classification task. More re-
cently, Xiong et al. (2021a) leveraged BERT’s self-
attention mechanism for classification by concate-
nating labels’ tokens directly into their respective
inputs. Luo et al. (2021) took this idea further
in their method Label-semantic Augmented Meta-
Learner (LaSAML) via Prototypical Network, a
framework capable of few-shot text classification.

3 Data Collection and Processing

General Criteria

Our goal is to leverage existing datasets to adapt
to new domains of offensive content in a reliable
and label-efficient manner. To this end, we sur-
vey literature1 to identify relevant existing datasets
on offensive speech and related topics. We filter
our options based on the following criteria: size (>
10,000 samples), diversity of label categories (or,
the nature of offensive text these labels capture),
availability of definitions and instructions, along
with method of annotation. We strive to incorpo-
rate a sufficient number of categories related to
offensive speech with distinct levels of granularity.
When definitions of label categories are unavailable
in the original work, we solicit this content from
their authors. Detailed definitions for the labels
are included in Tables 5 and 6 of the Appendix.
Ultimately 14 datasets are chosen (Table 1), with
the 4 below held out for final testing of the models
and are not used for any pre-training.
ToxiGen is a large-scale machine-generated dataset
by demonstration-based prompting. Hartvigsen
et al. (2022a) controlled machine generation to cre-
ate a corpus of Benign and Toxic texts that cover
13 identity groups. In addition to its unique nature
of construction, this dataset is included as a repre-
sentative for binary classification tasks.
HateXplain is constructed by Mathew et al. (2021)
with an emphasis on explanability. The authors
asked annotators to highlight the span of tokens,
called rationales, that contribute to their selection
of the labels. This dataset shares the same label
space with Davidson et al. (2017), yet with differ-

1https://hatespeechdata.com
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ent definitions for each term.
Implicit_hate is developed by ElSherief et al.
(2021b) to fill the gap in the literature with re-
spect to negative sentiments expressed in coded
or indirect language. As the corresponding authors
posited, detecting implicit hate speech is regarded
as more challenging than its overt counterpart.
Covid focuses on the rise of anti-Asian sentiments
fueled by the COVID-19 pandemic (Vidgen et al.,
2020). Among other COVID-related hate speech
corpora (Nghiem and Morstatter, 2021; He et al.,
2021), this dataset arguably considers the most nu-
anced categories of East Asian entities.

Train Set Sampling

The remaining 10 datasets are reserved for meta-
training. Data "in the wild" tends to have consid-
erably different distributions with very low repre-
sentation of the offensive classes (Poletto et al.,
2021). Further, the offensive content is frequently
deleted from the platforms, making retrieval for re-
search even more challenging (Poletto et al., 2021;
Vidgen et al., 2021). Some datasets in our collec-
tions contain classes that suffer from extremely low
prevalence. To alleviate these problems, we only
select label classes that have clear definitions and
significant samples relative to their respective set.
Then, we employ stratified sampling to create a
subset while maintaining as close to an equal distri-
bution between classes as feasible. These sample
sizes are reflected in Table 1, with a final tally of
82,000. Finally, we perform pre-processing steps
to standardize texts (details in Appendix A).

4 Experimental Setup

From here on, we refer to the datasets as domains.
With the goal of investigating the potential bene-
fits of learning from semantically related but dis-
tinct data, our general experiment pipeline con-
sists of first pretraining a model on the 10 reserved
domains using different techniques 2. Then, the
model is fine-tuned and evaluated on each of the
4 aforementioned test domains. More specifically,
we hold out a portion of the test domains using the
ratio described in their original publications (Ta-
ble 1). We then perform K-shot sampling of the
remaining data to fine-tune the pre-trained mod-
els where K ∈ {16, 32, 64, 128, 256}. We used
K = 64 from the leftover data to select hyper-

2Our code repository is available at:
https://github.com/hnghiem-usc/define_your_terms

parameters (details in Table 4 of the Appendix).
Finally, the fine-tuned model is tested on the held-
out dataset. The following sections describe our
pretraining approaches.

4.1 Baselines
We select base RoBERTa (Robustly Optimized
BERT approach) as implemented by the Hugging-
face library to be the main structure of our model
due to its strong performance on related sentiment
classification tasks (Liu et al., 2019; ElSherief et al.,
2021a; Poletto et al., 2021). Already pretrained on
a large English corpus in an unsupervised fash-
ion, this version of RoBERTa contains 12 layers of
transformer blocks, 12 attention heads, and approx-
imately 125 million trainable parameters.

The baseline models3 all use the [CLS] token
from the embedding as input to the classification
head – a fully connected layer – to produce logit
scores for each label. The model seeks to mini-
mize the Cross-Entropy loss, with parameters up-
dated via AdamW Optimizer. The simplest baseline,
RoBERTa_untrained refers to training with only
K samples from the test domains (K-shot learning),
then evaluating on the held-out portion without
using any form of pretraining.

Inspired by Gururangan et al. (2020), the next
variant, RoBERTa_retrained, trains the model on
each of the test domain’s entire (non-sampled) train-
ing set using the Mask Language Model’s objective
in a self-supervised manner, before being further
fine-tuned through supervised learning with the
K-shot samples.

Finally, RoBERTa_binary, incorporates the
82,000 samples in a simple fashion. We unify the
different domains by collapsing the disparate la-
bel spaces into a binary mapping: all non-neutral
categories into Offensive, and the rest into Not Of-
fensive. The model is pretrained on this unified
dataset using the supervised learning objective be-
fore being fine-tuned in a K-shot way on in-domain
samples. Additionally, we also K-shot fine-tune
then evaluate out-of-the-box HateBERT (Caselli
et al., 2021) for comparison.

4.2 Meta-Learning Settings
In this section, we explore various meta-learning
frameworks as a means of pre-training. The follow-
ing frameworks all simulate N-way K-shot learn-
ing, where N is the number of classes (labels) in a

3We use Huggingface’s RobertaForSequenceClassification
implementation
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Dataset Total
Size

Sample
Size

Platform Annotation
Method

Selected Labels

Waseem and Hovy, 2016 16,914 3,000 Twitter E Offensive, Not Offensive
Golbeck et al., 2017 20,360 10,000 Twitter E Harrassment, Not Harrassment
Davidson et al., 2017 24,800 5,000 Twitter C Hate Speech, Offensive, Normal
Kumar et al., 2018 15,000 10,000 Facebook - Overly Aggressive, Covertly Aggressive, Non-

Aggressive
Founta et al., 2018 80,000 10,000 Twitter C Normal, Abusive Language, Hate Speech
Zampieri et al., 2019 14,100 6,000 Twitter C Targeted Insult, Untargeted Insult, Not Offen-

sive
Basile et al., 2019 13,000 8,000 Twitter C Hate Speech, Not Hate Speech
Sap et al., 2019b 44,671 10,000 Reddit,

Twitter,
Gab, Storm-
front

C Offensive, Not Offensive

Vidgen et al., 2021 41,255 10,000 - C Derogation, Animosity, Threatening, Support
for Hateful Entities, Dehumanization, Neutral

Toraman et al., 2022 100,000 10,000 Twitter E Offensive, Hate, Normal

ToxiGen 274,186 2,740 Synthetic - Toxic, Benign
HateXplain 20,148 2,000 Gab, Twit-

ter
C Hate Speech, Offensive, Normal

Implicit_hate 6,346 1,340 Twitter E, C White Grievance, Incitement to Violence, Infe-
riority Language, Irony, Stereotypes and Mis-
information, Threatening and Intimidation

Covid 20,000 2,000 Twitter E Hostility against an East Asian Entity, Criti-
cism of an East Asian Entity, Discussion of
East Asian Prejudice, None of the Above

Total 688,587 82,000

Table 1: General information about the compiled data sources. For Annotation Method, E stands for Expert, where
trained annotators are selected for labeling, and C for Crowdsource, a setting that employs a larger, typically
non-specialized pool of workers. The last 4 datasets are reserved for eventual evaluation. The sample size of test
sets (italicized) refers to values used for the final evaluation and is not included in the Total Size column.

domain, and K is the number of samples per class.
Each learner (model) f is parameterized by θ, of
which we seek to optimize over the classification
tasks using the 10 reserved domains.

At each training episode, a support and query
set of the same size is sampled from a domain Di,
where i ∈ {1, 2, ..., 10} for each of the reserved
domains. For meta-training, K is restricted to
{16, 32, 64, 128} shots to accommodate domains
with high number of categories. Since meta-
training is computationally demanding, we train
models on a single fixed seed and report aggre-
gate results by K-shot fine-tuning the meta-trained
model with 5 random seeds.

Training Without Label Information

In this standard setting, the learner’s inputs do not
incorporate any label information.
Prototypical Network, or ProtoNet, is a metric-
based meta-learning framework (Snell et al., 2017).

We use RoBERTa’s [CLS] token as the encoded
representation of each input. For each class c ∈ C
in domain Di, a prototype vc is constructed by
taking the mean of all K samples:

vc =
1

|Sc|
∗

∑

(xi,yi)∈Sc

fθ(xi) (1)

where Sc denotes the support set for which yi = c.
Distribution over the classes is calculated by taking
the softmax over the inverse distances dφ (Eucliean
in our work) between inputs’ embedding and the
prototypes.

p(y = c|x) = exp(−dφ(fθ(x),vc))∑
c′∈C exp(−dφ(fθ(x),vc′))

(2)

Input x is assigned the label of the nearest proto-
type.

ProtoMAML, an optimization-based frame-
work, extends Model-Agnostic Meta-Learning
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(MAML, Finn et al. (2017)), which aims to learn a
good initialization of the learner’s base parameters
θ that can quickly adapt to new tasks with limited
data. During meta-training, MAML optimizes the
model virtually using the support set, then eval-
uates the gradients on the query set with respect
to the original parameters. Designing the classi-
fication layer with MAML is challenging when
tasks have different label spaces. To circumvent
this problem, Triantafillou et al., 2019 proposed
ProtoMAML, which incorporates Prototypical Net-
work’s strengths by reformulating the softmax over
Euclidean distances as a linear layer with with soft-
max. By setting the weights of the linear layer
to twice the prototypes, and the biases to the to
the negative of the prototypes, we obtain a classi-
fication layer that would be compatible with any
domain. We implement First-Order ProtoMAML
in this work to avoid the computational cost of ob-
taining second-order derivatives as in the original
MAML algorithm.

Figure 1: General architecture of JE_ProtoNet. Hidden
states of text input and its corresponding label and defi-
nition are obtained from RoBERTa, and then passed as
Query, Value, and Key (color coded for traceability) to
the Multiheaded Attention module.

MLDG (Meta-Learning for Domain Generaliza-
tion) was proposed by Li et al. (2018). To learn
a good initialization suited for generalization, S
domains are split into disjoint sets S and S ′

. Dur-
ing meta-training, MLDG updates the model’s pa-
rameters virtually on tasks drawn from S to using
gradients ∇θ = F ′

θ(S, θ). During meta-training,
the model is virtually evaluated on tasks drawn
from S ′

to obtain loss G(S ′
; θ

′
). The base model

is optimized using both losses:

θ = θ − γ
∂(F(S, θ) + βG(S ′

; θ − α∇θ)

∂θ
) (3)

Inspired by Ye and Chao (2021); Kao et al. (2022),
the classification head takes the [CLS] token as

input to pass through a linear layer of the same
dimension (768), whose output is further connected
to a final fully connected layer of shape (768,1). At
the beginning of each training episode, this layer
is duplicated accordingly to the required number
of classes for each domain, with the parameters’
weights set to 0.

4.3 Training with Label Information

In this setting, label information is directly incor-
porated into the training inputs in various config-
urations. ProtoNet is the sole chosen architecture
because its metric-based nature limits overfitting
on labels compared to other methods. Label in-
corporation only happens during meta-training and
fine-tuning. During test time, no label information
is available to the model.
ProtoNet_Token For each domain Di, we convert
the label Lj into new token ELj for all j in the label
space. For labels that consist of multiple subwords,
we construct ELj by averaging their token embed-
dings. Inspired by Xiong et al. (2021b) and Si et al.
(2020), we concatenate the token embedding ET of
input T with its corresponding label token ELj, sep-
arated by the [SEP] token. Labels from different
domains but share identical textual representation
would also share their token embeddings.
ProtoNet_Label In contrast, this setting concate-
nate the corresponding label Lj directly to the end
of each text input T, all of which are passed to-
gether to the model. This approach simplifies the
label fusing process to create more discriminate
representation of inputs (Luo et al., 2021).
ProtoNet_Full In this approach, we also utilize the
definition associated with each label. Specifically,
we construct the input to the model using the format
[CLS] T [SEP] Lj : Dj [SEP], where Dj is the full
definition of the corresponding label.
JE_ProtoNet We construct an architecture that
takes into consideration the compatibility between
the text inputs and the labels’ definitions via a joint
embedding (illustrated in Figure 1). Each input
T is fed into the RoBERTa’s backbone to obtain
the hidden state representation HT. Similarly, we
obtain the hidden state HD of the the corresponding
label and definition sequence of the format Lj : Dj

using the same model. We then pass HT as the
Query and Value input, and HD as the Key into the
attention module 4 (Vaswani et al., 2017), which
consists of 3 attention heads. In contrast to the

4We use Huggingface’s MultiHeadAttention module
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native self-attention mechanism seen in previous
configurations, this setup allows the model to fo-
cus on certain aspects or parts of the input text
semantically relevant to the given label definition.
Finally, we extract the [CLS] token from the output
of joint embedding for downstream classification
as in other ProtoNet settings. During testing, a
blank string is passed in lieu of the definition.

5 Results

Macro F-1 score is chosen as the evaluation metric.
We first discuss the performance of models relative
to each other in their respective setting, then pro-
vide a top-down analysis. Figure 2 illustrates the
performance for each setting. Detailed numerical
results are displayed in Table 7 of the Appendix.
We also provide Figure 3 as an alternative illustra-
tion to facilitate comparison between models.

5.1 For Baseline Settings

Results for Baseline experiments are displayed
in Figure 2a. Unsurprisingly, macro F1-scores
improve with less variance as the number of K
training shots increases. With the exception of
ToxiGen’s binary classification, models tend not
to attain most of their classifying capability until
K=128. RoBERTA_untrained, which uses no pre-
training, displays a consistently improvement in
performance with more data across all 4 test do-
mains. In contrast, pre-training on in-domain data
with the Mask Language Model objective, causes
underperformance in some domains (HateXplain,
Implicit_hate), while provides a boost for others at
various K’s (ToxiGen, Covid). Pre-training on bi-
nary collapsed data allows Roberta_binary to attain
better F-1 scores in low-resource cases (K < 64),
suggesting beneficial initialization from exposure
to general data on offensive speech. Nevertheless,
this method does not guarantee peak performance
when more in-domain training data is available.
This finding aligns with prior cross-domain hate
speech experiments (Fortuna et al., 2021; Toraman
et al., 2022), suggesting that the binary mapping
scheme might overlook specific nuances unique to
each domain, hindering generalization to new do-
mains. Overall, these simple pre-training methods
offer inconsistent performance.

5.2 For Meta-Learning Settings

5.2.1 Without Label
Optimization-based models require more training
data (K≥ 64) to exhibit competitive performance.
Proto_MAML’s F1-scores are inferior to those of
MLDG in every setting. Furthermore, this model
displays considerably more dispersed results be-
tween seeds than the others, especially at higher
K values for ToxiGen and Covid. These factors
suggest that relying on the inductive bias using
prototype-based initialization of the classifier may
not enhance generalization between domains. On
the other hand, MLDG, specifically designed for
domain generalization, appears to perform compa-
rably to Robeta_binary at the extremes of K values,
with similar trajectory in between. Nevertheless,
this model’s performance also displays higher stan-
dard deviation for K ∈ {128, 256} for HateXplain
and Covid.

ProtoNet has the distinction of offering the best
F1-scores at K=16 for all test domains and consis-
tently stable results for different seeds, thanks to
its metric-based nature. However, this feature also
appears to hamper its classifying power even when
exposed to more in-domain training data, showing
little improvement at maximum value of K.

5.2.2 With Label
Though all ProtoNet-based models exhibit rela-
tively stable performance across evaluation seeds
as in previous setting, their trajectories differ when
trained on more in-domain data (Figure 2c). Inter-
estingly, ProtoNET_Label’s performance deterio-
rates as K increases, along with higher standard
deviation in comparison to other variants.

Appending the entire definition to the input also
does not appear to be viable, as ProtoNet_Full
yields the second least favorable F-1 scores for Ha-
teXPlain, Implicit_hate, and Covid domains. Pro-
toNet_token, though yielding more favorable re-
sults compared to the 2 previous variants, do not
demonstrate significant difference in performance
compared to the base ProtoNet setting in 5.2.1.

JE_ProtoNet is the only model whose perfor-
mance appreciatively scales with increment of K
values. This architecture achieves competitive F1-
scores at K ∈ {16, 32}, with notably higher result
for Implicit_hate. More importantly, JE_ProtoNet
outperforms other with-label variants across all test
domains, demonstrating its robustness.
Does pre-training help initialize Joint
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(a) Results for Baseline RoBERTa models

(b) Results for Meta-Learning models without labels

(c) Results for ProtoNet-based models with labels

Figure 2: Illustration of Macro F1-scores of models for various K-shot settings. Vertical bars denote standard
deviation of results over 5 seeds. HateBERT is ommited to simplify comparison.

Embedding? We perform testing on the
JE_ProtoNet model, whose Attention module’s
weights are randomly initialized, without any
pre-training on the 10 datasets, denoted as
JE_ProtoNet_Untrained. In Figure 2c, we observe
that JE_ProtoNet_Untrained’s F1-scores are infe-
rior to that of its counterpart JE_ProtoNet across
domains for K≤128, except for Implicit_hate
domain at K=64. Additionally, the former
generally exhibits higher variance among results
compared to the latter model for K≤64. These
notions suggest that our pre-training approach via
meta-learning provides advantageous initialization
when in-domain resource is scarce.
Leveraging JE_ProtoNet’s features Observing
the discrepancy in improvement with more re-

sources (higher K-shots) of Baseline models, and
ProtoNet-based models’ good performance in low-
resource setting, we hypothesize that it is possible
to enhance JE_ProtoNet to overcome its limited in-
ductive bias while fully utilizing its learned discrim-
inate features. We thus equip JE_ProtoNet with a
classification head, a feed forward neural network
that takes the [CLS] token form the joint embed-
ding as input. This model, JE_ProtoNet_CLS, is
discussed in the next section.

5.2.3 Global Assessment
We restrict our analysis here to K=256. From
Table 2, we observe that all models perform re-
spectably on ToxiGen’s classification task. This
finding is in line with the dataset’s conditional
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ToxiGen HateXplain Implicit_hate Covid
F1 σ F1 σ F1 σ F1 σ

HateBERT 0.731 0.007 0.571 0.007 0.523 0.010 0.542 0.020

RoBERTa_untrained 0.753 0.010 0.592 0.011 0.604 0.018 0.571 0.014
RoBERTa_binary 0.754 0.015 0.621 0.014 0.578 0.011 0.559 0.022
RoBERTa_retrained 0.795 0.004 0.527 0.043 0.592 0.013 0.596 0.014

ProtoNet 0.721 0.009 0.520 0.003 0.387 0.005 0.452 0.018
ProtoMAML 0.677 0.105 0.553 0.041 0.552 0.021 0.452 0.159
MLDG 0.750 0.011 0.569 0.028 0.579 0.006 0.568 0.027

ProtoNet_Token 0.691 0.021 0.541 0.018 0.380 0.023 0.469 0.015
ProtoNet_Label 0.516 0.048 0.338 0.033 0.146 0.011 0.228 0.012
ProtoNet_Full 0.693 0.006 0.529 0.008 0.274 0.017 0.406 0.016

JE_ProtoNet 0.751 0.010 0.610 0.015 0.569 0.007 0.615 0.008
JE_ProtoNet_Untrained 0.758 0.008 0.575 0.011 0.595 0.014 0.617 0.011
JE_ProtoNet_CLS 0.758 0.005 0.628 0.007 0.595 0.018 0.636 0.031

Table 2: Macro F1-scores and their standard deviation (σ) for K = 256. Highest and second-highest F1-scores in
each test domain are bolded and italicized, respectively.

Train size No. class F1 Max 64 128 256
F1% Size % F1% Size% F1% Size%

ToxiGen 512* 2 0.795 91 25 93 50 95 100
HateXplain 16,118 3 0.687 79 1 84 2 91 5
Implicit_hate 3,807 6 0.586 88 10 96 20 102 39
Covid 16,000 4 0.832 53 2 66 3 76 6

Table 3: Comparison of JE_ProtoNet_CLS performance and size across K values {64, 128, 256}. F1 % represents the
model’s F1-score relative to the highest F1-score (F1 max) reported by the original authors using the corresponding
training data size (Train size). Size % indicates the sample size percentage based on the K-value relative to the Train
size. *Best F1-score attained by RoBERTa_binary at K=256 chosen (statistics not reported by original authors)

machine-generation of its binary labels. Hate-
BERT’s performance generally trails behind our
baseline models, indicating this model’s struggle
to adapt to new domains in few-shot settings. In-
terestingly, pre-training on in-domain data allows
RoBERTa to leading F1-score of 0.795. On the
other hand, RoBERTa_untrained achieves the lead-
ing score of 0.604 on Implicit_hate. Nevertheless,
none of the baseline models obtain consistently
good performance across the board. Meta-learning
models without labels also do not produce compet-
itive results. This group’s top performer, MLDG,
attains only decent results across test domains.

As discussed in 5.2.2, ProtoNet with various
methods to incorporate label information do not
yield improvement over their non-label counterpart,
and may even exhibit degradation (ProtoNet_Full).
Using joint embedding that incorporates label defi-
nitions, however, achieves both strong and consis-
tent F-1 scores, as shown by all configurations of
JE_ProtoNet models. In fact, JE_ProtoNet_CLS
attains best or second best results in all 4 test do-

mains, especially the 0.636 F1-score for Covid,
arguably the most semantically distinctive domain.

6 Discussion

Definition matters While many works in offen-
sive speech literature have focused on standard
classification techniques, ours is the first to lever-
age the definition of associated labels. Our pro-
posed framework to incorporate definition via the
joint embedding is beneficial to boost classification
performance over other models, given the same
amount of training data. In addition to enhancing
annotation quality, this factor is yet another signal
to encourage researchers to pay more attention to
their terminologies to both enhance downstream
tasks and facilitate cross-task studies.
More data is not always needed Our experi-
ments provide a case study on how much data is
necessary to achieve certain results in the area of
offensive speech detection. While having more
labeled data is always preferable, the annotation
process can be expensive, and thus constituting
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a barrier to researchers not equipped with abun-
dant resources. Table 2 describes the percentages
of JE_ProtoNet_CLS’s F1-scores for K=64 to 256
relative to the F1-scores reported by the original
authors using the entire training data. Most no-
tably, our balanced data sampling and model de-
sign achieve 79% of max F1-score with 1% training
data for HateXplain, 76% with 6% training data for
Covid, and even bested the max F1-score with only
39% training data for Implicit_Hate.
Recommendations for Low-Resource Settings
This observation suggests that tailoring the data an-
notation process for class balance may allow offen-
sive speech classifiers to attain better performance
with less training resource. For instance, practition-
ers may opt to iterate over collecting, annotating,
testing and increasing the quantity of data using
classification metrics as guiding criteria. Experi-
mental results suggest that setting K = 64 may be
a good starting point. As our technique does not
incur significant technical overhead compared to
baseline architectures, researchers may implement
both to mutually juxtapose during this iterative data
collection process, and stop when the models’ per-
formances plateau or reach a satisfactory threshold.
This approach has the advantage of being both data-
efficient and empirically driven.

7 Conclusion

While we also leverage the existing rich corpora,
our work explores a different setting of offensive
speech detection compared to other works, such as
HateBERT or fBERT (Caselli et al., 2021; Sarkar
et al., 2021). The proposed joint-embedding may
be adapted to complement other existing architec-
tures. Our approach can also be applied to other
NLP tasks, such as sentiment analysis and stance
detection, where labels extend beyond compact
phrases. We invite researchers to explore defini-
tions and the extent of their usefulness in other
tasks.

Offensive content is ever-evolving in today’s
world. We hope that our findings provide useful
pointers for NLP practitioners to more efficiently
explore diverse topics in this field.

Limitations

Our pre-processing step that removes special char-
acters and casts inputs into lower-case is chosen
for efficiency and to facilitate fair comparisons be-
tween the various experimental configurations. It

is possible that these characters provide additional
predictive signal, and could be used to enhance the
models’ performance.

This work uses RoBERTa as the sole backbone
architecture for our models. In recent years, a
plethora of new, potentially more powerful archi-
tectures have been proposed and may obtain better
performance on our tasks. Furthermore, our cor-
pora all focus on English, which does not reflect
the diversity of languages, cultural norms and ex-
pressions that can express offensive sentiment. Our
classification tasks only explore label categories,
while other works also explicitly predict the tar-
gets of offensive content. Finally, definition for la-
bel is not always available for all offensive speech
datasets. It remains an open research question if
our method will transfer to other domains, not lim-
ited to offensive speech. We invite interested re-
searchers to explore these venues.

Ethics Statement

This research aims to reduce the spread of offensive
content by means of more reliably detecting them.
Our compiled datasets do not violate privacy as
they are extracted from published works, whose
authors have taken steps to uphold confidentiality.
We acknowledge that, due to the open nature of
this data, they might contain references to real life
personnel. There exists a risk that nefarious parties
may leverage the ideas proposed in this work in
the opposite of the authors’ intention to propagate
more offensive speech instead.
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A Appendix

Preprocessing

We perform standard preprocessing steps on our
data. First, we remove non-ASCII characters
from the inputs and convert them to lower case.
Special platform-specific characters are removed,
with certain exceptions (e.g. hyperlinks replaced
with <url>, user-mentions with <user>, hashtags
are segmented into separate tokens by using the
Ekphrasis Python library 5). We also replace repet-
itive patterns with a single representative (e.g. “b
b b ” to “b”).

Technological Details

All models are trained using single NVIDIA P100
GPU, with the exception on JE models, which were
trained on NVIDIA A100 GPU. Our system also
posses 20GB of RAM memory.

To select hyperparameters for the K-shot fine-
tuning process on test domains, we use a sample of
size K=64 from the left over data after the initial
K-shot training samples. To select hyperparame-
ters during meta-training, we monitor the average
losses and F1-score during meta-testing. Meta-
learning models are trained over a number of meta
epochs, where each consists of 300 tasks randomly
chosen from the 10 training domains. For fine-
tuning, the learning rate is equipped with the Co-
sine Annealing Learning Rate scheduler 6 with min-
imum rate set to 1e-5. Roberta_retrained models
are pre-trained using MLM objective for 5 epochs.
Learning rates are chosen from the following pool
of candidates: {1e-5, 2e-5, 5e-5, 7e-5, 1e-4, 5e-4,
7e-4, 1e-3}. Fine tuning and meta epochs are cho-
sen from {2,3,4,5}. Batch sizes are set to 16. Table
4 shows the final values of hyperparameters.

5Available at https://github.com/cbaziotis/ekphrasis
6As implemented by Pytorch library
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Figure 3: Mean macro F-1 scores of various models on 4 test sets at different K-shot settings, with error bars
representing standard deviation over 5 seeds . For each K, the first bar shows the best performer among the Baseline
models, the second bar shows the best among the models Without Label, and the third among models With Label. The
rest includes all applicable Joint-Embedding models. R_Bi: RoBERTa_binary, R_Re: RoBERTa_retrained, R_Un:
RoBERTa_untrained, PN: ProtoNet, PN_F: ProtoNET_Full, PN_T: ProtoNet_Token, PN_L: ProtoNet_Label, PM:
ProtoMAML, JE_PN: JE_ProtoNet, JE_PN_U: JE_ProtoNet_Untrained, JE_PN_C: JE_ProtoNet_CLS.
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Model Meta
Epoch

Meta Learning Rates Finetune Epoch Finetune Learning Rates

Baselines - - 3 2e-5
MLDG 5 E:5e-5; C:1e-4 3 E:2e-5 ; C:{-1:5e-3, 16:5e-3, 32:5e-

3, 64:7e-3, 128:7e-3, 256:5e-4}
ProtoMAML 5 E:5e-5; C:1e-4 4 E:2e-5 ; C:{-1:1e-3, 16:1e-4, 32:1e-

4}
ProtoNet (all variants) 5 E:2e-5; C:1e-4 2 E:1e-5
JE_ProtoNet 5 E:5e-5; A:2e-5; C:1e-4 3 E:2e-5, A:2e-5
JE_ProtoNet_CLS - - 3 E:2e-5, A:2e-5; C:1e-4

Table 4: Hyperparameter values chosen for reported runs. For learning rates, E stands for Word Embedding,
(RoBERTa), A for Attention module, C for Classification head. If no letter specififed, then learning rate applies
to all components. Learning rates in bracketed dictionaries are tied to the corresponding component, with the key
represents the corresponding K-shot value it is applied to. -1 denotes the default rate.
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Dataset Definition

Waseem and Hovy,
2016

Overtly Aggressive : any text in which aggression is overtly expressed either through the use of
specific kind of lexical items or lexical features which is considered aggressive and or certain
syntactic structures is overt aggression. Covertly Aggressive : any speech in which aggression is
overtly expressed either through the use of specific kind of lexical items or lexical features which
is considered aggressive and or certain syntactic structures is overt aggression. Non Aggressive :
any text that does not fall into the other two categories.

Golbeck et al., 2017 Offensive : uses a sexist or racial slur, attacks a minority, seeks to silence a minority, criticizes a
minority without a well founded argument , promotes, but does not directly use, hate speech or
violent crime, criticizes a minority and uses a straw man argument, blatantly misrepresents truth
or seeks to distort views on a minority with unfounded claims, shows support of problematic
hash tags, negatively stereotypes a minority, defends xenophobia or sexism, contains a screen
name that is offensive, as per the previous criteria, the tweet is ambiguous at best , and the tweet
is on a topic that satisfies any of the above criteria. Not Offensive : does not into any other
categories.

Davidson et al.,
2017

Targeted Insult : posts containing insult threat to an individual, a group, or others. Untargeted
Insult : posts containing non targeted profanity and swearing. posts with general profanity are
not targeted, but they contain non acceptable language. Not Offensive : posts that do not contain
offense or profanity

Kumar et al., 2018 Harrassment : deeply racist, misogynistic or homophobic, or otherwise bigoted. the use of
shocking language primarily to upset the person who is reading. unapologetically or intentionally
offensive this could be someone saying something with the intent of upsetting a group, or an
extreme account e.g. neo nazis using language that they approve of but they know the general
public would disapprove of. have language intended to make the target or a broader group fearful
or to feel unsafe. express hate or extreme bias to a particular group. could be based on religion,
race, gender, sexual orientation. language directed at a particular person or group designed to
upset them. this language may be milder than in other cases but should be part of the campaign
by one person or a group to make the target feel threatened or intimidated. Not Harrassment
: anything that does not rise to the level of clearly and unambiguously fitting into the other
categories.

Founta et al., 2018 Hate Speech : targeting immigrants; content must have immigrants refugees as main target, or
even a single individual, but considered for his her membership in that category and not for the
individual characteristics ; must deal with a message that spreads, incites, promotes or justifies
hatred or violence against target, or a message that aims at dehumanizing, hurting or intimidating
the target. or expresses hating towards women in particular in the form of insulting, sexual
harassment, threats of violence, stereotype, objectification and negation of male responsibility.
Not Hate Speech : the followings are not considered hate speech, against other target, offensive
language, blasphemy, historical denial, over incitement to terrorism, offense towards public
servant, defamation.

Zampieri et al.,
2019

Abusive Language : any strongly impolite, rude or hurtful language using profanity, that can
show a debasement of someone or something, or show intense emotion. Hate Speech : language
used to express hatred towards a targeted individual or group, or is intended to be derogatory, to
humiliate, or to insult the members of the group, on the basis of attributes such as race, religion,
ethnic origin, sexual orientation, disability, or gender. Normal : tweets that do not fall in any of
the other categories

Basile et al., 2019 Hate Speech : language that is used to expresses hatred towards a targeted group or is intended
to be derogatory, to humiliate,or to insult the members of the group. may also be language that
threatens or incites violence. Offensive Language : may contain offensive terms but targets
disadvantaged social groups in a manner that is potentially harmful to them. Neither : language
that does not all into either of the other categories .

Sap et al., 2019b Offensive : denotes the overall rudeness, disrespect, or toxicity of a post. whether a post could
be considered offensive to anyone. Not Offensive : not offensive to anyone.

Toraman et al., 2022 Hate : target, incite violence against, threaten, or call for physical damage for an individual or a
group of people because of some identifying trait or characteristic. Offensive : humiliate, taunt,
discriminate, or insult an individual or a group of people in any form, including textual. Normal
: does not fall into any of the other categories .

Vidgen et al., 2021 Derogation : content which explicitly attacks, demonizes, demeans or insults a group. Animosity
: content which expresses abuse against a group in an implicit or subtle manner. Threatening
: content which expresses intention to, support for, or encourages inflicting harm on a group,
or identified members of the group. Support For Hateful Entities : content which explicitly
glorifies, justifies or supports hateful actions, events, organizations, tropes and individuals
collectively, entities. Dehumanization : content which perceives or treats people as less than
human. Not Hate : content that falls into none of the other categories .

Table 5: Full definition for train datasets
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Dataset Definition

Covid Hostility Against An East Asian Entity : express abuse or intense negativity against an east
asian entity, primarily by derogating attacking them. also includes conspiracy theories, claiming
east asians are a threat, and expressing negative emotions about them. Criticism Of An East
Asian Entity : make a negative judgement assessment of an east asian entity, without being
abusive. this includes commenting on perceived social, economic and political faults, including
questioning their response to the pandemic and how they are governed. Discussion Of East
Asian Prejudice : tweets that discuss prejudice related to east asians but do not engage in,
or counter, that prejudice. includes content which discusses whether east asian prejudice has
increased during covid 19, the supposed media focus on prejudice, and or free speech. also
includes explicitly challenge or condemn abuse against an east asian entity. includes rejecting the
premise of abuse, describing content as hateful or prejudicial, or expressing solidarity with target
entities. None Of The Above : do not fall into any of the other categories. could be abusive in
other ways, such as expressing misogyny.

ToxiGen Toxic : text that could be seen as harmful to anyone, may contain offensive rude, humor, insults,
personal attacks, profanity, aggression, may refer to targeted group with harmful intent that
is expressed in stereotypes or lewd manners. minority groups include blacks, asians, native
americans, muslims, latinos, jewish, chinese, lgbtq , mentally disabled, physically disabled,
mexican, women and middle eastern. Benign : text that could not be seen as harmful or intended
to be harmful to anyone.

Implicit_hate White Grievance : includes frustration over a minority group s perceived privilege and casting
majority groups as the real victims of racism. this language is linked to extremist behavior and
support for violence. Incitement To Violence : includes flaunting in group unity and power
or elevating known hate groups and ideologies. Inferiority Language : implies one group or
individual is inferior to another, and it can include dehumanization denial of a person s humanity
, and toxification language that compares the target with disease, insects, animals . related to
assaults on human dignity, dominance, and declarations of superiority of the in group. Irony :
refers to the use of sarcasm , humor, and satire to attack or demean a protected class or individual.
Stereotypes And Misinformation : associate a protected class with negative attributes such as
crime, or terrorism. includes misinformation that feeds stereotypes and vice versa, like holocaust
denial and other forms of historical negationism. Threatening And Intimidation : conveys
a speaker’s commitment to a target s pain, injury, damage, loss, or violation of rights, threats
related to implicit violation of rights and freedoms, removal of opportunities, and more subtle
forms of intimidation.

HateXplain Hate Speech : language which attacks, demeans, offends, threatens, or insults a group based on
race, ethnic origin, religion, disability, gender, age, sexual orientation, or other traits. it is not the
presence of certain words that makes the text hate speech, rather you should look the context the
word is used in the text. Offensive Language : usage of rude, hurtful, derogatory, obscene or
insulting language to upset or embarasse people. Normal : neither hate speech nor offensive .

Table 6: Full definition for test datasets
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ToxiGen HateXplain Implicit_hate Covid
K Model F1 σ F1 σ F1 σ F1 σ

16

HateBERT 0.462 0.095 0.326 0.032 0.233 0.047 0.368 0.037
RoBERTa_untrained 0.377 0.075 0.210 0.090 0.232 0.052 0.184 0.108
RoBERTa_binary 0.476 0.195 0.459 0.036 0.330 0.039 0.288 0.052
RoBERTa_retrained 0.427 0.144 0.171 0.018 0.181 0.010 0.171 0.127
ProtoNet 0.714 0.015 0.479 0.041 0.344 0.015 0.402 0.013
ProtoMAML 0.343 0.020 0.180 0.016 0.086 0.025 0.201 0.002
MLDG 0.557 0.112 0.293 0.053 0.263 0.049 0.314 0.040
ProtoNet_Token 0.695 0.019 0.502 0.022 0.258 0.022 0.388 0.028
ProtoNet_Label 0.668 0.049 0.515 0.017 0.221 0.021 0.364 0.014
ProtoNet_Full 0.703 0.007 0.489 0.027 0.246 0.020 0.357 0.038
JE_ProtoNet 0.684 0.024 0.459 0.029 0.391 0.013 0.393 0.023
JE_ProtoNet_Untrained 0.537 0.043 0.405 0.017 0.325 0.034 0.298 0.025
JE_ProtoNet_CLS – – – – – – – –

32

HateBERT 0.498 0.092 0.373 0.044 0.359 0.010 0.429 0.028
RoBERTa_untrained 0.482 0.073 0.365 0.078 0.318 0.043 0.323 0.053
RoBERTa_binary 0.691 0.058 0.447 0.060 0.378 0.012 0.440 0.051
RoBERTa_retrained 0.574 0.134 0.192 0.069 0.231 0.049 0.273 0.138
ProtoNet 0.717 0.013 0.492 0.041 0.369 0.023 0.415 0.014
ProtoMAML 0.368 0.074 0.191 0.026 0.177 0.077 0.205 0.014
MLDG 0.637 0.044 0.384 0.050 0.372 0.026 0.367 0.038
ProtoNet_Token 0.706 0.009 0.522 0.013 0.298 0.024 0.413 0.021
ProtoNet_Label 0.694 0.016 0.517 0.006 0.222 0.014 0.338 0.018
ProtoNet_Full 0.707 0.004 0.498 0.028 0.251 0.019 0.382 0.011
JE_ProtoNet 0.699 0.014 0.500 0.023 0.445 0.011 0.429 0.037
JE_ProtoNet_Untrained 0.610 0.055 0.408 0.024 0.420 0.014 0.320 0.050
JE_ProtoNet_CLS – – – – – – – –

64

HateBERT 0.558 0.109 0.466 0.017 0.420 0.011 0.455 0.031
RoBERTa_untrained 0.498 0.148 0.422 0.084 0.457 0.023 0.430 0.061
RoBERTa_binary 0.734 0.013 0.491 0.035 0.424 0.032 0.494 0.021
RoBERTa_retrained 0.688 0.088 0.177 0.026 0.342 0.047 0.506 0.018
ProtoNet 0.716 0.010 0.500 0.021 0.375 0.017 0.434 0.006
ProtoMAML 0.442 0.156 0.318 0.078 0.263 0.083 0.202 0.019
MLDG 0.680 0.018 0.393 0.063 0.467 0.017 0.385 0.041
ProtoNet_Token 0.709 0.008 0.527 0.025 0.329 0.028 0.435 0.017
ProtoNet_Label 0.669 0.045 0.500 0.049 0.196 0.019 0.310 0.027
ProtoNet_Full 0.702 0.004 0.507 0.029 0.266 0.019 0.390 0.008
JE_ProtoNet 0.725 0.010 0.539 0.015 0.491 0.025 0.480 0.031
JE_ProtoNet_Untrained 0.670 0.039 0.476 0.037 0.486 0.029 0.330 0.032
JE_ProtoNet_CLS 0.727 0.014 0.541 0.017 0.513 0.028 0.441 0.051

128

HateBERT 0.687 0.012 0.537 0.009 0.497 0.010 0.490 0.027
RoBERTa_untrained 0.707 0.032 0.528 0.029 0.561 0.017 0.534 0.026
RoBERTa_binary 0.744 0.020 0.572 0.018 0.535 0.013 0.539 0.019
RoBERTa_retrained 0.775 0.008 0.332 0.073 0.515 0.030 0.550 0.019
ProtoNet 0.719 0.009 0.507 0.007 0.379 0.011 0.445 0.018
ProtoMAML 0.551 0.143 0.400 0.107 0.448 0.022 0.340 0.078
MLDG 0.712 0.013 0.473 0.041 0.527 0.013 0.546 0.041
ProtoNet_Token 0.711 0.011 0.544 0.015 0.368 0.016 0.471 0.016
ProtoNet_Label 0.576 0.041 0.420 0.014 0.164 0.016 0.280 0.033
ProtoNet_Full 0.702 0.010 0.519 0.016 0.247 0.014 0.410 0.015
JE_ProtoNet 0.744 0.012 0.563 0.016 0.526 0.004 0.555 0.010
JE_ProtoNet_Untrained 0.737 0.005 0.512 0.030 0.547 0.019 0.475 0.029
JE_ProtoNet_CLS 0.742 0.011 0.575 0.020 0.565 0.019 0.550 0.026

Table 7: Macro F1-scores of models on 4 test domains with K=16 to 128. Best performance for each K per dataset
in bold, second best italicized.
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