
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 1: Long Papers, pages 1478–1496

March 17-22, 2024 c©2024 Association for Computational Linguistics

Who Needs Decoders? Efficient Estimation of Sequence-Level Attributes
with Proxies

Yassir Fathullah, Puria Radmard, Adian Liusie, Mark J. F. Gales
ALTA Institute, Department of Engineering, University of Cambridge

{yf286, pr450, al826}@cam.ac.uk, mjfg@eng.cam.ac.uk

Abstract

Sequence-to-sequence models often require
an expensive autoregressive decoding process.
However, for some downstream tasks such
as out-of-distribution (OOD) detection and re-
source allocation, the actual decoding output
is not needed, just a scalar attribute of this se-
quence. In such scenarios, where knowing the
quality of a system’s output to predict poor
performance prevails over knowing the output
itself, is it possible to bypass the autoregressive
decoding? We propose Non-Autoregressive
Proxy (NAP) models that can efficiently predict
scalar-valued sequence-level attributes. Impor-
tantly, NAPs predict these metrics directly from
the encodings, avoiding the expensive decoding
stage. We consider two sequence tasks: Ma-
chine Translation (MT) and Automatic Speech
Recognition (ASR). In OOD for MT, NAPs out-
perform ensembles while being significantly
faster. NAPs are also proven capable of pre-
dicting metrics such as BERTScore (MT) or
word error rate (ASR). For downstream tasks,
such as data filtering and resource optimization,
NAPs generate performance predictions that
outperform predictive uncertainty while being
highly inference efficient.

1 Introduction

Autoregressive models have emerged as the dom-
inant approach for many sequence-to-sequence
tasks (Sutskever et al., 2014; Brown et al., 2020a;
Chowdhery et al., 2022a; Fathullah et al., 2023a;
Rubenstein et al., 2023) and are the state-of-the-
art for a range of tasks such as Automatic Speech
Recognition (ASR) (Gulati et al., 2020), Ma-
chine Translation (MT) (Vaswani et al., 2017; Xue
et al., 2021), and Abstractive Text Summarization
(Chung et al., 2022; Raffel et al., 2020). How-
ever, for many applications, the decoded output
sequence is not required, only attributes of the se-
quence. In out-of-distribution (OOD) detection,
only a sequence-level metric such as confidence

is required (Hendrycks and Gimpel, 2017; Ma-
linin and Gales, 2021). In selective classification
(Geifman and El-Yaniv, 2017; Xia and Bouganis,
2022; El-Yaniv and Wiener, 2010) the output is
only needed if the prediction is trusted. Another
example is deferral strategies for resource alloca-
tion (Li et al., 2015; Teerapittayanon et al., 2016;
Viola and Jones, 2001; Xia and Bouganis, 2023;
Zhu et al., 2006), where computation is allocated
between systems of different complexity. Standard
deferral strategy approaches use the predictive un-
certainty of a simpler system to decide whether or
not to pass it on to a better-performing system of
higher complexity (Wang et al., 2022).

All of the examples above require some form
of predictive uncertainty metric from the output,
which in the case of transformer-based autoregres-
sive models are expensive to obtain (Brown et al.,
2020b; Chowdhery et al., 2022b; Raffel et al., 2020;
Wu et al., 2016; Radmard et al., 2021). Combined
with the quadratic cost of self-attention (Vaswani
et al., 2017) and autoregressive decoding (equipped
with beam-search (Koehn, 2009)), this can limit
the application of these systems in real-world set-
tings, such as those that have limited computa-
tional resources or require low latency (Viola and
Jones, 2001). Furthermore, ensembling generally
improves system performance and can be lever-
aged for useful analysis, such as for robust un-
certainty estimation (Gal and Ghahramani, 2016;
Lakshminarayanan et al., 2017). However, ensem-
bles’ memory and inference costs scale linearly
with the number of members in the ensemble, mak-
ing them even more impractical for real-world sce-
narios. There are methods including Knowledge
Distillation (KD) (Ranzato et al., 2016; Hinton
et al., 2014) and Ensemble Distribution Distilla-
tion (EDD) (Malinin et al., 2020; Fathullah et al.,
2021, 2023b; Fathullah and Gales, 2022) that dis-
till knowledge from an autoregressive ensemble but
this does not circumvent the high costs fundamen-

1478



tally associated with autoregressive generation.
Previous works have investigated adding a sec-

ond output head explicitly trained to capture a spe-
cific metric such as epistemic uncertainty in image
segmentation (Landgraf et al., 2023) or the true
class probability in image classification (Corbière
et al., 2019). The work of (Li et al., 2021) extends
this style of approach to ASR by adding a second
head to the decoder, to predict token-level decod-
ing errors. Despite its success in providing robust
estimates, computing the output uncertainties still
requires an expensive autoregressive decoding pro-
cess. The work of (Coleman et al., 2020) trains
an independent proxy model for estimating uncer-
tainties. This method is based on training a much
smaller image classification model in an identical
manner to the primary model, instead using the un-
certainties produced by the small model’s outputs
to guide the primary one. In the space of autore-
gressive encoder-decoder models, this approach is
still not feasible; the costs of training and decoding
persist even for small autoregressive models.

In this paper, we propose Non-Autoregressive
Proxy (NAP) models that directly estimate
sequence-level attributes, bypassing the expensive
autoregressive decoding process. When deployed,
these lightweight proxy models can be used to
robustly predict sequence properties using a frac-
tion of the computational requirements. Our ap-
proach is kept general and applicable to any se-
quence attribute, demonstrating the usefulness of
this framework to diverse metrics such as sequence-
level predictive uncertainty, BERTScore for MT,
and word error rate (WER) for ASR. Investigations
into downstream tasks such as out-of-distribution
(OOD) detection show that NAPs can outperform
an ensemble at a fraction of the inference time. Due
to the flexibility of the proposed framework, we
also investigate training NAPs on sequence-level
performance metrics (BERTScores and WERs),
outperforming uncertainty-based approaches on
data filtering and resource optimization.

2 Background

There has been a range of work on predicting
sequence-level attributes. One common example is
estimating uncertainties from the outputs of autore-
gressive systems (Malinin and Gales, 2021; Notin
et al., 2021), where unsupervised token-level uncer-
tainties from some decoding process are combined
to form sequence-level estimates. Such sequence-

level uncertainties are then used in downstream
tasks such as OOD detection (Malinin and Gales,
2021), quality estimation (Fomicheva et al., 2020)
and curriculum learning (Zhou et al., 2020).

Previous work has also explored task-specific
supervised approaches to confidence/metric estima-
tion. The work of (Gamper et al., 2020) explores
training a small independent model to predict the
sub-utterance-level word error rate (WER) of a pri-
mary ASR model for short-duration audio when the
reverberant conditions change. However, the ap-
proach is not generalizable to other domains such
as MT due to the specific focus on reverberant
speech. Other work has also focused on training
an error detection module attached to the decoder
of some ASR or MT system (Evermann and Wood-
land, 2000; Koehn, 2009; Kumar and Sarawagi,
2019; Li et al., 2021; Liao and Gales, 2007; Ragni
et al., 2018). For example, a typical approach to
training the decoder-side error detector is based on
token-level error labels from the minimum Leven-
shtein distance alignment to the ground truth. From
these token-level estimates, a sequence-level con-
fidence score can be derived. In ASR where there
is often one clear true transcription of the input
audio, such an error detection module is appropri-
ate. However, these approaches are inappropriate
for MT where multiple translations could all have
the same meaning and be considered valid. Such
a token-level error detector would flag other valid
translations as errorful even when conveying the
same information and meaning.

This final example is one of the main motiva-
tions behind BERTScore and related approaches
(Sellam et al., 2020; Yuan et al., 2021; Zhang et al.,
2020; Zhao et al., 2019). BLEU (Papineni et al.,
2002; Post, 2018) has long been the main MT eval-
uation metric for measuring sequence similarity
between a translation and a reference using some
measure of overlap. However, it suffers from sim-
ilar issues as (Levenshtein) edit-distance metrics.
BERTScore resolves such issues by leveraging bidi-
rectional language models in generating contextual
variable-length embeddings for both the translation
and reference sequence, computing an automatic
sequence similarity score in this embedding space.
There has also been a set of work on supervised MT
quality estimation (Specia et al., 2020, 2021; Zerva
et al., 2022) in which models are trained to esti-
mate the quality (human expert estimated metric)
of a translation by making use of the source, the
decoded translation and additional token-level prob-

1479



ability. However, both the automatic BERTScore
and quality metrics require an expensive autore-
gressive decoding stage to obtain the estimate.

3 Non-Autoregressive Proxy

We are interested in the general problem of es-
timating sequence-level attributes whilst remain-
ing highly inference-efficient. These sequence-
level metrics include: (1) information-theoretic
uncertainties (Malinin and Gales, 2021); (2) neural-
based evaluation scores such as BERTScore (Zhang
et al., 2020); and (3) discrete sequence-similarity
metrics such as word error rate. The standard
approach to obtaining these sequence-level met-
rics is to run an expensive autoregressive decoding
scheme to produce a set of hypotheses. One can
either extract sequence attributes directly from this
hypothesis set (Malinin and Gales, 2021) or com-
pare them with their corresponding references to
obtain a measure of sequence similarity. The aim
of this paper is to avoid the costly autoregressive
generation stage and instead train an encoder-only,
non-autoregressive proxy (NAP) model to imitate
the sequence metrics produced by an autoregressive
system, using only the source, see Figure 1.

We employ two different setups as shown in Fig-
ures 1a and 1b. The aim of the first setup is to
train a proxy to directly extract sequence uncertain-
ties when the main model is additionally given the
reference sequence. This is in order to teach the
proxy model to imitate the uncertainties from the
gold reference. The second setup aims to teach the
proxy a sequence similarity score when the autore-
gressive generated hypothesis is compared to the
reference. Both setups are highly challenging as
the non-autoregressive proxy is tasked with predict-
ing sequence-level metrics from only the source.
However, the key feature of the NAP is that it di-
rectly predicts these metrics without a decoding
scheme (e.g. beam search) and without any refer-
ence sequences, allowing the user to extract useful
information from large amounts of unlabelled data
with little cost. Furthermore, in the first setup of
Figure 1a, the proxy also avoids the exposure bias
problem (Bengio et al., 2015; Ranzato et al., 2016),
by directly training on the teacher-forced (Williams
and Zipser, 1989) sequence uncertainties.

In this work, we follow Figure 1a in training a
proxy on both single teacher confidence and en-
tropy scores or ensemble mutual information, eval-
uating its imitation ability and downstream out-of-

distribution detection ability. We also follow Figure
1b in training a proxy to predict BERTScores in
Machine Translation and WER in Speech Recogni-
tion and evaluate the performance of the NAP on a
data filtering and resource optimization task.

Loss Function: Sequence-level metrics are rep-
resented by single scalar values. Therefore, the
proxy student can be trained using any regression
loss function. However, unlike standard regression
tasks, we seek to learn the relative ordering (rank-
ings) of our scores, as this simplifies the task and
is more pertinent for downstream applications such
as OOD detection. Therefore, we will mainly opt
for the Spearman Rank and Pearson correlation co-
efficient (SCC & PCC) depending on the specific
task considered. Consider a batch of n items with
teacher scores {si}ni=1 and corresponding proxy
predictions {ŝi}ni=1. The Spearman loss function
is then defined as:

LSCC = −
(
1− 6

∑
i(r(si)− r(ŝi))

2

n(n2 − 1)

)
(1)

where r(s) ∈ {1, 2, . . . , n} signifies the rank of
s. Since the rank operator is discrete and non-
differentiable it is not directly applicable to our
application. We resort to a differentiable Spear-
man Rank extension (Blondel et al., 2020) with
an open source implementation1. Note that unlike
its original usage (Blondel et al., 2020), where the
system is trained to rank class values for a single
instance, we are using this loss to sort single values
associated with multiple different items in a batch.
We also investigate alternative loss functions such
as the root mean squared error (RMSE) and mean
absolute error (MAE), see Appendix B.1.

Predictor Design: In order to produce a scalar
score from a variable-length encoder-output repre-
sentation, we make use of a pooling operation. We
utilize two options, temporal averaging or multi-
head attention with a single trainable query. The en-
coder vector outputs {vl}Ll=1 are therefore pooled
to form a fixed-size representation v which is fed
into a three-layer multi-layer perception (MLP).
Furthermore, early exploratory experiments found
that a softmax activation is vital for good perfor-
mance as it can be seen as introducing inductive
bias into the estimation of information-theoretic
and related metrics. Details on MLP architecture
and ablation studies are provided in Appendix B.2.

Proxy Encoder Backbone: By default, the NAP
backbone is initialized from the encoder weights

1github.com/google-research/fast-soft-sort

1480

github.com/google-research/fast-soft-sort


Proxy Encoder

Predictor

Source

Encoder Decoder

Source Reference

Sequence Uncertainty

Output

Loss

(a) Setup 1: Capturing sequence uncertainties.

Proxy Encoder

Predictor

Source

Encoder Decoder

Source

Reference

Sequence Similarity

Hypothesis

Loss

(b) Setup 2: Capturing sequence similarities.

Figure 1: Our proposed proxy training scheme: A teacher encoder-decoder model trains a proxy encoder student
to predict consistent sequence scores using some loss function. In (a) we train the proxy to extract sequence
uncertainties from a decoder that is fed the reference. In (b) we train a proxy to capture sequence-level similarity
scores (e.g. BERTScore or WER) from decoded outputs.

of the main encoder-decoder model. Since pre-
trained models such as T5 (Raffel et al., 2020) and
Whisper (Radford et al., 2022) are released in dif-
ferent sizes, one can utilize smaller architectures
to initialize smaller proxies, and train them to pre-
dict attributes of larger systems. Appendix B.4
further explores ‘mismatched’ encoders, e.g. using
a RoBERTa NAP to predict the output attributes of
a T5 system. Furthermore, all experiments in this
paper freeze the encoder backbone and only train
the small predictor on top of the NAP encoder. This
improves the training speed and memory usage al-
lowing a user to train multiple predictor heads on
top of the same backbone, each for a different met-
ric (e.g. estimating sequence-level confidence and
BERTScores in the same forward pass). Note that
the purpose of our investigations is not to create the
best possible NAP model (for example, finetuning
the backbone encoder could improve performance
at no cost of inference speed). We only seek to
demonstrate that this approach is highly flexible
and applicable to a range of sequence-level metrics
and can provide cheap but useful information for
sequence-to-sequence tasks.

4 Experimental Evaluation

Predicting Uncertainties: We will evaluate the
imitation ability of NAP models on various tasks.
Following Setup 1, the first set of experiments
will focus on the ability of a proxy system to cap-
ture sequence-level confidence or entropy from a
single T5 transformer (Raffel et al., 2020) fine-
tuned on a spoken-language Machine Translation
(MT) dataset. We further explore the ability of
NAPs to imitate mutual information (epistemic
uncertainty (Der Kiureghian and Ditlevsen, 2009;

Hora, 1996)) from an ensemble of T5 systems. The
performance of the NAPs will then be evaluated
by measuring the Spearman Rank correlation be-
tween the teacher (under teacher-forcing (Williams
and Zipser, 1989)) and the proxy estimates on a
range of in-domain (ID) and out-of-domain (OOD)
datasets. We also investigate the performance of
the proposed NAP on OOD detection.

Predicting BERTScores: Following Setup 2,
we also investigate if proxy systems can capture
much more complex sequence metrics such as
BERTScores (Zhang et al., 2020) from a single
T5 in MT. Capturing this metric is especially chal-
lenging since the beam-search output of the T5
decoder and corresponding reference will be fed
through a language model such as BERT (Devlin
et al., 2019) which then computes the final score.
The performance will be measured by computing
the Spearman Rank between proxy outputs and
BERTScores on both ID and OOD datasets. Fur-
thermore, the proxy is compared to sequence-level
confidence and entropy scores from the T5 model
to see how well they correlate with BERTScores.

The performance of a BERTScore estimating
proxy system can also be evaluated on two down-
stream tasks: Filtering task (Li et al., 2021): Given
a dataset, we remove the examples with the lowest
proxy or highest uncertainty estimate. For good es-
timates, the filtered subset should display a higher
average BERTScore. Resource optimization task
(Viola and Jones, 2001): Under a fixed resource
budget, one seeks to allocate inputs to models
of different complexity in order to maximize per-
formance. A well-performing allocation system
would achieve higher performance with a smaller
budget, see Figure 2.

1481



Small
model

Source

Large
model

Hypothesis Hypothesis

If high uncertainty

(a) Baseline deferral system.

If high scoreProxy
Model

Source

Small
model

Score Hypothesis If low
 score Large

model

Hypothesis

(b) Proxy deferral system.

Figure 2: In the baseline deferral system, the inputs with high uncertainty (under the small model) are fed into
the larger model. In the proxy deferral system, model selection is based on the output of an efficient proxy.

Predicting WER: Finally, we follow Setup 2
in investigating if a NAP can imitate the sentence-
level WER and the total number of errors produced
by an ASR system. In this case, we utilize the
pretrained state-of-the-art Whisper (Radford et al.,
2022) models on the LibriSpeech corpus (Panay-
otov et al., 2015). Since the Whisper model is very
well-performing, it is able to perfectly decode a
large fraction of the dataset, which would cause
issues for a rank-based loss such as Spearman. We,
therefore, resort to Pearson for these experiments.
Note, the corpus-level WER performance of an
ASR system is a length-weighted average of the
sentence-level WERs. Therefore, we also train
NAPs to predict the number of decoding errors
in an utterance. Similar to the BERTScore exper-
iments, the performance of NAPs will be evalu-
ated in a similar manner using both filtering and
resource optimization tasks.

4.1 Machine Translation

We use the IWSLT 2017 English-to-German train-
ing set for finetuning T5 systems on spoken lan-
guage translation. We generate a three-model en-
semble of T5 systems which we use as a stronger
baseline for uncertainty estimation. We also in-
vestigate if Knowledge Distillation (KD) (Hinton
et al., 2014) and Ensemble Distribution Distillation
(EDD) (Malinin et al., 2020; Ryabinin et al., 2021)
are able to imitate the uncertainties produced by a
single or ensemble systems respectively.

We use a range of in-domain and out-of-domain
datasets for downstream tasks. These include
the Web Inventory Talk (Ted IWSLT 2016; ID),
Newstest-19 & 20 news commentary (OOD-1),
Khresmoi medical data (OOD-2), MTNT-2019
Reddit text (OOD-3) and KFTT Kyoto-related
Wikipedia articles (OOD-3) datasets. All but the
latter two datasets are English-to-German, while

the final two are English-to-Japanese. Due to the
language mismatch, OOD-3 datasets cannot be
used to evaluate BERTScore prediction in Section
4.1.2. Setup details are provided in Appendix A.
Table 1 shows the inference time of iwslt-2017
test set for various models. This demonstrates a pri-
mary desideratum of a NAP, the ability to quickly
process large amounts of data. For example, a large
proxy being 46x faster than a T5 Large model us-
ing a beam of B = 12 (used in experiments below)
and is approximately 138x faster than the three-
model ensemble (if run serially). Given the shared
architecture between the proxy and primary model
encoders, this vast difference in inference time is
due to the ability to bypass expensive decoding.

Table 1: Inference time for iwslt-2017 using Hug-
ging Face (Wolf et al., 2020), with an NVIDIA A100.
BERTScore (BS) measured for the B = 12 setting.

Model T5 Model NAP
B = 1 B = 4 B = 12 BS

Small 41.9s 85.9s 178.6s 67.4 2.7s
Base 117.7s 270.3s 537.6s 68.2 5.5s
Large 313.7s 583.4s 826.6s 68.6 17.9s

4.1.1 Uncertainties in Machine Translation
We trained NAPs (of different sizes, see Table 1)
to predict sequence-level confidence P or entropy
H (using the conditional approximation described
in (Malinin and Gales, 2021)) of a T5 Large model.
We also trained NAPs to predict the mutual infor-
mation I score produced by an ensemble of fine-
tuned T5 Large models. The performance of the
proxies is compared to two baseline systems: KD
when capturing confidence or entropy of a single
model, and EDD in capturing mutual information
from an ensemble. The autoregressive distilled
baselines will also be of various sizes, see Table 1.

In the case of confidence P and mutual informa-

1482



Table 2: Spearman Rank correlation of uncertainties when comparing baseline distillation and proxy to the
teacher ensemble. Averaged over 3 runs. Standard deviations in the order of ±1.0.

Model Size S B L S B L S B L

Dataset Distillation P Distillation H EDD I
iwslt-2017 18.7 19.8 20.8 69.4 73.1 74.5 43.7 51.5 55.1

ted-iwslt-2016 21.4 21.1 21.8 57.5 59.5 60.6 46.8 47.0 48.0

Dataset NAP P NAP H NAP I
iwslt-2017 39.9 42.6 42.1 40.4 58.8 62.7 53.7 54.3 55.6

ted-iwslt-2016 26.2 25.3 25.2 44.8 52.3 53.8 50.0 49.7 51.3

tion scores I, the proxy achieves a better rank or-
dering of instances for both datasets and at all sizes
than the corresponding encoder-decoder student,
despite being an order of magnitude faster at in-
ference (Table 2). Knowledge-distilled models are
better at imitating their teacher’s H, however, this
is not indicative of downstream task performance
such as OOD detection, as explored below (Table
3). Note that the NAP here is unique in its ability
to predict any scalar sequence metric, whereas KD
is unable to mimic mutual information scores.

Finally, we perform downstream OOD detection
using confidence, entropy, and MI scores from a T5
Large ensemble, EDD (T5 Large), and Proxy Large.
We use iwslt-2017 as in-domain and measure per-
formance with AUROC (50% represents random de-
tection). Results in Table 3 show that in all but one
scenario, the uncertainties predicted by the proxy
model are best suited for the task, particularly con-
sidering inference speeds. Note that overall, the
detection performance of a NAP exceeds that of
the Deep Ensemble. A potential explanation is that
the proxy is directly trained to predict uncertainties
while the ensemble estimates uncertainties based
on the beam-search decoded outputs (Malinin and
Gales, 2021), suffering from exposure bias (Bengio
et al., 2015; Ranzato et al., 2016).

4.1.2 BERTScores in Machine Translation
Table 4 directly compares the rank correlation be-
tween model confidence/proxy scores and sentence

BERTScore performance. We include proxies with
attentive pooling as this is a more challenging task.
These suggest that training NAPs directly on per-
formance metrics provides a better predictor of
a system’s performance than using information-
theoretic metrics such as confidence and entropy.

Dataset filtering is an alternative approach to
evaluating the quality of uncertainty estimates,
with emphasis on the highest-performing exam-
ples. A well-suited predictor of performance will
show a monotonic increase in filtered dataset per-
formance, as harder examples are removed. Fig-

0.850 0.875 0.900 0.925 0.950 0.975 1.000

Filtered fraction

70

75

80

85

90

95

100

F
ilt

er
ed

co
rp

u
s

B
E

R
T

S
co

re

uncertainty

confidence: iwslt-2017

confidence: newstest-20

entropy: iwslt-2017

entropy: newstest-20

0.850 0.875 0.900 0.925 0.950 0.975 1.000

Filtered fraction

proxy

NAP Large: iwslt-2017

NAP Large: newstest-20

NAP Base: iwslt-2017

NAP Base: newstest-20

Figure 3: Measuring T5 Large performance on a
filtered dataset when removing the worst examples
according to some metric.

ure 3 shows this desired behavior is best achieved
with NAPs (equipped with attention pooling) that
are directly trained to predict BERTScores of the
primary model, in both an ID and OOD dataset.
Entropy produced by the model itself is promis-

Table 3: %AUROC detection performance of autoregressive and proxy models using various uncertainties.
Averaged over 3 runs. Standard deviations in the order of ±2.0.

Split Dataset Deep Ensemble EDD NAP
P H I P H I P H I

OOD-1 newstest-19 42.9 53.1 58.5 45.5 54.6 55.7 51.0 53.4 70.5
newstest-20 35.9 50.8 63.4 40.6 54.0 61.2 51.6 53.2 78.1

OOD-2 khresmoi-dev 38.1 51.8 67.2 43.6 57.2 63.4 50.4 51.1 77.9
khresmoi-test 39.4 53.8 67.6 44.4 58.5 63.4 55.5 54.9 81.2

OOD-3 mtnt-2019 66.0 72.2 64.4 67.0 72.0 61.9 70.4 72.0 71.4
kftt 31.9 33.8 47.0 32.6 35.8 40.8 27.3 34.8 54.7

1483



Table 4: Spearman Rank correlation score between model confidence/entropy and the model BERTScore. The
NAPs were trained to predict this score directly. Averaged over 3 runs. Standard deviations are approx. ±2.0.

Split Dataset T5 Large NAP NAP w/ Attention
P H S B L S B L

ID iwslt-2017 16.6 41.6 42.0 43.7 44.9 42.5 44.4 45.6
ted-iwslt-2016 11.6 37.3 35.8 36.3 37.3 35.7 37.0 38.1

OOD-1 newstest-19 32.9 39.3 34.3 36.7 37.6 34.7 37.1 39.2
newstest-20 34.2 38.3 38.6 38.7 39.6 38.9 39.0 39.3

OOD-2 khresmoi-dev 41.4 45.5 40.8 43.1 44.7 41.3 42.3 44.8
khresmoi-test 42.9 46.1 42.0 46.5 45.5 42.3 47.8 45.2

average 29.9 41.3 38.9 40.8 41.6 39.2 41.3 42.0

ing on the ID dataset but fails on OOD since the
performance does not increase as we filter more
examples. Failure to reproduce these trends using
uncertainty estimates of the primary model output
suggests over-confidence (Guo et al., 2017) in low-
performing examples.

Figure 4 shows results for resource allocation,
where examples are allocated to either a T5 Small
or Large based on whether a performance-based
related metric is above or below a threshold. De-
pending on the fraction allocated to the larger sys-
tem, different levels of overall inference time and
performance are achieved. As expected from the

200 400 600 800

Corpus inference time (s)

64.4

64.6

64.8

65.0

65.2

65.4

65.6

65.8

66.0

C
or

p
u

s
B

E
R

T
S

co
re

T5

Random Selection

Confidence Selection

Entropy Selection

Proxy trained on Large

Proxy train on Small

Proxy trained on Small-Large

Figure 4: Newstest 20: Measuring BERTScore and
inference time when distributing inputs between a
T5 Small and Large according to some metric.

dataset filtering results, proxy outputs can better
predict instances for which the small model will
perform poorly and it does so with a minuscule time
cost. By contrast, relying on the output of the small
model itself to decide whether the large model is
required causes serious delays due to the time spent
decoding, delays that the NAP preempts. The best

performance was achieved by NAPs trained on the
difference in BERTScore between the two avail-
able systems. The aim of this difference metric is
to assign to the large model, examples for which
we expect a maximal increase in performance. Ob-
taining such a difference metric using the original
models would defeat the whole purpose of resource
optimization. Finally, it is possible to be more effi-
cient or better performing than a T5 Base using this
deferral system while matching its performance or
efficiency respectively.

4.2 WERs in Automatic Speech Recognition

We repeat experiments from Section 4.1.2 using
pre-trained Whisper models from Hugging Face
(Wolf et al., 2020) on the LibriSpeech corpus
(Panayotov et al., 2015). We will by default use
greedy decoding as opposed to beam-search since
it was found to be robust enough (Radford et al.,
2022). Table 5 shows real-time factors (RTFs)
demonstrating the inference efficiency of NAPs
which do not require a decoder. Compared to
greedy (B = 1) decoding of Whisper Large-V2,
medium and large-sized NAPs are 43 and 33 times
faster, respectively.

Table 5: Real-time Factors for test.other using
Hugging Face, with an NVIDIA A100. Corpus WER
measured for the B = 1 setting.

Model Whisper Models NAP
B = 1 B = 5 %WER

Small 0.0480 0.0507 7.62 0.0014
Medium 0.0722 0.1075 6.26 0.0024

Large-V2 0.1029 0.1625 5.16 0.0031

Table 6 recreates the prior success of proxies in
imitating model performance, in this case, sentence-
level WER. Furthermore, since Whisper encoders
pad all inputs to 30s, including an attention pooling
layer can discount the padding and significantly

1484



Table 6: Pearson correlation between Whisper Large-V2 confidence/entropy and sentence WER. The NAPs
were trained to predict WER directly. Standard deviations in the order of ±1.0.

Dataset Whisper Large-V2 NAP NAP w/ Attention
P H S M L S M L

test.clean 13.3 16.8 32.4 36.3 33.9 43.9 49.7 47.2
test.other 51.9 60.1 38.0 42.4 43.8 49.8 59.0 61.5

improve performance. The following experiments
will use the medium-sized NAP with attention pool-
ing as default since it was found to have similar
performance to its larger counterpart on the devel-
opment sets but with a 23% smaller RTF.

Figure 5 shows the filtered corpus WER of
test.clean and test.other when removing
the worst examples according to model confi-
dence/entropy or proxy outputs. While all are suc-
cessful on test.other, sequence-level confidence
and entropy significantly suffer on test.clean
showing increasing corpus WER in certain regions
when supposedly removing bad examples, a sign
of over-confidence. This failure on test.clean
could have been somewhat predicted by the small
correlations in Table 6 while NAPs with attention
show a significantly better correlation performance
with sentence WER.

0.0 0.2 0.4 0.6 0.8 1.0

Filtered fraction

0

1

2

3

4

5

6

7

F
ilt

er
ed

co
rp

u
s

W
or

d
R

rr
or

R
at

e

uncertainty

confidence: test.clean

confidence:test.other

entropy: test.clean

entropy: test.other

0.0 0.2 0.4 0.6 0.8 1.0

Filtered fraction

proxy

NAP Large: test.clean

NAP Large: test.other

NAP Medium: test.clean

NAP Medium: test.other

Figure 5: Measuring the corpus WER of Whisper
Large-V2 on a filtered dataset when removing the
worst examples according to some metric.

Figure 6 shows results for resource allocation,
where examples are allocated to a Whisper Small
or Large-V2 based on some performance-based re-
lated metric. Again, deferral systems using NAPs
(with attention) significantly outperform decoder
uncertainty-based selection schemes. In fact, the
best-performing NAP here was one trained on the
number of errors in a transcription, rather than the
WER. This is simply because the ordinate in Figure
6 is the corpus WER, rather than the average sen-
tence WER. This is proportional to the error count
in the whole corpus, making this a more suitable
optimization target. Finally, we note that resource

optimization by training a proxy to predict a differ-
ence in WER or errors is not presented here. Since
the Whisper Small and Large-V2 make the same
number of word errors in approximately 75% of
examples on the training set, training a proxy on
such a sparse label set is difficult.

0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

Total Real Time Factor

5.0

5.5

6.0

6.5

7.0

7.5

C
or

p
u

s
W

or
d

E
rr

or
R

at
e

Whisper ASR

Random Selection

Confidence Selection

Entropy Selection

NAP trained on WER of Large

NAP trained on WER of Small

NAP trained on Error of Large

NAP trained on Error of Small

Figure 6: Resource allocation: Measuring corpus
WER and RTF when allocating inputs between a
Whisper Small and Large-V2 according to a metric.

Finally, Table 7 shows the WER or RTF of vari-
ous deferral systems (allocating between Whisper
Small and Large-V2) when operating at the Whis-
per Medium RTF or WER respectively. The best
deferral system, a NAP trained on the number of er-
rors of Whisper Small, reduces WER by 11% while
matching the inference speed of Whisper Medium.
For the same WER performance, this system can
reduce the RTF by 26%.

5 Conclusion

For many downstream sequence-to-sequence tasks,
only attributes of the output sequence are needed,
and not the output itself. In this paper, we propose
a simple efficient framework for directly estimat-
ing scalar sequence-level attributes using only the
source. While conditioning on the decoding can
provide performance gains, this fundamentally de-
feats the idea behind the inference-efficient Non-

1485



Table 7: Columns show (1) WER performance of
various deferral systems operating at the same RTF
as Whipser Medium and (2) the RTF when operating
at the same WER as Whipser Medium.

Selection WER RTF

Whisper Medium 6.26 0.0722

Confidence Selection 6.19 0.0707
Entropy Selection 6.09 0.0677

NAP: WER of Whis. Large 5.94 0.0645
NAP: WER of Whis. Small 5.89 0.0640
NAP: Error of Whis. Large 5.77 0.0596
NAP: Error of Whis. Small 5.57 0.0534

Autoregressive Proxies which make them useful
and practical for preemptive performance predic-
tion. We show that NAPs can learn information-
theoretic uncertainties as well as performance met-
rics, such as BERTScores for MT or WERs for
ASR, in terms of both mimicking attribute score
ranks and the impact on downstream tasks. For
MT systems they outperform a deep ensemble on
OOD detection with an order of magnitude higher
inference speed. Furthermore, NAPs are able to
outperform predictive uncertainty on downstream
tasks such as data filtering and resource optimiza-
tion on both ASR and MT tasks.

Limitations

This work only investigates using proxies to esti-
mate metrics for encoder-decoder models, and the
approach is not directly applicable to decoder-only
transformers such as language models unless mod-
ifications are made to the proxy framework. Fur-
thermore, the aim of this piece of work is inference-
efficient and preemptive prediction of performance
using only the source. Future work can extend the
work to Autoregressive Proxy models that consider
the decoded output as well, which could improve
performance at the cost of no longer being efficient
and feasible to the downstream tasks considered
such as resource allocation.

Acknowledgements

This paper reports on research supported by the
Gates Cambridge Trust (grant OPP1144 from the
Bill & Melinda Gates Foundation). This research is
further supported by Cambridge University Press &
Assessment (CUP&A), a department of The Chan-
cellor, Masters, and Scholars of the University of
Cambridge, and the Caius Engineering Trust.

References
Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam

Shazeer. 2015. Scheduled sampling for sequence pre-
diction with recurrent neural networks. Conference
on Neural Information Processing Systems.

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and
Josip Djolonga. 2020. Fast differentiable sorting
and ranking. International Conference on Machine
Learning.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020a. Language models are few-shot
learners. In Advances in Neural Information Process-
ing Systems.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020b. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli,
Jan Niehues, Sebastian Stüker, Katsuitho Sudoh,
Koichiro Yoshino, and Christian Federmann. 2017.
Overview of the iwslt 2017 evaluation campaign. In-
ternational Workshop on Spoken Language Transla-
tion.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2022a. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2022b. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Cody Coleman, Christopher Yeh, Stephen Mussmann,
Baharan Mirzasoleiman, Peter Bailis, Percy Liang,
Jure Leskovec, and Matei Zaharia. 2020. Selection
via proxy: Efficient data selection for deep learning.
International Conference on Learning Representa-
tions.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. Associ-
ation for Computational Linguistics.

1486



Charles Corbière, Nicolas Thome, Avner Bar-Hen,
Matthieu Cord, and Patrick Pérez. 2019. Address-
ing failure prediction by learning model confidence.
Conference on Neural Information Processing Sys-
tems.

Armen Der Kiureghian and Ove Ditlevsen. 2009.
Aleatory or epistemic? does it matter? Structural
safety.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies.

Ran El-Yaniv and Yair Wiener. 2010. On the founda-
tions of noise-free selective classification. Journal of
Machine Learning Research.

Gunnar Evermann and Philip C. Woodland. 2000. Large
vocabulary decoding and confidence estimation using
word posterior probabilities. International Confer-
ence. on Acoustics, Speech and Signal Processing
(ICASSP).

Yassir Fathullah and Mark J. F. Gales. 2022. Self-
distribution distillation: Efficient uncertainty estima-
tion. Uncertainty in Artificial Intelligence.

Yassir Fathullah, Mark J.F. Gales, and Andrey Malinin.
2021. Ensemble distillation approaches for grammat-
ical error correction. International Conference on
Acoustics, Speech and Signal Processing (ICASSP).

Yassir Fathullah, Chunyang Wu, Egor Lakomkin, Jun-
teng Jia, Yuan Shangguan, Ke Li, Jinxi Guo, Wenhan
Xiong, Jay Mahadeokar, Ozlem Kalinli, Christian
Fuegen, and Mike Seltzer. 2023a. Prompting large
language models with speech recognition abilities.
arXiv preprint arXiv:2307.11795.

Yassir Fathullah, Guoxuan Xia, and Mark J. F. Gales.
2023b. Logit-based ensemble distribution distilla-
tion for robust autoregressive sequence uncertainties.
Uncertainty in Artificial Intelligence.

Marina Fomicheva, Shuo Sun, Lisa Yankovskaya,
Frédéric Blain, Francisco Guzmán, Mark Fishel,
Nikolaos Aletras, Vishrav Chaudhary, and Lucia Spe-
cia. 2020. Unsupervised quality estimation for neural
machine translation. Transactions of the Association
for Computational Linguistics.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. International Conference on
Machine Learning (ICML).

Hannes Gamper, Dimitra Emmanouilidou, Sebastian
Braun, and Ivan J Tashev. 2020. Predicting word
error rate for reverberant speech. International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP).

Yonatan Geifman and Ran El-Yaniv. 2017. Selective
classification for deep neural networks. International
Conference on Neural Information Processing Sys-
tems.

Anmol Gulati, Chung-Cheng Chiu, James Qin, Jiahui
Yu, Niki Parmar, Ruoming Pang, Shibo Wang, Wei
Han, Yonghui Wu, Yu Zhang, and Zhengdong Zhang.
2020. Conformer: Convolution-augmented trans-
former for speech recognition. Interspeech.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. International Conference on Machine Learn-
ing.

Dan Hendrycks and Kevin Gimpel. 2017. A baseline for
detecting misclassified and out-of-distribution exam-
ples in neural networks. In International Conference
on Learning Representations (ICLR).

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2014.
Distilling the knowledge in a neural network. Con-
ference on Neural Information Processing Systems
Deep Learning Workshop.

Stephen C Hora. 1996. Aleatory and epistemic uncer-
tainty in probability elicitation with an example from
hazardous waste management. Reliability Engineer-
ing & System Safety.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. IEEE/ACM Transactions on Audio,
Speech, and Language Processing.

Philipp Koehn. 2009. Statistical machine translation.
Cambridge University Press.

Aviral Kumar and Sunita Sarawagi. 2019. Calibration
of encoder decoder models for neural machine trans-
lation. arXiv arXiv:1903.00802.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles.
Advances in neural information processing systems,
30.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. International Confer-
ence on Learning Representations (ICLR).

Steven Landgraf, Kira Wursthorn, Markus Hillemann,
and Markus Ulrich. 2023. Dudes: Deep uncertainty
distillation using ensembles for semantic segmenta-
tion. arXiv, arXiv:2303.09843.

Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt,
and Gang Hua. 2015. A convolutional neural network
cascade for face detection.

1487



Qiujia Li, David Qiu, Yu Zhang, Bo Li, Yanzhang He,
Philip C. Woodland, Liangliang Cao, and Trevor
Strohman. 2021. Confidence estimation for attention-
based sequence-to-sequence models for speech recog-
nition. International Conference on Acoustics,
Speech and Signal Processing.

Hank Liao and Mark JF Gales. 2007. Uncertainty decod-
ing for noise robust speech recognition. Interspeech.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. arXiv, arXiv:1907.11692.

Andrey Malinin and Mark Gales. 2021. Uncertainty
estimation in autoregressive structured prediction. In-
ternational Conference on Learning Representations.

Andrey Malinin, Bruno Mlodozeniec, and Mark J. F.
Gales. 2020. Ensemble distribution distillation. In-
ternational Conference on Learning Representations.

Chris Manning and Hinrich Schütze. 1999. Foundations
of Statistical Natural Language Processing. MIT
Press.

Pascal Notin, José Miguel Hernández-Lobato, and Yarin
Gal. 2021. Improving black-box optimization in
VAE latent space using decoder uncertainty. Ad-
vances in Neural Information Processing Systems.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur. 2015. Librispeech: An asr corpus
based on public domain audio books. International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. Association for Compu-
tational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. Conference on Machine Translation: Re-
search Papers.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision. arXiv, arXiv:2212.04356.

Puria Radmard, Yassir Fathullah, and Mark J. F. Gales.
2021. Subsequence based deep active learning for
named entity recognition. Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research.

Anton Ragni, Qiujia Li, Mark JF Gales, and Yongqiang
Wang. 2018. Confidence estimation and deletion pre-
diction using bidirectional recurrent neural networks.
IEEE Spoken Language Technology Workshop (SLT).

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. International
Conference on Learning Representations.

Paul K Rubenstein, Chulayuth Asawaroengchai,
Duc Dung Nguyen, Ankur Bapna, Zalán Borsos,
Félix de Chaumont Quitry, Peter Chen, Dalia El
Badawy, Wei Han, Eugene Kharitonov, et al. 2023.
Audiopalm: A large language model that can speak
and listen. arXiv preprint arXiv:2306.12925.

Max Ryabinin, Andrey Malinin, and Mark J. F. Gales.
2021. Scaling ensemble distribution distillation to
many classes with proxy targets. Conference on Neu-
ral Information Processing Systems.

Thibault Sellam, Dipanjan Das, and Ankur P Parikh.
2020. Bleurt: Learning robust metrics for text gener-
ation. Annual Meeting of the Association for Compu-
tational Linguistics.

Lucia Specia, Frédéric Blain, Marina Fomicheva, Er-
ick Fonseca, Vishrav Chaudhary, Francisco Guzmán,
and André F. T. Martins. 2020. Findings of the WMT
2020 shared task on quality estimation. In Proceed-
ings of the Fifth Conference on Machine Translation,
pages 743–764, Online. Association for Computa-
tional Linguistics.

Lucia Specia, Frédéric Blain, Marina Fomicheva,
Chrysoula Zerva, Zhenhao Li, Vishrav Chaudhary,
and André F. T. Martins. 2021. Findings of the WMT
2021 shared task on quality estimation. Proceed-
ings of the Sixth Conference on Machine Translation
(WMT).

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27.

Surat Teerapittayanon, Bradley McDanel, and H.T.
Kung. 2016. Branchynet: Fast inference via early
exiting from deep neural networks. International
Conference on Pattern Recognition (ICPR).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Paul Viola and Michael Jones. 2001. Rapid object de-
tection using a boosted cascade of simple features.
IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR).

Xiaofang Wang, Dan Kondratyuk, Eric Christiansen,
Kris M. Kitani, Yair Movshovitz-Attias, and Elad
Eban. 2022. Wisdom of committees: An overlooked

1488

https://aclanthology.org/2020.wmt-1.79
https://aclanthology.org/2020.wmt-1.79


approach to faster and more accurate models. In-
ternational Conference on Learning Representations
(ICLR).

Ronald J. Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural Computation.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, et al. 2020. Transformers:
State-of-the-art natural language processing. Con-
ference on Empirical Methods in Natural Language
Processing: System Demonstrations.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144.

Guoxuan Xia and Christos-Savvas Bouganis. 2022.
Augmenting softmax information for selective clas-
sification with out-of-distribution data. Computer
Vision – Asian Conference on Computer Vision.

Guoxuan Xia and Christos-Savvas Bouganis. 2023.
Window-based early-exit cascades for uncertainty
estimation: When deep ensembles are more
efficient than single models. arXiv preprint
arXiv:2303.08010.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mt5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text gener-
ation. Advances in Neural Information Processing
Systems.

Chrysoula Zerva, Frédéric Blain, Ricardo Rei, Piyawat
Lertvittayakumjorn, José G. C. de Souza, et al. 2022.
Findings of the WMT 2022 shared task on quality
estimation. Proceedings of the Seventh Conference
on Machine Translation (WMT).

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with bert. International Confer-
ence on Learning Representations.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M Meyer, and Steffen Eger. 2019. Moverscore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. Conference on
Empirical Methods in Natural Language Processing
and Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP).

Yikai Zhou, Baosong Yang, Derek F Wong, Yu Wan,
and Lidia S Chao. 2020. Uncertainty-aware curricu-
lum learning for neural machine translation. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6934–
6944.

Qiang Zhu, Mei-Chen Yeh, Kwang-Ting Cheng, and
S. Avidan. 2006. Fast human detection using a cas-
cade of histograms of oriented gradients. IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition (CVPR).

A Experimental Configuration

This section will describe the experimental setup
of all experiments. Details about datasets, mod-
els, and training hyperparameters and evaluation
are provided. Hugging Face was used extensively
for all experiments in terms of loading various pre-
trained models, corresponding tokenizers and pro-
cessed datasets.

A.1 Machine Translation

A.1.1 Datasets
Table 8 reports information about the datasets used
for training and evaluation. Note that we use the
T5 (Raffel et al., 2020) approach for English-to-
German tokenization meaning that we prepend
the following prompt to all inputs "translate En-
glish to German: " prior to tokenization. We use
iwslt-2017 training set for finetuning T5 systems
on spoken language translation and evaluate the
corresponding test set. We furthermore use the in-
domain (ID) spoken language test set and OOD
news commentary (OOD-1), medical data (OOD-
2), and a final mixed category of noisy text and
Japanese articles (OOD-3) for downstream tasks.

A.1.2 Models
All experiments use the T5 model. In Table 9 we
report parameter counts of various models. The
T5 is an encoder-decoder model with a language
model head which predicts a probability mass func-
tion over every token in the output sequence. The
proxy model consists of a T5 encoder and a head
for predicting uncertainty. The parameter counts
below are reported for a proxy with an average
pooling layer; an attentive pooling layer would add
some parameters. Note, although the embedding
layer is expensive parameter-wise, it is extremely
fast inference-wise since it is equivalent to a lookup
table.

1489



Table 8: Dataset statistics post tokenization.

Split Dataset #Sequences #Tokens/Sequence
src ref

Training
iwslt-2017

206,112 29.1 28.5
Validation 888 31.9 32.7
Evaluation 8,079 27.8 27.5

ID ted-iwslt-2016 3,662 46.4 54.2

OOD-1 newstest-19 1,997 35.3 39.7
newstest-20 1,418 49.1 61.6

OOD-2 khresmoi-dev 500 33.7 38.6
khresmoi-test 1,000 34.7 40.4

OOD-3 mtnt-2019 1,392 26.8 -
kftt 1,160 40.2 -

A.1.3 Finetuning T5 Models
All T5 models were finetuned on the IWSLT-2017
(Cettolo et al., 2017) training set and evaluated
on several ID and OOD datasets using both Sacre-
BLEU (Post, 2018) and BERTScore (BS) (Zhang
et al., 2020), see Table 10. We set the beam size to
12 and used a length penalty of 0.60.

The learning rate was fixed to 0.0001 and the
batch size was selected to maximize GPU memory
usage on a single NVIDIA A100 SXM4 80GBs.
The performance was tracked on the validation set
10 times per epoch and training was terminated
when performance stalled for a whole epoch.

The table shows that increasing the size of the
T5 model improves performance on the ID datasets.
Surprisingly the performance gap between the base
and large configuration is very small for most OOD
datasets, showing that the base model is particularly
effective despite being more than a third of the size.

A.1.4 Training Non-Autoregressive Proxies
We generated scores (uncertainty or BERTScore)
from finetuned T5 Large models and used them to
train NAP models. We used the smooth and dif-

ferentiable extension to the Spearman Rank loss
function (Blondel et al., 2020) which requires a
hyperparameter controlling the level of smooth-
ing. This hyperparameter was set to 0.000001 in
all experiments. Similar to the section above, all
experiments used a learning rate of 0.0001, max-
imised batch size and training was stopped when
performance did not improve after an epoch.

A.1.5 Estimating Uncertainties in MT
The experiments in this section used the training set
of IWSLT-2017 and followed Setup 1, see Figure
1a. The main T5 model produced sequence-level
confidence or entropy uncertainty estimates under
the reference sequence. The NAP model was then
trained to capture this uncertainty. We could have
also opted to generate sequence-level uncertainties
using Setup 2 (see Figure 1b) but the quality of
the uncertainties then depends on the quality of the
decoded hypotheses. If we work with unlabelled
datasets, we can always revert back to Setup 2 and
train our proxy to imitate the uncertainties of the
free-running hypotheses.

The performance of the uncertainty estimation

Table 9: Parameter counts of models. NAPs do not use a decoder during inference.

Model Embeddings Encoder Decoder Head Total

T5 Small 16.4M 35.3M 41.6M 16.4M 60.5M
NAP Small - 5.2M 40.6M

T5 Base 24.7M 109.6M 137.9M 24.7M 222.9M
NAP Base - 11.8M 121.4M

T5 Large 32.9M 334.9M 435.6M 32.9M 737.7M
NAP Large - 20.9M 355.9M

1490



Table 10: SacreBLEU and BERTScore performance of finetuned T5 models.

Split Dataset Small Base Large
BLEU BS BLEU BS BLEU BS

ID iwslt-2017 32.0 67.4 33.8 68.2 34.3 68.6
ted-iwslt-2016 30.9 65.2 31.9 65.9 32.3 66.3

OOD-1 newstest-19 37.3 68.0 38.9 69.8 38.9 69.9
newstest-20 29.4 64.4 30.8 65.4 31.4 65.9

OOD-2 khresmoi-dev 27.1 68.9 29.2 70.7 29.4 70.7
khresmoi-test 27.4 68.0 30.0 70.2 30.2 70.3

NAP was then compared to the main model in two
ways. We first computed the Spearman Rank corre-
lation between the NAP output and the main model
which was given the reference output. The second
and more important evaluation was based on out-
of-distribution detection. For this task, we took one
in-domain dataset (IWSLT-2017 test set) and com-
pared it with one of the out-of-distribution datasets
mentioned above. We sought low uncertainties
for the ID dataset and high uncertainties for the
OOD dataset. We used the AUROC (Manning and
Schütze, 1999) metric for measuring detection per-
formance, where 50% represents a fully random
system.

A.1.6 Estimating BERTScores in MT
We decoded a finetuned T5 Large system (with a
beam of B = 12 and length-penalty of 0.60) on
the IWSLT-2017 training set. The decoded outputs
were used to compute the BERTScore for each
instance, following Setup 2. The NAP was then
trained using the exact same hyperparameters as
the above section.

Similar to the section above, the outputs of the
NAP were first compared with the main model
on several unseen datasets. Following, we evalu-
ated the performance of this system on two down-
stream tasks. First, we took a dataset and filtered
out samples with the lowest estimated BERTScore

and computed the average BERTScore of the re-
maining samples. For a well-performing metric, we
expect the average BERTScore of the remaining
samples to increase monotonically.

Next, we also performed a resource optimization
task in which we used the NAP output to decide
whether an input should be passed to a smaller (T5
Small) or larger more robust (T5 Large) system.
When a proxy output is above a threshold, the in-
put was passed to a smaller system and otherwise to
the slower and larger system. The threshold there-
fore had a large impact on the performance and
inference speed of the two model system. By select-
ing different thresholds, different operating points
were achieved. A good system would achieve bet-
ter performance while deferring as few samples as
possible to the slower system.

Furthermore, we also train a NAP to predict the
BERTScore difference between the two models in
the deferral system. This can be motivated by a
simple example: Consider two different models, a
smaller M1 and a larger more robust M2. Given
two different inputs x1 and x2 the two models
achieve the following BERTScores:

Clearly, the first input is easier to handle since
both models achieve higher BERTScores with M2

being stronger. If we performed an allocation based
on the isolated performance of a single model it-

Table 11: Parameter counts of models. NAPs do not use a decoder during inference.

Model Encoder Decoder Head Total

Whisper Small 88.1M 153.6M 39.8M 241.7M
NAP Small - 14.2M 102.3M

Whisper Medium 307.2M 456.6M 53.1M 763.9M
NAP Medium - 25.2M 332.4M

Whisper Large-v2 636.8M 906.5M 66.4M 1543.3M
NAP Large-v2 - 39.3M 676.1M

1491



Table 12: Simple example.

M1 M2 M2 −M1

x1 0.70 0.90 0.20
x2 0.50 0.40 -0.10

self, we would give the simpler example x1 to the
smaller model M1 and the harder input x2 to the
larger model achieving an average performance of
0.55 BERTScore. However, if we instead perform
an allocation based on the performance difference,
and refer samples to the stronger model M2 where
it dominates (and vice versa), we would allocate
x1 to model M2 and x2 to model M1 achieving
an average score of 0.70. This shows that an al-
location system should focus on the performance
difference of the relevant metric.

A.2 Automatic Speech Recognition

A.2.1 Datasets
Table 13 includes information about the Lib-
riSpeech corpus (Panayotov et al., 2015). The num-
ber of words per sequence is computed based on the
Whisper text normalization scheme. In this task,
we do not finetune the ASR models and do not use
any out-of-domain datasets. Instead, focus is on the
noisy validation.other and test.other sets.

Table 13: Dataset statistics.

Dataset #Seq. #Words per
Sequence

train.clean.100 28,539 35.0
train.clean.360 104,014 34.8
train.other.500 148,688 32.7

valid.clean 2,703 20.3
valid.other 2,864 18.0

test.clean 2,620 20.2
test.other 2,939 18.0

A.2.2 Models
In Table 11 we report parameter counts of various
models. Whisper is an encoder-decoder model with
a language model head that predicts a probability
mass function over every token in the output se-
quence. The proxy model consists of a Whisper
encoder and a head for predicting uncertainty. The
parameter counts below are reported for a NAP
with an average pooling layer; an attentive pooling
layer would add some parameters.

A.2.3 Training Non-Autoregressive Proxies

We generated sentence-level word error rates
(WERs) from the Whisper Large-V2 model us-
ing greedy search. While it was found that a
beam of B = 5 was the best-performing setting in
the original work (Radford et al., 2022), this was
only achieved using a highly non-standard decod-
ing mechanism; simply using beam search with
B = 5 actually degrades performance. Therefore,
we opted for a simpler setup using greedy search,
see Table 14.

Table 14: Baseline %WER performance with
greedy decoding.

Dataset Small Medium Large-v2

valid.clean 3.70 2.69 2.48
valid.other 7.35 5.46 4.96

test.clean 3.45 2.88 2.87
test.other 7.62 6.26 5.16

When generating the sentence WERs on the
training data of the LibriSpeech corpus, it was
found that approximately half of all instances were
correctly decoded. This would present problems
for a ranking loss and we instead opted to train
all NAP models using the Pearson correlation loss.
Similar to the section above, all experiments used a
learning rate of 0.0001, maximised batch size and
training was stopped when performance did not
improve after an epoch.

A.3 Estimating WERs in ASR

Following the exact same line of experiments as
in Section A.1.6. A NAP was trained to imitate
the sentence-level WERs and was evaluated on two
downstream tasks, filtering and resource allocation.
Note that we train additional proxy systems to cap-
ture the total number of errors (instead of the error
rate) since this is more aligned with the resource
allocation task. The resource allocation was done
between the Whisper Large-V2 and Whisper Small
models.

We are unable to train a system to capture the er-
ror difference for the resource allocation task since
training the NAP was unstable. Approximately
74% of all error differences on the training set were
0 making it a highly imbalanced dataset.

1492



B Ablation Studies

We run all of our ablation studies on capturing
mutual information of a T5 Large ensemble on the
machine translation task. The ensemble consists of
three members.

Table 15: NAP OOD performance using MI I.

Dataset NAP Large
mae rmse pcc scc

newstest-19 67.3 66.9 69.6 70.5
newstest-20 74.9 73.6 76.0 78.1

khresmoi-dev 77.9 78.2 79.1 77.9
khresmoi-test 80.5 81.0 81.5 81.2

mtnt-2019 69.5 71.4 73.4 71.4
kftt 50.2 50.2 52.8 54.7

average 70.1 70.2 72.1 72.3

B.1 Choice of Loss Function
All of the experiments in the main paper used a dif-
ferentiable Spearman correlation coefficient (scc)
loss. This section explores alternative loss func-
tions including mean absolute error (mae), root
mean squared error (rmse) and pearson correlation
coefficient (pcc), see Table 15.

The correlation-based loss functions are consis-
tently better than mean absolute and root mean
squared error losses, possibly because the correla-
tion losses do not require accurate prediction of the
uncertainties, only their ordering.

B.2 Predictor Architecture
We also investigate the architecture, and specifi-
cally the activations of the MLP that are added on

top of the NAP encoder, see Figure 7. In a toy ex-
ample, we found that a two-layer (with tanh activa-
tion) network is better able to predict entropy scores
from categorical predictions. This motivates using
a three-layer network with a softmax activation to
produce ’virtual’ probabilities. This section also
explores a range of different (parameter-matched)
two-layer and three-layer MLPs with various acti-
vation functions, see Figure 8.

Table 16 shows the performance of various
MLPs (with average pooling) in the out-of-
distribution detection task. The two-layer and
three-layer MLPs are parameter matched. The final
model 3L SM is the default MLP head used in all
experiments. Clearly, the use of a softmax activa-
tion is extremely important for achieving the best
possible performance.

B.3 Intermediate Outputs of Encoder

It is not necessary to pick the final layer output
as the input to the predictor MLP. One can use
intermediate layer outputs as well. Previous work
has found that using intermediate outputs can even
improve upon a task (Hsu et al., 2021; Zhang et al.,
2020). Using intermediate layer outputs also leads
to faster inference and lower parameter counts, see
Table 17.

According to Table 18, the performance of NAPs
remains arguably consistent when utilizing inter-
mediate outputs down until the 12th layer, where
performance starts dropping. Therefore, it is pos-
sible based on this experiment to remove the top
9 layers of the T5 encoder reducing the total pa-
rameter count by 32% and inference time by 45%
without notably sacrificing performance.

Linear 

Softmax

Linear 

Tanh

Linear 

Encoder Output

Average Pooling

(a) Standard.

Trainable Query

Linear 

Softmax

Linear 

Tanh

Linear 

Encoder Output

Attention

(b) With attentive pooling.

Figure 7: The standard three-layer network is used on top of a non-autoregressive proxy. When average pooling
the encoder output is restrictive, an attention layer is used instead with a trainable query.

1493



Pooled Output

Linear 

Tanh 

Linear 

Pooled Output

Linear 

Softmax

Linear 

Pooled Output

Linear 

Exp

Linear 

LayerNorm

Pooled Output

Linear 

Tanh

Linear 

LayerNorm

(a) From left to right: {2L Tanh, 2L SM, 2L LN-Exp & 2L LN-Tanh}.

Pooled Output

Linear 

ReLU

Linear 

Tanh

Linear 

Pooled Output

Linear 

Tanh

Linear 

Tanh

Linear 

Pooled Output

Linear 

Linear 

Tanh

Linear 

Exp

LayerNorm

Pooled Output

Linear 

Linear 

Tanh

Linear 

Tanh

LayerNorm

(b) From left to right: {3L ReLU, 3L Tanh, 3L LN-Exp & 3L LN-Tanh}.

Figure 8: Various configurations of proxy heads investigated.

Table 16: Detection performance of NAPs using MI I.

Split Dataset
NAP Large

2L 2L 2L 2L 3L 3L 3L 3L 3L
Tanh SM LN-Exp LN-Tanh ReLU Tanh LN-Exp LN-Tanh SM

OOD-1 newstest-19 56.6 67.7 50.5 48.4 46.4 57.2 59.9 59.7 70.5
newstest-20 66.2 75.4 58.6 56.0 47.0 68.2 67.7 63.2 78.1

OOD-2 khresmoi-dev 55.6 77.5 66.4 49.8 39.2 52.8 65.1 59.1 77.9
khresmoi-test 56.0 80.6 67.4 51.8 38.9 53.8 65.2 62.2 81.2

OOD-3 mtnt-2019 54.1 71.6 48.4 52.6 63.4 47.8 61.4 50.6 71.4
kftt 55.2 50.4 55.9 52.0 43.0 62.0 58.1 44.8 54.7

average 57.3 70.5 57.9 51.8 46.3 56.9 62.9 56.6 72.3

Table 17: Parameter counts and inference time of models on iwslt-2017.

Layers Embeddings Encoder Head Total Inference Time

Default 24L 32.9M 334.9M 20.9M 355.9M 17.9s
21L 32.9M 289.2M 20.9M 310.1M 15.3s
18L 32.9M 259.4M 20.9M 280.4M 12.7s
15L 32.9M 221.7M 20.9M 242.7M 9.9s
12L 32.9M 184.0M 20.9M 204.9M 7.5s

1494



Table 18: Detection performance of NAPs using MI I.

Split Dataset NAP Large
24L 21L 18L 15L 12L

OOD-1 newstest-19 70.5 68.7 69.1 68.6 68.1
newstest-20 78.1 77.0 77.1 76.0 75.4

OOD-2 khresmoi-dev 77.9 78.5 77.2 77.0 76.4
khresmoi-test 81.2 81.2 80.3 80.2 80.1

OOD-3 mtnt-2019 71.4 70.0 70.9 72.8 70.6
kftt 54.7 48.9 54.5 56.0 48.8

average 72.3 70.7 71.5 71.8 69.9

Table 19: Parameter counts and inference time of models on iwslt-2017.

Layers Embeddings Encoder Head Total Inference Time

T5 Large Encoder 32.9M 334.9M 20.9M 355.9M 17.9s

RoBERTa Base 39.0M 124.1M 11.8M 135.9M 4.3s
RoBERTa Large 52.0M 354.3M 20.9M 375.3M 17.5s

XLM-RoBERTa Base 192.4M 277.5M 11.8M 289.3M 4.5s
XLM-RoBERTa Large 256.5M 558.8M 20.9M 579.8M 19.2s

ALBERT Base 3.9M 11.1M 11.8M 22.9M 4.8s
ALBERT Large 3.9M 16.6M 20.9M 37.6M 19.4s

B.4 Mismatched Pretrained Encoders

This section investigates if it is possible to use al-
ternative mismatched encoders as the backbone for
a proxy system when predicting sequence-level at-
tributes for the T5 model. We, therefore, investigate
replacing the T5 encoder with RoBERTa (Liu et al.,
2019), XLM-RoBERTa (Conneau et al., 2020) or
the lightweight ALBERT (Lan et al., 2020). See
Table 19 for information about the model size and
inference time.

The detection performance (Table 20) of alter-
native backbones such as base RoBERTa and base

XLM-RoBERTa are slightly worse but with signifi-
cantly lower inference times. The large RoBERTa
and XLM-RoBERTa are approximately as fast
as the T5 Encoder-based proxy but only the lat-
ter achieves similar detection performance. The
lightweight ALBERT pretrained backbone signifi-
cantly suffers at this task.

B.5 Decorrelating Epistemic and Aleatoric
Uncertainty

Epistemic and aleatoric uncertainties are of dif-
ferent natures. The former is a measure of the
lack of knowledge in our model parameters and

Table 20: Detection performance of NAPs using MI I.

Split Dataset T5 Encoder RoBERTa XLM-RoBERTa ALBERT
Large Base Large Base Large Base Large

OOD-1 newstest-19 70.5 64.3 62.6 68.8 69.3 60.8 63.2
newstest-20 78.1 72.0 69.1 76.8 77.4 67.9 68.0

OOD-2 khresmoi-dev 77.9 78.7 77.2 69.2 80.0 73.2 71.0
khresmoi-test 81.2 81.9 78.0 72.1 83.0 75.8 74.2

OOD-3 mtnt-2019 71.4 61.6 62.1 61.7 61.6 63.5 68.3
kftt 54.7 61.7 62.1 62.6 62.3 51.4 43.0

average 72.3 70.1 68.5 68.6 72.3 65.4 64.6

1495



model choice under the given dataset. As the
dataset increases the epistemic uncertainty should
decrease. The latter is an intrinsic measure of un-
certainty in the data itself which might be caused
by noisy data collection methods or labelling er-
rors. Therefore, we propose a new loss function in
which we aim to maximise the correlation between
the proxy outputs {ŝi}i and teacher sequence-level
epistemic scores {sei}i whilst also decorrelating
its outputs from teacher sequence-level aleatoric
scores {sai}i:

Lscc

(
{ŝi}, {sei}

)
− α

∣∣∣Lscc

(
{ŝi}, {sai}

)∣∣∣ (2)

where α controls the level of decorrelation. Table
21 shows that by using this style of loss function,
the proxy can be made to perform significantly
better. The base model α = 0.0 already outper-
forms a deep ensemble at detection, and further-
more, setting α = 1.0 shows even better overall
performance.

Table 21: NAP OOD performance using MI I.

Dataset NAP Large
α = 0.0 0.5 1.0 2.0

newstest-19 70.5 76.1 76.0 75.3
newstest-20 78.1 85.9 86.3 84.0

khresmoi-dev 77.9 86.1 88.0 83.5
khresmoi-test 81.2 86.8 87.7 83.3

mtnt-2019 71.4 61.7 57.3 51.1
kftt 54.7 70.2 76.5 77.9

average 72.3 77.8 78.6 75.9

1496


