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Abstract

Chinese geographic re-ranking task aims to
find the most relevant addresses among re-
trieved candidates, which is crucial for location-
related services such as navigation maps. Un-
like the general sentences, geographic contexts
are closely intertwined with geographical con-
cepts, from general spans (e.g., province) to
specific spans (e.g., road). Given this feature,
we propose an innovative framework, namely
Geo-Encoder, to more effectively integrate Chi-
nese geographical semantics into re-ranking
pipelines. Our methodology begins by employ-
ing off-the-shelf tools to associate text with
geographical spans, treating them as chunking
units. Then, we present a multi-task learning
module to simultaneously acquire an effective
attention matrix that determines chunk contri-
butions to extra semantic representations. Fur-
thermore, we put forth an asynchronous update
mechanism for the proposed addition task, aim-
ing to guide the model capable of effectively fo-
cusing on specific chunks. Experiments on two
distinct Chinese geographic re-ranking datasets,
show that the Geo-Encoder achieves significant
improvements when compared to state-of-the-
art baselines. Notably, it leads to a substantial
improvement in the Hit@1 score of MGEO-
BERT, increasing it by 6.22% from 62.76 to
68.98 on the GeoTES dataset.

1 Introduction

Chinese geographic re-ranking (CGR) is a sub-task
of semantic matching, aiming to identify the most
relevant geographic context towards given queries
and retrieved candidates (Zhao et al., 2019; MacA-
vaney et al., 2020; Yates et al., 2021). It is a cru-
cial task that serves many downstream applications
such as navigation maps (e.g., Gaode Maps), au-
tonomous driving (e.g., Tesla), E-commerce system
(e.g., Taobao), etc. (Jia et al., 2017; Avvenuti et al.,
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Figure 1: Overview of the Chinese Geographic re-
ranking task. The process begins with the user query
being subjected to word chunking, segmenting it into
meaningful units. Lastly, Geo-Encoder is employed to
enhance semantic representation and re-ranking.

2018). Unlike general query expressions, Chinese
geographic sentences exhibit a distinct attribute
in their linear-chain structural semantics (Li et al.,
2019). This peculiarity arises from the fact that Chi-
nese addresses often comprise distinct meaningful
address segments, termed as geographic chunks in
linguistic terms (Abney, 1991). These chunks ad-
here to a specific format, organizing from the gen-
eral (e.g., province) to the more specific (e.g., road).
For example, as is shown in Figure 1, given a Chi-
nese address “采荷路2号高级中学北门 (North
Gate of Caihe Road No.2 Senior High School)”,
we can deconstruct it into several such chunks: “采
荷路 (Caihe Road)”, “2号 (No.2)”, “高级中学
(Senior High School)”, “北门 (North Gate)”.

Conventional approaches (Reimers and
Gurevych, 2019; Humeau et al., 2019; Khattab
and Zaharia, 2020) addressing the CGR task often
directly employ pre-trained language models
(PLMs) to encode given geographic texts into
embeddings, which are subsequently subjected
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to re-ranking through similarity calculation
techniques like cosine or euclidean distance
measures. Recent works (Yuan et al., 2020;
Huang et al., 2022; Ding et al., 2023) in this field
extend beyond mere geographic context utilization
and encompass an expansive range of data
sources, including point-of-interest information,
multi-modal data, and user behavioral attributes
(Liu et al., 2021; Hofmann et al., 2022; Huang
et al., 2022) with a larger neural model. The
outcome of this integration is characterized by
notable enhancements, achieved through the fusion
of external geographic knowledge. Furthermore,
cutting-edge domain-adaptation frameworks have
been introduced to facilitate effective fusion of
multi-domain data, such as PALM (Zhao et al.,
2019), STDGAT (Yuan et al., 2020), etc.

However, despite the effectiveness of existing at-
tempts in leveraging geographic knowledge, these
methods failed to fully harness the intrinsic po-
tential of the geographic context itself. Therefore,
in this paper, we aim to shift our focus towards
the geographic context by exploiting its distinctive
linear-chain attributes. To achieve this, we employ
off-the-shelf tools (e.g. MGEO tagging1 and part-
of-speech (POS) 2 for the approximate annotation
of each geographic text with pertinent geographic
chunks. For example, as illustrated in Figure 1, we
annotate the text “采荷路 (Caihe Road)” with the
label Road, “2号 (No.2)” with Num, etc.

Firstly, building upon this foundation, we intro-
duce an additional task that revolves learning the
similarity between different components of these
annotated chunks. This involves the formulation
of an attention matrix, which governs the contribu-
tions of these chunks to the semantic representa-
tions. Our motivation is that general chunks tend
to be less diverse across queries and candidates,
and specific chunks possess a higher degree of dis-
tinctiveness. Secondly, we put forth a novel asyn-
chronous update speed mechanism for the attention
matrix. This mechanism is designed to empower
the model to effectively focus its attention on the
more specific chunks, thereby enhancing its dis-
cernment capabilities. Lastly, we advocate for the
integration of the pure bi-encoder approach during
the inference period. This strategy ensures a har-

1https://modelscope.cn/models/damo/
mgeo_geographic_elements_tagging_
chinese_base/summary.

2POS tagging is based on jieba: https://github.
com/fxsjy/jieba.

monious balance between performance and compu-
tational efficiency, safeguarding the efficacy of the
model in both academic and industrial scenarios.

In summary, our key contributions are as fol-
lows: 1) We introduce a multi-task learning frame-
work, denoted as Geo-Encoder, which serves as a
pioneering approach to integrate component sim-
ilarity; 2) We present an asynchronous update
mechanism, to distinguish specific chunks effec-
tively; 3) Except evaluation on benchmark dataset,
we collect and publish a nationwide geographic
dataset in China, named GeoIND. Experimental re-
sults on two distinct Chinese geographic re-ranking
datasets demonstrate the superiority of our Geo-
Encoder over competitive methods. Our code
and datasets are available at: https://github.
com/yongcaoplus/CGR_damo.

2 Related Work

Semantic Matching and Re-Ranking. Seman-
tic matching is a widely-concerned task in natu-
ral language processing, including retrieval and
re-ranking process (Zhao et al., 2019; Yates et al.,
2021). Different from retrieval task, re-ranking
generally deal with smaller candidates. Within this
domain, researchers employ bi-encoders to encode
given queries and candidates separately by using
the shared parameters, such as ESIM (Chen et al.,
2017), SBERT (Reimers and Gurevych, 2019), Col-
BERT (Khattab and Zaharia, 2020), etc. And af-
ter the emergence of pre-trained models, such as
RoBERTa (Liu et al., 2019), ERNIE (Sun et al.,
2021), cross-encoders were proposed to jointly
encode text and promote the information interac-
tion (Humeau et al., 2019; Nie et al., 2020; Ye et al.,
2022). Besides, to better represent sentences, ex-
ternal knowledge and late interactions were widely
explored. For example, Xia et al. (2021) utilized a
word similarity matrix to assign term weights for
given tokens, and Peng et al. (2022) introduced
predicate-argument spans to enhance representa-
tion. Notably, the bi-encoder is industry-preferred
for its efficiency thus we adopted it in our paper.

Chinese Geographic Text Representation.
Most existing approaches focused on encoding
geographic text by external knowledge in two
aspects: (1) position data, such as PALM (Zhao
et al., 2019), encoding positional relationship
of query and candidates, STDGAT (Yuan et al.,
2020), considering Spatio-temporal features, etc.;
(2) geographic knowledge, such as GeoL (Huang
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et al., 2022), using knowledge related to user
behaviors, and MGeo (Ding et al., 2023), propos-
ing using multi-modal dataset. However, the
geographic text encoding method among the above
approaches is not well-explored. Besides, parsing
Chinese geographic text into chunks is also a
key technical issue (Li et al., 2019). Generally,
address parsing is quite similar to Chinese word
segmentation. Existing attempts to Chinese
word segmentation includes CRF models (Zhao
et al., 2006), latent-variable variants (Sun et al.,
2009), neural transition-based segmentation
method (Zhang et al., 2016), and chart-based
models (Stern et al., 2017; Kitaev and Klein, 2018),
etc. However, while these models benefit from
external geographic knowledge, exploring text
representation optimization beyond direct PTMs
encoding is still crucial.

3 Our Approach

3.1 Task Definition and Overview

In Chinese Geographic Re-ranking (CGR) task set-
ting, the available dataset {X} is formed as query-
candidate pairs. Let Q denotes queries and C as
retrieved candidates, where C is the corresponding
candidates list of each query from Q. Both Q and
C are composed of l separated tokens, where {X}
= {X ∈ (Q,C)|X = x1, x2, ..., xl}. The objec-
tive of CGR is to model the highest possibility of C.
Thus, the bi-encoder framework, depicted in Figure
3(a), can be formalized as:

c = argmax
C

rθ (fθ(Q), fθ(C)) (1)

where fθ denotes encoding function (we adopt
PLMs here), to encode given text into vectors, c
(∈ C) is the model output and rθ denotes similar-
ity evaluation function, such as dot multiple and
cosine similarity, to assign a similarity score for
each candidate. Also, the cross-encoder framework,
depicted in Figure 3(b) can be formalized as:

c = argmax
C

rθ (fθ(Q,C)) (2)

Most current attempts directly deploy PTMs to
encode geographic texts into embeddings (Yuan
et al., 2020; Huang et al., 2022; Ding et al., 2023),
ignoring the linear-chain structure characteristic of
geographic text. To quantify this distinction, we
calculate the entropy score of geographic chunking
datasets from (Li et al., 2019) as shown in Figure

Figure 2: The information entropy of Li et al. (2019),
indicate that specific chunks (e.g., road) exhibit greater
diversity compared to general ones (e.g., country).

2. Obviously, the specific chunks (e.g. road, town,
etc.) hold a higher entropy score among all sets,
revealing more diversity than the general chunks
(e.g. country, province, etc.). Therefore, it can
be further inferred that specific chunk components
contribute unequally to the semantic representation
of sentences, indicating that specific chunks play a
more substantial role than general ones.

In our approach, we strive to enhance the encod-
ing process through a two-step strategy. Firstly, we
segment the provided geographic text into chunks
and introduce a novel approach to learn both the
attention matrix governing chunk contributions and
component semantic representation as an additional
task. Secondly, we introduce an asynchronous up-
date mechanism for the attention matrix and model
parameters. This mechanism is aimed at enabling
the model to efficiently acquire the skill of focusing
on specific chunks. Finally, we present our train-
ing and inference details. The detailed framework
of our proposed method, called Geo-Encoder, is
shown in Figure 3(c).

3.2 Geographic Chunking

Chinese addresses typically consist of multiple
meaningful address segments, often referred to as
"geographic chunks" (Abney, 1991). These ad-
dresses follow a structured pattern, progressing hi-
erarchically from the general (e.g., province) to spe-
cific ones (e.g., road) (Li et al., 2019). In contrast
to conventional Chinese segmentation methods, ge-
ographic chunking demands tools of heightened
sensitivity tailored to geographical units. These
tools necessitate fine-tuning using dedicated Chi-
nese address corpora. Consequently, we adopt the
MGEO tagging tool to facilitate the acquisition of
precise geographic annotations for our benchmark
datasets (Wu et al., 2022a,b; Ding et al., 2023).

MGEO stands as a pre-trained model with multi-
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Figure 3: Architecture of re-ranking models and our proposed Geo-Encoder. The left shows the bi-encoder and
cross-encoder models, and the right shows our proposed Geo-Encoder, which parsing geographic text into chunking
units and jointly encoding with global features and unit attention mechanism. ⊗ denotes similarity calculation.

modal datasets, encompassing both geographic con-
text and points of interest. It is designed to cater to
various downstream tasks, including geographic en-
tity alignment and address element tagging, among
others. In our current framework, however, we ex-
clusively leverage MGEO to provide chunk anno-
tations, without employing it for the purpose of en-
coding contextual information. Then, dataset {X}
is extended as {Xu} = {x ∈ (Q,C,Qu, Cu)|X =
x1, x2, ..., xn}, where Qu and Cu denotes query
and candidates chunking units. For example, given
a Chinese address “南京市新城科技园3栋5单
元(Unit #5, Building #3, Sci-Tech Park, Nanjing
City.)”, we can parse them by MGEO into: “南京
市(Nanjing City)” – city, “新城科技园(Sci-Tech
Park)” – devzone, “3栋(Building #3)” – houseno,
“5单元(Unit #5)” – cellno.

3.3 Chunking Contribution Learning

Utilizing the chunked dataset denoted as {Xu}, we
proceed to employ a pre-trained language model
for the encoding process. This yields the represen-
tations of [CLS] embedding eqcls and token embed-
ding eq1:l from geographic text:

eqcls, e
q
1:l = Encoder(q), q ∈ Q (3)

where Encoder denotes PTMs. And correspond-
ingly we can get candidates features eccls and
ec1:l. Given chunking annotations, we initialize
a zeros query component embeddings {UQ|uqi ∈
UQ}, i = {1, 2, · · · ,M} and we can further update
query component embeddings uqi by:

uqi = mean(Γ(eq1:l, I
q
i )) (4)

where Γ(·) is the Index function to obtain com-
ponent token embeddings, M is the total amount
of chunk categories, and Iqi is the index number
acquired by the tokenizer of the Encoder from
the chunk’s location to the corresponding query.
Similarly, component embeddings {UC |uci ∈ UC}
can also be obtained. We can also get candidates’
component embeddings uci similar with Eq. 4.

To incorporate token-level embeddings, the Col-
BERT model (Khattab and Zaharia, 2020) intro-
duced a multi-attention mechanism, which facili-
tates subsequent interactions between queries and
candidates. This technique has demonstrated im-
proved efficacy in re-ranking tasks. Nonetheless,
it is essential to acknowledge that the ColBERT
method entails significant additional computational
resources. In light of this, our work introduces
an innovative multi-task learning module that in-
corporates only geographic chunking component
embeddings and utilizes an attention matrix to fuse
results. This approach is designed to address the
need for efficient resource utilization while main-
taining or potentially improving performance.

Specifically, we define an attention matrix that
can be learned along the training process, denoted
as WU . Then, we can get the predictions from
component embeddings:

Scoreu = (UQ ∗WU ) ∗ (UC ∗WU ) (5)

We use dot multiplication to obtain the similarity
scores of given queries and candidates. Thus, for
components embeddings, we can obtain the com-
ponent similarity loss Lu as:
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Lu = Φ(Scoreu, Y ) (6)

where Y represents the ground truth ranking results,
and Φ(·) signifies the cross-entropy loss function.

As for the primary task, we use [CLS] represen-
tation as sentence encoded features, and we can
obtain the semantic similarity loss Lcls as:

Lcls = Φ(EQ
cls ∗ EC

cls, Y ) (7)

where eqcls ∈ EQ
cls and eccls ∈ EC

cls.

Discussion. Due to the components of each geo-
graphic text being quite different, introducing fea-
ture concatenation strategy in CGR task is not rea-
sonable. Therefore, we proposed to use an univer-
sal component embeddings for queries UQ and
candidates UC , and initialize them as zero ma-
trices. It follows that empty components would
yield no contributions to the final representations.
Similarly, components that do not align appropri-
ately between the queries and candidates would
also have no impact.

3.4 Asynchronous Update Mechanism

For multi-task learning, a common concern is the
disparate challenges faced by models when learn-
ing multiple tasks simultaneously, often leading to
variations in convergence rates (Lu et al., 2017; He
et al., 2017). In our pursuit to tackle this quandary
within our designated task, we deviate from estab-
lished methodologies seen in prior literature (Ison-
uma et al., 2017; Hashimoto et al., 2017; Nishino
et al., 2019; Pfeiffer et al., 2020). Instead, we pro-
pose an innovative approach involving the integra-
tion of an asynchronous update mechanism, which
allocates enhanced focus on training steps pertain-
ing to distinct tasks. To formalize our proposition,
the update of parameter wu(wu ∈ WU ) is as:

w′
u = wu + λ · ∇wu · γ (8)

where γ is a hyper-parameter to adjust training
speed, which can set by grid search or empirically.

Discussion. Our insights is that the fast distinc-
tion of specific geographic chunks should con-
ceivably be more amenable and expedited for the
model’s learning process. Consequently, the ma-
trix WU could feasibly adapt to more substantial
increments in learning steps compared to those at-
tributed to language model parameters.

3.5 Training and Inference

During the training process of CGR, we deploy
our proposed framework Geo-Encoder of Figure
3(c). The model can be optimized by jointly mini-
mizing the semantic similarity loss and component
similarity loss:

L = Lcls + Lu (9)

During the inference phase, a notable concern
arises from the time-intensive nature of indexing
and calculating component embeddings, particu-
larly when extrapolated to scenarios involving an
extensive pool of candidates. To circumvent this
challenge, we directly adopt a bi-encoder frame-
work for conducting inference, as visually depicted
in Figure 3(a).

Discussion. Our rationale for introducing com-
ponents stems from a deliberate consideration of
the trade-off between training and inference as-
pects. The underlying objective is to facilitate
the model in exhibiting a heightened sensitivity
towards specific chunks as opposed to general ones.
This endeavor has yielded demonstrably effective
outcomes in our experimental evaluations. Con-
versely, during the inference phase, we eliminate
the necessity for component predictions, thereby
leading to a marked improvement in computational
efficiency. This assertion will be substantiated in
the subsequent section.

4 Experiment

4.1 Datasets

To comprehensively validate the efficacy of our
Geo-Encoder, we prepared two representative Chi-
nese geographical datasets: (i) GeoTES: a widely-
recognized, large-scale benchmark dataset, and
(ii) GeoIND: our collected moderately-sized, real-
world industry dataset. The statistical details con-
cerning the two datasets are presented in Table 1.

Geographic Textual Similarity Benchmark
(GeoTES): This large-scale dataset comprises
queries meticulously crafted by human annotators
and was amassed within the location of Hangzhou,
China.3 The dataset’s meticulous annotation was
executed by a panel of 20 participants and four
domain experts. Encompassing a total of 90,000

3The dataset can be downloaded here: https:
//modelscope.cn/datasets/damo/GeoGLUE/
summary.
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queries, each complemented by 20/40 retrieved can-
didates, this dataset extends its scope beyond geo-
graphical text, encapsulating supplementary point
of interests (POIs) data. Please refer to Appendix
for more details.

Industry Geographic dataset (GeoIND): For a
broader validation, we re-organize and format an
additional real-world dataset named GeoIndustry,
sourced from a geographic search engine. This
dataset underwent rigorous cleaning and filtration
procedures, effectively eliminating noise and erro-
neous queries. In contrast to GeoTES, this dataset
exhibits an intermediary scale, yet it boasts a sub-
stantial geographical coverage. We will make it
publicly available upon the publication of our work.

4.2 Baselines
To assess the effectiveness of our Geo-Encoder,
we undertake a comprehensive comparative anal-
ysis via representative bi-encoder methodologies.
It’s pertinent to mention that our assessment con-
fines itself exclusively to geographic text data, with
the exclusion of Points of Interest (POIs) or other
modal data. Our selected baselines include:

• Word2Vec (Mikolov et al., 2013). A tradi-
tional method captured semantic relationships
between words and encoded words as dense
vector embeddings.4

• Glove (Pennington et al. 2014). It encapsu-
lated both global and local semantic informa-
tion and served for contextual understanding.

• SBERT (Reimers and Gurevych, 2019). A
popular bi-encoder model that can effectively
and efficiently serve for re-ranking task.5

• Argument-Encoder (Peng et al., 2022). It
first proposed that concatenate predicate-
argument embedding as extra representations
can enhance re-ranking task.6

• MGEO (Ding et al., 2023). By applying ge-
ographic POIs information to fuse external
knowledge into encoder, this method achieves
state-of-the-art results in current task.7

4Reproduced by text2vec package(Xu, 2023): https:
//github.com/shibing624/text2vec.

5https://github.com/UKPLab/sentence-transformers.
6We reproduce this method by replacing the predicate-

argument with specific geographic-argument.
7We compare three backbone models with MGEO in

text-only modal data, including BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and ERNIE 3.0 (Sun et al., 2021).

Benchmark Sets Query Tokens ASL Cands

GeoTES
Train 50,000 3,599 18.8 20
Dev 20,000 3,322 17.2 40
Test 20,000 3,351 17.1 40

GeoIND
Train 7,359 3,768 15.1 20
Dev 2,453 3,376 15.1 20
Test 2,469 2,900 15.0 20

Table 1: The statistics of two datasets. Tokens denotes
vocabularies counts, ASL denotes the average sentence
length, and Cands represents candidates numbers.

Importantly, in real-world scenarios, accounting
for computational efficiency is imperative. There-
fore, in light of this consideration, we opt for
the bi-encoder approach coupled with the current
backbone models, rather than adopting the cross-
encoder methodology or large language models.

4.3 Experimental Setting
Evaluation Metrics. Following previous re-
ranking tasks (Qu et al., 2021; Ding et al., 2023),
we use Hit@K(K=1,3), NDCG@1 (Järvelin and
Kekäläinen, 2002) and MRR@3 to evaluate the per-
formance across all models. Specifically, Hit@K
quantifies the proportion of retrieved candidates
that include at least one correct item within the top
K ranks. NDCG@1 is a graded relevance measure
that takes into account the positions of relevant
items in the ranked list. MRR@3 calculates the
average of the reciprocal ranks of the top-3 correct
answers in the ranked list.

Hyper-parameters. For finetuing, we set the
learning rate is set as 1e-5 for RoBERTa and 5e-5
for BERT and ERNIE. We finetune models for 50
epochs with early stopping after 3 epochs of no
improvement in Hit@1 on the validation set. We
conduct our experiment on a single A100 GPU
and optimize all the models with Adam optimizer,
where the batch size is set to 32. And followed
by Ding et al. (2023), we decrease the embedding
dimension from 768 to 256.

4.4 Main Results
We have conducted a rigorous comparison between
our method with the aforementioned baselines and
the results are presented in Table 2.

Firstly, it is evident that our proposed approach
achieves a remarkable state-of-the-art performance
across all evaluated metrics, surpassing the perfor-
mance exhibited by all alternative methods. This
observation provides compelling evidence that our
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Model
GeoTES GeoIND

Hit@1 Hit@3 NDCG@1 MRR@3 Hit@1 Hit@3 NDCG@1 MRR@3

Word2vec (Mikolov et al., 2013) 19.26 30.60 28.79 24.15 47.79 71.69 66.15 58.27
Glove (Pennington et al. 2014) 48.02 67.33 63.32 59.35 52.38 74.87 71.95 69.35
SBERT (Reimers and Gurevych, 2019) 24.22 51.22 46.65 35.80 42.20 71.24 64.56 54.92
Argument-Encoder (Peng et al., 2022) 56.54 80.01 73.47 67.08 59.58 85.54 78.61 71.19
MGEO-BERT (Ding et al., 2023) 62.76 80.89 75.95 70.87 64.12 88.66 81.35 75.04
Geo-Encoder 68.98 85.82 81.11 76.56 66.71 89.35 82.78 76.99

MGEO-ERNIE (Ding et al., 2023) 67.50 84.54 79.60 75.15 63.95 87.89 81.06 74.60
Geo-Encoder 68.66 85.64 80.75 76.30 65.33 89.06 82.10 75.98

MGEO-RoBERTa (Ding et al., 2023) 68.74 85.16 80.63 76.15 63.63 88.70 81.62 74.81
Geo-Encoder 70.39 86.69 81.97 77.72 67.27 90.28 83.61 77.56

Table 2: Main results on GeoTES and GeoIND, where bold values indicate the best performance within each
column. Our proposed method consistently outperforms all three baselines across all metrics on both datasets.

Geo-Encoder yields significant enhancements over
multiple baseline models. Particularly, our method
improves the Hit@1 score of BERT by 6.62% from
62.76 to 68.98 on GeoTES dataset, and by 2.59%
from 64.12 to 66.71 on GeoIND dataset.

Secondly, comparing three different backbone
pre-trained models, RoBERTa performs emerges
as the superior candidate, surpassing both BERT
and ERNIE. This advantage can be attributed to
RoBERTa’s augmented network depth and its expo-
sure to a comprehensive training corpus, endowing
it with a heightened capacity for contextual com-
prehension and modeling than other models.

Thirdly, a notable trend is that the GeoTES
dataset is marginally more amenable to learning
compared to the GeoIND dataset, a phenomenon
primarily attributed to its significantly larger scale,
which is 6.76 times greater. This distinction is cor-
roborated by the highest attained Hit@1 score of
70.39 on the GeoTES dataset, as opposed to the
score of 67.27 observed on the GeoIND dataset.

Furthermore, we can also conclude that conven-
tional encoding methodologies such as word2vec,
GloVe, and SBERT exhibit subpar performance
in CGR tasks. And it is pertinent to mention
that in the context of the CGR task, cosine sim-
ilarity tends to exhibit suboptimal performance
compared to dot multiplication. This is evident
from the fact that SBERT yields lower perfor-
mance scores across both datasets. Similarly, the
argument-enhancement techniques and the MGEO
bi-encoder manifest a consistently underwhelming
performance across both datasets.

5 Analysis and Discussion

In this section, we first conduct a comprehensive
analysis of our proposed modules, and then dis-
cuss the advantages of using Geo chunking for
CGR task. Lastly, a detailed exploration of hyper-
parameter setting and the learned chunking atten-
tion metric is presented for a deeper understanding.

5.1 Fix Contribution vs. Learning Weight

In accordance with human experiential knowledge,
the common practice involves the gradual differ-
entiation of an address by sequentially hypothesiz-
ing the constitutive chunking elements, transition-
ing from general segments to more precise ones.
Evidently, the generalized segments found among
the pool of candidates tend to exhibit significant
similarity, thus warranting a diminished influence
on the semantic alignment process towards given
queries. On the basis of this underlying hypothesis,
we have formulated a comparative experiment in-
tended to investigate the potential benefits arising
from the dynamic allocation of chunk contributions
in the context of representation learning.

Specifically, we constructed an experimental
framework wherein the dynamic interplay of chunk
contributions is examined. This is realized by
configuring the attention matrices within the Geo-
Encoder architecture as constant values, effectively
precluding gradient updates. We fix the attention
weight with the values of 0.1, 0.5, and 1.0 respec-
tively, thereby probing the impact of different atten-
tion allocation strategies on the learning process.

As is shown in Table 3, we can find that the im-
position of fixed attention matrices contributes to a
reduction in the performance of the Geo-Encoder
across both datasets. Besides, the diverse initializa-
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Method Hit@1 Hit@3 NDCG@1 MRR@3

GeoTES

baseline 62.76 80.89 75.95 70.87
w Fixed_1.0 68.08 85.35 80.48 75.84
w Fixed_0.5 66.02 83.91 78.97 74.03
w Fixed_0.1 68.19 84.95 80.31 75.70
w POS (Ours) 68.25 85.55 80.65 76.02
w Geo (Ours) 68.98 85.82 81.11 76.56

GeoIND

baseline 64.12 88.66 81.35 75.04
w Fixed_1.0 65.61 89.59 82.47 76.39
w Fixed_0.5 65.69 89.06 82.28 76.23
w Fixed_0.1 64.20 87.85 81.14 74.77
w POS (Ours) 65.21 89.59 82.24 76.06
w Geo (Ours) 66.71 89.35 82.78 76.99

Table 3: Ablation study on GeoTES and GeoIndust Sets,
including exclude automatic attention update mecha-
nism and geographic chunking information.

tion schemes for these attention matrices yield dis-
tinct effects among datasets. Within the GeoTES
dataset, an initialization ratio of 0.1 yields opti-
mal results, indicating a higher reliance on the
sentence-level [CLS] representation. Conversely,
the GeoIND dataset attains peak performance when
the ratio is set to 1.0, implying a contrasting atten-
tion distribution trend. Lastly, we find that even
exclude the automatic update of attention matrices,
the resultant performance still surpasses that of
the baseline models. This outcome underscores the
benefits derived from the incorporation of chunking
information, substantiating its constructive impact
on enhancing the overall model performance.

5.2 Geo Chunking vs. General Chunking

Subsequently, our investigation delves deeper into
the influence of geographic chunks (Geo) by con-
ducting a substitution experiment wherein these
chunks are replaced with Part-of-Speech (POS) tag-
ging results. To achieve this, we employ the jieba
POS tagging tool to restructure the two datasets8. It
is essential to note that the core distinction between
POS and Geo lies in the target of segmentation:
while GEO is geared towards geographic ontology,
POS is more focused on semantic components.

The results, as depicted in Table 3, yield an in-
teresting observation that employing POS tagging
can benefit both datasets, signified by the obvious
superior performance of POS when compared to
the baseline. This favorable outcome can be at-

8To ensure a fair comparison, we manually select relevant
POS labels (e.g., quantity, noun, position, etc.), while exclud-
ing irrelevant ones (e.g., tone, punctuation, preposition, etc.).
Further details can be found in the Appendix.

Method
GeoTES GeoIND

Training
(hour)

Inference
(ms/case)

Training
(hour)

Inference
(ms/case)

Word2vec – 5.9 – 3.5
Augment-Encoder 6.24 32.7 1.52 15.8
MEGO-BERT 4.50 33.8 0.92 18.9
Geo-Encoder 5.94 35.6 1.25 19.5

Table 4: The statistics of training and inference time
across different bi-encoder baseline models and our pro-
posed Geo-Encoder on GeoTES and GeoIND datasets.

Figure 4: Comparing performance with varying learn-
ing rate multiplier ratios on the GeoIND dataset. The
learning rate multiplier signifies the ratio of attention
matrix learning rate to model parameter learning rate.

tributed to the additional representation and multi-
task learning introduced by our approach. Nev-
ertheless, it is noteworthy that despite the advan-
tageous performance of POS, it lags behind Geo
in terms of performance. This discrepancy fur-
ther underscores the pivotal role played by geo-
graphic chunks in the context of the CGR task.
Irrespective of the approach used for segmenta-
tion, our framework consistently exhibits better
performance, thereby reinforcing Geo-Encoder’s
adaptability and efficacy. Therefore, our proposed
framework transcends the confines of the Chinese
task, and holds relevance and applicability to other
languages or tasks characterized by sentence struc-
tures that align with linear-chain attributes.

5.3 Parameter Sensitivity and Efficiency

Considering the pivotal impact of the dynamic at-
tention matrix on model performance, we have
conducted an additional experiment involving dif-
ferent update speed for model parameters and the
attention matrix, which we called asynchronous
learning rate updates. The outcomes, as is shown
in Figure 4, underline the sub-optimal nature of
synchronously updating metrics with model param-
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Model IndBERT IndRoBERTa IndERNIE

IndBERT – 0.796* 0.785*
IndRoBERTa 0.796* – 0.932*
IndERNIE 0.785* 0.932* –

Model TesBERT TesBERTa TesERNIE

TesBERT – 0.819* 0.604*
TesRoBERTa 0.819* – 0.374
TesERNIE 0.604* 0.374 –

Model IndBERT IndRoBERTa IndERNIE

TesBERT 0.614* 0.409* 0.501*
TesRoBERTa 0.713* 0.634* 0.672*
TesERNIE 0.253 0.035 0.175

Table 5: Spearman correlation scores on GeoTES (Tes)
and GeoIND (Ind) datasets. Statistically significant
results are marked with *, where p-value < 0.05.

eters (i.e. ratio=1). Contrarily, we have identified
that employing a more extended update step for
the attention matrix yields improved results; for in-
stance, setting learning rate ratio at 10 and 2000 for
the GeoIND dataset. This trend suggests that the at-
tention matrix carries a weightier importance than
general model parameters. Our finding is consis-
tent with similar endeavors focused on adaptively
weighted learning (He et al., 2017). Specifically,
within our CGR task, a swifter acquisition of focus
by the model on specific geographic chunks reveals
to enhanced performance.

Furthermore, in line with our commitment to
addressing real-world challenges, it becomes im-
perative to substantiate the efficacy of the proposed
Geo-Encoder. To this end, we present an empirical
analysis of training and inference times, as detailed
in Table 4. Evidently, when comparing the results
with MGEO-BERT, our training process exhibits
a marginal increase in duration due to the incorpo-
ration of chunking attention matrix learning and
supplementary representation fusion. However, it’s
noteworthy that our inference times remain remark-
ably similar, underscoring the effectiveness of our
algorithm without causing substantial disparities
in computational efficiency. The inference time of
all models are acceptable for various industry ap-
plication scenarios. Moreover, our training time is
actually shorter than that of the Augment-Encoder
approach (Peng et al., 2022), demonstrating the
effectiveness of multi-task learning rather than ge-
ographic component feature concatenation.

(a) BERT chunk attention weights on GeoIND dataset

(b) Statistical distribution of attention matrix

Figure 5: Attention matrix weights visualization. We
mark specific chunks as red and general chunks as grey.
Weights of specific chunks are higher than general ones.

5.4 Chunking Weight Distribution

The attention matrix stands as a pivotal element
warranting meticulous examination. Consequently,
this section delves into an in-depth analysis to dis-
cern whether the model demonstrates the capacity
to effectively focus on specific chunks as opposed
to the more general ones. Employing the MGEO
tagging tool, we manually labeled the subsequent
categories as specific chunks: bus and subway sta-
tions, other administrative districts, branch words,
bus and subway lines, house numbers, modifiers, lo-
cation words, numbers, business district names, en-
compassing a total of 14 distinct kinds. Conversely,
the remaining chunks are classified as general (com-
prising 15 kinds), such as country, province, city,
town, prefix, conjunction, etc.9

For enhanced clarity, we manually categorize
all chunk types into general and specific classifi-
cations, and present the BERT attention matrices
in Figure 5(a) on GeoIND dataset. Notably, the
trend discernible in this figure reveals that specific
chunks (red) garner higher weights than general
ones (grey). Further, we investigate the tendency
across all models and datasets, as depicted in Fig-
ure 5(b). The congruence of these outcomes is evi-
dent, except for the case of ERNIE on the GeoTES

9All detailed selected chunking labels and its definition
can be found in Appendix.
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datasets. This discrepancy aligns with the con-
sistent low correlation scores observed between
ERNIE and other models, as presented in Table 5.

Moreover, to probe the consistency across di-
verse learning processes, we compute spearman
correlation coefficients (Spearman, 1961) across
different datasets. Illustrated in Table 5, all of these
correlation coefficients exhibit positive correlations
and most of the results are statistically significant,
underscoring uniform learning outcomes in compo-
nent weights. It is worth noting that, except for the
ERNIE model on the GeoTES dataset, the majority
of models and datasets exhibit robust correlations,
which is obviously evidenced by the high correla-
tion scores. This result aligns with the observation
that the ERNIE backbone model attains marginal
enhancement, as shown in Table 2. Lastly, mod-
els trained on the same datasets yield notably high
correlation scores among themselves. For instance,
the scores between indBERT and indRoBERTa,
and similarly between tesBERT and tesRoBERTa,
surpass the 0.78 threshold.

6 Conclusion

In this paper, we proposed a novel framework
called Geo-Encoder for Chinese geographic re-
ranking task by deploying multi-task learning mod-
ule and synchronous update mechanism. The key
idea behind Geo-Encoder is to encode geographic
text using an additional component learning repre-
sentations from address chunks. This approach al-
lows the Geo-Encoder to effectively leverage linear-
chain characteristic of geographic contexts, which
guides the model to capture subtle distinctions
among different candidates. Moreover, we present
an attention matrix that enables the model to au-
tomatically learn the significance of geographic
chunking components within the representation.
To address the varying levels of task complexity,
we introduced an asynchronous update mechanism
for iterative adjusting the weight matrix of these
components. This dynamic adjustment facilitates
the the focus of model on specific chunks effi-
ciently. Extensive experiments demonstrated that
our proposed framework leads to significant im-
provements over several competitive baselines. Fu-
ture work could be incorporating our approach in
multi-modal and multi-lingual tasks.

7 Limitations

While our work has achieved good performance
and shown promising results in enhancing Chinese
geographic re-ranking task through incorporation
of geographic representations, there are still limi-
tations in our work. Specifically, the Geo-Encoder
we have developed exhibits a specificity towards
textual data possessing linear-chain or structural
characteristics, thereby constraining the method’s
applicability primarily to within-domain scenarios.
However, we believe that this study is still useful
in highlighting the challenges of geographic encod-
ing. Moreover, our approach demonstrates notable
effectiveness and efficiency when employed in in-
dustrial applications, owing to its minimal augmen-
tation of parameters.

In the future, we plan to explore the feasibility
of collecting multi-modal datasets, which can be
potential to provide further insights into incorpo-
rating geographic understanding with our proposed
framework into CGR task.

8 Acknowledgement

Thanks to the anonymous reviewers for their help-
ful feedback. This work was supported by the
China National Natural Science Foundation No.
62202182. The authors gratefully acknowledge fi-
nancial support from China Scholarship Council.
(CSC No. 202206160052).

References
Steven P Abney. 1991. Parsing by chunks. In Principle-

based parsing, pages 257–278. Springer.

Marco Avvenuti, Stefano Cresci, Leonardo Nizzoli,
and Maurizio Tesconi. 2018. Gsp (geo-semantic-
parsing): geoparsing and geotagging with machine
learning on top of linked data. In European Semantic
Web Conference, pages 17–32. Springer.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui
Jiang, and Diana Inkpen. 2017. Enhanced lstm for
natural language inference. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1657–1668.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages

1525

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ruixue Ding, Boli Chen, Pengjun Xie, Fei Huang, Xin
Li, Qiang Zhang, and Yao Xu. 2023. Mgeo: A multi-
modal geographic pre-training method. Proceedings
of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A joint many-task
model: Growing a neural network for multiple NLP
tasks. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1923–1933, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Keke He, Zhanxiong Wang, Yanwei Fu, Rui Feng, Yu-
Gang Jiang, and Xiangyang Xue. 2017. Adaptively
weighted multi-task deep network for person attribute
classification. In Proceedings of the 25th ACM in-
ternational conference on Multimedia, pages 1636–
1644.

Valentin Hofmann, Goran Glavaš, Nikola Ljubešić,
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A Appendix

A.1 Dataset Details

As previously mentioned, we utilize the MGEO
geographic tagging tool10 to thoroughly annotate
the provided geographical text. To elaborate fur-
ther, we present a demonstrative instance in Table
11. This example highlights the effectiveness and
comprehensive nature of the MGEO in annotating
geographical information within the text.

A.2 POS Implement

We utilize the Jieba tagging tools, which enable the
segmentation of all geographical text into meaning-
ful segments. Following this initial breakdown, a
rigorous selection process is undertaken, wherein
28 specific parts-of-speech categories are identified
as pertinent and aligned with our Geo tagging sys-
tem. These categories are chosen based on their
close relevance to geographical references, thereby
ensuring the precision of the tagging process. A
comprehensive list of these valid part-of-speech
tags is provided in Table 10.

In this context, it’s important to emphasize that
even though manual selection involves a degree
of subjectivity, we have maintained consistent tag
categories with geographical references to ensure
a fair comparison. Additionally, although certain
POS tags may not directly pertain to geographic
terminology, we have arranged them based on their
relative correlations across all POS tags. We have
also provided a list of POS tags that are deemed
invalid in Table 9, consisting of 24 specific parts-
of-speech categories.

Moreover, we compute the fuzzy similarity11 be-
tween the results of POS tagging and Geo chunking,
as shown statistically in Table 6.

As depicted in Table 6, it becomes evident that
the average count of Geo chunking units is less than
that of POS. Concurrently, a noteworthy inference
can be drawn that the chunking outcomes exhibit
resemblance. This is supported by the substantial
similarity scores (exceeding 78.00) between the
results on both datasets.

A.3 Geo Chunks

We have compiled a comprehensive table (Table
8), that outlines various chunking categories along

10https://modelscope.cn/models/damo/
mgeo_geographic_elements_tagging_
chinese_base.

11https://pypi.org/project/fuzzywuzzy/

Set Avg. Geo Avg. POS Similarity

GeoTES

Train 5.11 10.71 80.56 ± 7.39

Dev 4.69 9.47 80.46 ± 7.35

Test 4.66 9.41 80.60 ± 7.41

GeoIND

Train 4.38 8.59 78.50 ± 6.46

Dev 4.38 8.60 79.71 ± 6.65

Test 4.37 8.57 79.77 ± 6.68

Table 6: Valid POS categories and their respective
definitions, comprising a total of 28 categories.

Parameter GeoTES GeoIND

Learning rate(BERT) 5e−5 5e−5

Learning rate(RoBERTa) 1e−5 1e−5

Learning rate(ERNIE) 5e−5 5e−5

Batch size 32 32
Test Batch size 16 16
Early Stop 3 3
Embed_dim 256 256
Optimizer AdamW AdamW
Attn_init 1.0 1.0
Weight_decay 0.02 0.02

Table 7: The hyper-parameters of the best results on
GeoTES and GeoIND dataset.

with their corresponding definitions of Geo chunks.
Drawing from our accumulated expertise, we have
classified all chunk categories into two distinct
groupings: "general" and "specific."

This categorization is guided by a systematic
process that sorts these categories based on their
relative degrees of correlation. To elaborate on this
process, we strategically designate the first 50% of
the selection as general chunks, while the subse-
quent 50% are categorized as specific chunks. By
employing this division strategy, we achieve a bal-
anced representation of both general and specific
chunk types.

A.4 Hyper-parameter Setting

In an effort to support the reproducibility of the
Geo-Encoder and its demonstrated reasoning per-
formance, we are providing a compilation of the
optimal hyperparameters that yielded the best out-
comes on two benchmark datasets, as illustrated in
Table 7.

In the process of establishing the baseline, it’s
important to note that all scores presented in Ta-
ble 2 have undergone training and validation on a
consistent hardware platform. Additionally, we are
committed to making our baseline code publicly
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Chunks Definition

General

PA Country
PB Province
PC City
PD District
PE Township
PF Street
PG Village
PH Administrative Term / Business District
PS Other Administrative Term
UA Door Address: Road xx, No.xx / Lane xx
UB Door Address: Building xx / Area xx
UC Door Address: Building No. xx
UD Door Address: Additional Description

Specific

BS Bus Station
BL Bus and Subway Route
RD Road, Highway, Furuin Street, Tunnel, Bridge, Overpass
Entity General Name for Point of Interest (POI)
Brand Well-known Brand
CategorySuffix Category Suffix Word
Ent Point of Interest (POI)
Br Brand
No. Number
UE Door Address: East Entrance, South Gate
SA Direction Modifier
PH Administrative Term / Business District
Ye Semantic Connector
Des Descriptor
ZZ Unknown

Table 8: Translation of Chunking Terms.

available for reference, which will coincide with
the release of our paper.

Invalid POS tag Definition
e Interjection
i Idiom
d Adverb
l Idiomatic Expression
p Preposition
u Particle
y Modal Particle
g Morpheme
x Non-Morpheme Character
vg Verbal Morpheme
vn Nominal Verb
zg State Morpheme
r Pronoun

dg Adverbial Morpheme
tg Tense Morpheme
o Onomatopoeia
uj Particle
ud Particle
nr Personal Name
rg Modal Particle
ul Tense Particle
s Locative Noun

nrt Personal Name
nrfg Personal Name

Table 9: Invalid POS categories and their respective
definitions, consisting of a total of 24 categories.

Valid POS tag Definition
nz Other Proper Noun
a Adjective
m Numeral
q Measure Word
t Time Word

mg Measure Word for Quantity
ns Place Name
ng Noun as Morpheme
ag Adjective as Morpheme
f Locative
z Status Word
nt Organization Name

eng English Word
an Noun
mq Measure Word for Quantity
ad Adverb as Adjective
b Differentiation Word
j Abbreviation
n Noun
c Conjunction

uv Auxiliary Word
k Following Part
h Preceding Part
v Verb
uz Status Word
ug Tense Word
df Differentiation Word
yg Modal Particle

Table 10: Valid POS categories and their respective
definitions, comprising a total of 28 categories.
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Field Content

Query

浙江省杭州市人民检察北东院侧广播电视台东门南
South of the East Gate of People’s Procuratorate North
East Radio and Television Station, Hangzhou City,
Zhejiang Province.

Query_Geo_Chunks

浙江省-prov /杭州市-city /人民检察-poi/东院-subpoi
/侧-assist /广播电视台-subpoi /东门-subpoi /南-assist
Zhejiang Province / Hangzhou City / People’s Procuratorate
/ East Door / of / Radio and Television Station / East Gate /
South Procuratorate of Hangzhou City, Zhejiang Province.

Query_POS_Chunks

浙江省-ns /杭州市-ns /人民-n /检察-vn /北东-ns /院侧-n
/广播-vn /电视台-n /东门-ns /南-ns
Zhejiang Province / Hangzhou City / People / Procuratorate /
North East / of / Radio Television Station / East Gate / South
Procuratorate of Hangzhou City, Zhejiang Province.

Candidates

浙江省人民北路路旁播州区人民检察院
People’s Procuratorate of Bozhou District, beside Renmin
North Road, Zhejiang Province.
浙江省人民检察院
Zhejiang Provincial People’s Procuratorate.
浙江省浙江北路136号山东广播电视台
Shandong Radio and Television Station, No. 136 Zhejiang
North Road, Zhejiang Province.
台州路1号杭州市拱墅区人民检察院
People’s Procuratorate of Gongshu District, Hangzhou City,
No. 1 Taizhou Road.

Candidates_Geo_Chunks

浙江省-prov /人民北路-road /路旁-assist /
播州区人民检察院-poi
Zhejiang Province / Renmin North Road / beside /
People’s Procuratorate of Bozhou District.
浙江省-prov /人民检察院-poi
Zhejiang Province / Provincial People’s Procuratorate.
浙江省-prov /浙江北路-road / 136号-roadno /
山东广播电视台-poi
Zhejiang Province / Zhejiang North Road / No. 136
/ Shandong Radio and Television Station
台州路-road / 1号-roadno /杭州市-city /
拱墅区-district /人民检察院-poi
Taizhou Road / No. 1 / Hangzhou City /
Gongshu District / People’s Procuratorate

Candidates_POS_Chunks

浙江省-ns /人民-n /北路-ns /路旁-s /播州-ns /
区-n /人民检察院-nt
Zhejiang Province / Renmin / North Road / beside /
Bozhou / District / People’s Procuratorate.
浙江省-ns /人民检察院-nt
Zhejiang Province / Provincial People’s Procuratorate.
浙江省-ns /浙江-ns /北路-ns / 136-m /号-m /
山东-ns /广播-vn /电视台-n
Zhejiang Province / Zhejiang / North Road / 136 / No.
/ Shandong / Radio / Television Station
台州-ns /路-n / 1-m /号-m /杭州市-ns /拱墅区-ns /
人民检察院-nt
Taizhou / Road / 1 / No. / Hangzhou City /
Gongshu District / People’s Procuratorate

Table 11: A representative illustration sourced from the GeoTES dataset is provided. We are showcasing a subset
of potential options in this context. The English was meticulously translated, as this information isn’t inherently
present in our initial dataset.
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