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Abstract

Visual storytelling aims to automatically gen-
erate a coherent story based on a given image
sequence. Unlike tasks like image captioning,
visual stories should contain factual descrip-
tions, worldviews, and human social common-
sense to put disjointed elements together to
form a coherent and engaging human-writeable
story. However, most models mainly focus
on applying factual information and using tax-
onomic/lexical external knowledge when at-
tempting to create stories. This paper intro-
duces SCO-VIST, a framework representing
the image sequence as a graph with objects and
relations that includes human action motivation
and its social interaction commonsense knowl-
edge. SCO-VIST then takes this graph repre-
senting plot points and creates bridges between
plot points with semantic and occurrence-based
edge weights. This weighted story graph pro-
duces the storyline in a sequence of events us-
ing Floyd-Warshall’s algorithm. Our proposed
framework produces stories superior across
multiple metrics in terms of visual grounding,
coherence, diversity, and humanness, per both
automatic and human evaluations.

1 Introduction

Beyond interpreting the factual content of scenes
with expressions, like image captioning, Visual
Storytelling (VST) aims to conduct a human-like
understanding of the idea of a sequence of images
and generate more complicated visual scenarios
with human-like textual expressions (Huang et al.,
2016). In order to achieve this aim, the AI agent
is required to model relationships between the im-
ages while remaining visually grounded, identify
concepts that are implied (but not explicitly shown)
in the images, as well as generate coherent, conver-
sational language resembling how a human would
tell a story in a social setting.

∗Corresponding author. caren.han@sydney.edu.au

Numerous past studies have employed encoder-
decoder frameworks that first utilise a computer
vision algorithm to extract image-specific features,
which are then fed into a language generation
model to decode the story (Gonzalez-Rico and
Pineda, 2018; Kim et al., 2018; Jung et al., 2020;
Smilevski et al., 2018). Although these methods
can yield reasonable stories to some extent, they
often lack common sense reasoning, thus produc-
ing stories that are "generic" sounding with limited
vocabulary, and irrelevant to the images. To alle-
viate these issues, more recent approaches adopt
content planning methods that try to explicitly pre-
dict textual concepts from the images via detecting
objects in the image by using external knowledge
data sources to identify implicitly related concepts
(Chen et al., 2021; Hsu et al., 2020, 2021a; Xu et al.,
2021). Those external knowledge data sources
mainly comprise taxonomic, lexical and physical
relations, whereas human-like storytelling tends to
use the social-aspect relations of everyday human
experiences. Social-interaction relations comment
on socially-triggered states and behaviours. It is
crucial to gauge people’s intentions and purpose
and predict situationally-relevant human reactions
and behaviours, which is directly aligned with the
aim of human-like storytelling.

This paper proposes a new social-interaction
commonsense-enhanced VST framework, SCO-
VIST, for producing human-like stories by inter-
preting socially-triggered situations and reactions.
We introduce a three-stage commonsense enhanced
framework that attempts to construct a reasonable
plot of story events from the given image stream
for story decoding. Stage 1 focuses on constructing
a story graph representing causal and logical rela-
tionships between social interactions and events.
Motivated by the idea that captions may already
have embedded social commonsense within them,
we first generate a caption for each image to liter-
ally capture the event depicted in the photo. Ad-
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ditionally, we further extract commonsense from
external data related to social situations, interac-
tions and behavioural responses (i.e. character’s in-
tentions, desires or needs). Each extracted caption
and commonsense is thus considered a different
event or plot point, and we connect the plot points
(nodes) with causal ordering. In stage 2, we con-
vert the story graph to be weighted by conducting
a comprehensive analysis on different edge weight
assignment methods based on semantic similarity
between nodes and graph learning. Intuitively, this
weighted story graph reflects the branching space
of plausible event continuations where the edge
weights indicate the likelihood of transition be-
tween connected plot points. Given the weighted
story graph, the optimal storyline is the path of
nodes that yields the largest sum of weights from
the left to the right-most nodes in the graph. There-
fore, Stage 3 negates the edge weights and employs
Floyd-Warshall’s shortest path search algorithm to
extract the optimal sequence of story events which
is later fed into a Transformer for story generation.
The main contributions of this research are:

• We introduce a social-interaction common-
sense enhanced VST framework that improves
understanding of social situations and charac-
ters’ feelings

• We design a heterogeneous story graph and
conduct a comprehensive analysis of the role
of node and edge construction and learning
over the visual storytelling dataset

• We show that our model outperforms state-
of-the-art when comparing automatic metrics,
especially when analysing recently proposed
metrics designed for VST

• For robust evaluation, we also conduct human
evaluation studies and demonstrate that our
framework consistently and significantly out-
performs several strong baselines.

2 Related Work

Earliest works on VST consist of an encoder-
decoder structure incorporated in an end-to-end
model (Gonzalez-Rico and Pineda, 2018; Kim
et al., 2018; Smilevski et al., 2018). Recently, there
has been increasing interest in reinforcement learn-
ing architectures which include a reward model
to evaluate the generated stories (Hu et al., 2020;
Wang et al., 2018). However, the training process

of such methods are inherently unstable. Other ap-
proaches first translate images to semantic scene
graphs to capture image features and then employ
Graph Convolutional Networks (GCN) to enrich re-
gions and object representations (Han et al., 2020;
Hong et al., 2020; Wang et al., 2020). Instead, we
use literal text descriptions of images which can
better explicitly represent the image contents.

To promote more diverse stories, newer works
have also used knowledge graphs to assist the story-
telling process, allowing for richer stories capable
of expressing imaginative concepts that are not ex-
plicitly shown in the image scene. Most of these
methods involve querying ConceptNet (Speer et al.,
2017) with detected image objects or predicted key
image concepts to find a set of related candidate
concepts (Chen et al., 2021; Xu et al., 2021; Yang
et al., 2019). While these methods show promising
improvements in outputs, ConceptNet mainly com-
prises of taxonomic and physical relations, whereas
our framework leverages commonsense that are
more social-interaction focused and event-centred.
Finally, most related to our work, recent studies try
to form the story plot by first using external knowl-
edge to connect concepts between images to reason
about potential temporal relationships (Hsu et al.,
2020, 2021a,b; Wang et al., 2022b). However, these
methods often employ complex network architec-
tures to iteratively predict subsequent events. We
alleviate these complexities and present a simple
yet effective approach for storyline construction.

3 Method

Figure 1 depicts an overview of SCO-VIST’s three
stages. The following sections will describe each
step in detail.

3.1 Stage 1: Story Graph Construction

Node Construction The story graph contains 3
types of nodes: caption, commonsense and theme
nodes. The caption nodes are obtained by using
a pre-trained image captioning model to generate
a textual description for each image in the photo
sequence. That is, given the sequence of 5 images,
captions {C1, C2, ...C5} are generated where Ci is
the caption for the ith image. The intuition behind
using captions is that literal descriptions of an im-
age can provide more specific and accurate details
about image contents compared to the raw visual
features extracted from the image itself. Moreover,
this step mimics how a human would tackle the
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Figure 1: SCO-VIST’s proposed framework. In Stage 1, the caption, theme and commonsense nodes are created
and connected with causal ordering to form the story graph. In Stage 2, edge weights are assigned using cosine
similarity or point mutual information and further refined through graph learning. Stage 3 takes the final story graph,
negates the weights and constructs the storyline by finding the shortest path between the left and right-most node.
The storyline is then fed to a Transformer for story generation. The corresponding detailed view of the final story
graph for this example is depicted in Appendix C.

VST task, as one would usually first consider what
is visually represented in the image and its context
before forming the premise of the story.

Next, we specifically focus on generating
commonsense related to social interactions and
dynamic aspects of everyday events. As such,
Comet-ATOMIC2020 is utilised, a ‘neural knowl-
edge model’ trained on the ATOMIC commonsense
knowledge graph dataset (Hwang et al., 2021)
which contains information on common human
everyday experiences and mental states. Given a
head/source phrase and relation (e.g. eat a cake
Intent), Comet-ATOMIC2020 is capable of
producing a tail phrase on-demand (e.g. celebrate
birthday). Thus, out of the available 9 social
interaction relations that Comet-ATOMIC2020
offers, we select 4 relations that primarily focus
on causal and behavioural relationships: xNeed,
xIntent, xEffect and xWant. More specifically,
the xNeed relation indicates what event is needed
to happen before a following event occurs while the
xIntent relation indicates a character’s intention
before an action takes place. Conversely, xEffect
are social actions that occur after an event while
xWant represents a character’s postcondition
desires after an event. We append the 4 relation
tokens to each caption phrase Ci to provide
as input for querying Comet-ATOMIC2020.
Five commonsense inferences are generated per
relation r, {ckr1, ckr2, ..., ckrn}, resulting in 20
commonsense altogether for each caption. The
commonsense produced for each caption are
then grouped into BEFORE and AFTER events. The

BEFORE events category contains the knowledge
extracted from the xNeed and xIntent relation
while the AFTER events contains the xEffect and
xWant commonsense. Finally, the theme nodes
contain a sequence of concepts that represent
the theme depicted in each image. We use
Clarifai 1, a pretrained object and concept detector
model capable of predicting 11,000 unique
concepts. We extract a sequence of 20 concepts
for each of the 5 images to create 5 theme nodes
{T1, T2, T3, T4, T5}.

Connecting Nodes Let CKB =
{ckr1, ckr2, ..., ckrm} where r ∈ {xNeed, xIntent}
be the BEFORE commonsense inferences for
caption Ci. Similarly, we denote CKA =
{ckr1, ckr2, ..., ckrm} where r ∈ {xEffect, xWant}
to be the AFTER commonsense inferences. To
construct the story graph, we add directed edges
between Ti (the theme node for image i) and
the commonsense nodes in CKB . Each node in
CKB is then connected to Ci which is further
connected to each node in CKA. Finally, each
node in CKA is connected with the theme nodes
for the next image, Ti+1. Consequently, a directed
acyclic graph SG representing the branching space
of possible story events for each image stream is
constructed as seen in Stage 1 of Figure 1.

3.2 Stage 2: Story Graph Learning
This stage conducts an analysis on the importance
and role of each node in the story graph by convert-
ing SG into a weighted graph, SG,weighted. Two

1www.clarifai.com
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main methods for edge weight assignment based
on semantic similarity is experimented with and
weights are further refined with graph learning.

Cosine Similarity Firstly, we use the cosine sim-
ilarity between plot points as an indicator of their
level of association. Given connecting nodes u and
v which contain words or a phrase denoted by Pu

and Pv respectively, we convert Pu and Pv to a
sentence embedding using a pretrained transformer
model. The cosine similarity score between the
two embeddings at node u and v is then simply
assigned to their connecting edge eu,v.

Pointwise Mutual Information (PMI) The second
method computes the PMI between each pair of
words in Pu and Pv where a high PMI implies high
semantic correlation between words. Formally, the
PMI between word i in Pu and word j in Pv is:

PMI(i, j) = log
p(i, j)

p(i)p(j)
(1)

Here, p(i, j) = #S(i,j)
#S , p(i) = #S(i)

#S and p(j) =
#S(j)

#S where #S(i) is the number of sentences in the
corpus that contain word i, #S(i, j) is the number
of sentences that contain both words and #S is the
total number of sentences in the corpus. Finally, a
normalized version of the PMI score is calculated:

NPMI =
PMI

−log(p(i, j))
(2)

The final weight assigned to eu,v is the maximum
NPMI score out of all scores calculated from the
possible word pair combinations.

Graph Learning We further refine the cosine or
PMI-weighted story graph through graph learn-
ing. Specifically, the weighted graph is fed into
a Temporal Graph Neural Network (TGCN). Such
networks combine the advantages of GCNs and
Recurrent Neural Networks to learn the graph’s
complex topological structure as well as its tem-
poral changes. We use an implementation of the
Gated Graph Convolution Long Short Term Mem-
ory Layer (Taheri and Berger-Wolf, 2019) which
encodes the graph and yields embeddings for each
node. We then extract the 5 embeddings from the
caption nodes and feed them through the BART
Transformer (Lewis et al., 2020) to decode the story.
The TGCN and Transformer are trained end-to-end
to minimise the cross-entropy loss:

L(θ) = −
T∑

t=1

log(pθ(y∗t |y∗1, ..., y∗t−1)) (3)

where θ is the parameters of the model, y∗ is the
ground-truth story and y∗t denotes the t-th word in
y∗. Finally, we extract the learnt node embeddings
and compute the cosine similarity between the em-
beddings of each pair of connected nodes to obtain
the edge weight in between.

3.3 Stage 3: Storyline and Story Generation
Storyline Extraction Given SG,weighted, we con-
sider the optimal storyline as the path from the
left-most node to the right-most node that pro-
duces the highest sum of weights. To find this
path, we negate each weight in SG,weighted and add
a dummy end node DE which is connected with
the right-most nodes in SG,weighted with an edge
weight of -99. An example of the final graph is de-
picted in Appendix C. Floyd–Warshall’s algorithm
(Floyd, 1962) is then adopted to find the shortest
path starting from T1 to DE to produce the sto-
ryline containing a sequence of events e1, ..., eL
taking only the caption and commonsense nodes.

Story Generation The last stage consists of de-
coding the story. We separate each event ei using
a separator token </s>. The events are then fed
through BART for story generation which we train
with the cross-entropy loss from Equation 3.

4 Evaluation Setup2

Data The Visual Storytelling Dataset (VIST)
(Huang et al., 2016) consists of 210,819 unique
images obtained from Flickr albums. The
dataset is split into training/validation/testing with
8,031/998/1,011 albums where each album con-
tains a set of similar image sequences with each
sequence made up of 5 photos. Each album also has
5 human written stories where each story is usually
comprised of one sentence per image. The unique
number of stories in the training, validation and
testing set is 40,155, 4,990 and 5,055 respectively.

4.1 Baseline Models
We compare ours with 6 state-of-the-art baselines.

1. AREL (Wang et al., 2018) adopts an inverse
reinforcement learning (RL) approach trained

2Implementation details can be found in Appendix B
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in an adversarial manner with a CNN-based
reward model.

2. GLACNet (Kim et al., 2018) is an end-to-end
model that combines both local and global
attention mechanisms on the image features.

3. KG-Story (Hsu et al., 2020) attempts to en-
rich stories by leveraging external knowledge
bases like Visual Genome (Krishna et al.,
2017) and OpenIE (Pal et al., 2016). For story
generation, a Transformer model is used.

4. ReCo-RL (Hu et al., 2020) proposes another
RL method with composite rewards designed
to target the relevance, coherence and expres-
siveness criteria of VST.

5. PR-VIST (Hsu et al., 2021a) is a newer model
where similar to ours, attempts to link nouns
together with verb relations extracted from Vi-
sual Genome and VIST to form a story graph.
The optimal storyline is then extracted using
UHop (Chen et al., 2019).

6. TAPM (Yu et al., 2021) introduces an auxil-
iary training task to harmonise the language
generator and visual encoder before optimis-
ing the target objective. The task proposes
to minimise the ‘sequential coherence loss’
which aims to enforce text representations
to predict surrounding visual representations
within a closed neighbourhood.

4.2 Ablation Study Models
We also conduct ablation studies to compare dif-
ferent variants of our proposed model: 1) SRL-
caption: A story graph is not created and the 5
image captions are used as the storyline, 2) SRL-
pmi/cosine: The storyline is extracted from the
story graph using weights obtained from the cosine
similarity or PMI approach. 3) TGCN/TGCN-
SRL: TGCN-cosine/pmi is an end-to-end model
where the story graph is fed to the TGCN and node
embeddings are then inputted into BART for story
decoding. The story graph input uses weights ob-
tained from either the cosine or PMI approach.
TGCN-SRL-cosine/pmi further uses the trained
TGCN to extract the node embeddings and their
similarities are then used to refine the story graph
weights for storyline and story generation.

4.3 Automatic Metrics
Numerous past literature have shown that tra-
ditional automatic metrics like BLEU correlate
poorly with human judgement and are unreliable

for evaluating VST (Wang et al., 2018; Hsu et al.,
2019). These metrics mainly focus on comparing n-
gram similarity between hypothesis and references,
thus are insufficient for evaluating open-ended text
generation tasks like storytelling, where there are
multiple plausible outputs for the same input which
are not fully reflected in the references. There-
fore, we focus on metrics specifically designed for

‘open ended text generation’ which consider the
plausibility of diverse outputs. The first is RoViST
(Wang et al., 2022a), an unreferenced metric set for
VST consisting of three scores that target three cri-
teria: visual grounding (RoViST-VG), coherence
(RoViST-C) and no redundant repetition of con-
cepts/words (RoViST-NR). An overall single score
(RoViST) can be calculated by averaging RoViST-
VG, C and NR. In addition to RoViST, we consider
other learnt ‘unreferenced’ metrics such as Perplex-
ity and the storytelling metric, UNION (Guan and
Huang, 2020) which assigns a score based on im-
portant story criteria like coherence, no conflicting
logic and non-repeating plots. Finally, for com-
pleteness and maintaining consistency with other
works, we further compute reference-based metrics
including the classic ROUGE-L (Lin, 2004), ME-
TEOR (Banerjee and Lavie, 2005), CIDEr (Vedan-
tam et al., 2015) and SPICE (Anderson et al., 2016).
For analysing semantic similarity, the BERT-based
metric BLEURT (Sellam et al., 2020) is further
adopted as well as the embedding-based metric,
MoverScore (Zhao et al., 2019).

4.4 Human Evaluation

We finally conduct human evaluation studies and
create 3 surveys where each survey conducts a pair-
wise comparison between our model and a baseline.
In the survey, participants are given 100 randomly
selected unique photo sequences from the test data
(same sequences are used for each survey) and
the corresponding generated story from our model
and the baseline. They are then asked to choose
which of the two stories are better based on 3 cri-
teria: 1) Visual Grounding: the generated story
must relate to concepts depicted in the image se-
quence, 2) Coherence: story sentences need to
flow while remaining logical and topically con-
sistent, and 3) Non-Redundancy: sentences are
diverse and there are no unnatural-sounding repeti-
tion of words/phrases in the story. A final question
also asks the annotator to choose which story is
better out of the two based on their opinion. 15
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Model RoViST-VG RoViST-C RoViST-NR RoViST (R) SPICE (S) BLEURT (B) MoverScore (M) UNION (U) Perplexity R+S+B+M+U Story Len.

AREL ((Wang et al., 2018)) 66.2 57.1 83.4 68.9 9.0 32.6 55.1 17.1 15.3 182.7 44.8
GLACNet (Kim et al., 2018) 61.6 68.6 95.1 75.1 7.0 33.5 54.9 75.9 24.6 246.3 35.2
KG-Story (Hsu et al., 2020) 58.7 65.1 99.9 74.6 7.2 32.3 54.9 65.8 46.1 234.8 32.3
ReCo-RL (Hu et al., 2020) 67.8 57.3 91.9 72.3 11.2 31.9 55.4 23.8 28.3 194.6 49.3
PR-VIST (Hsu et al., 2021a) 70.0 60.4 96.1 75.5 9.6 31.0 54.7 30.3 42.3 201.1 52.2
TAPM (Yu et al., 2021) 70.3 67.0 90.5 75.9 9.9 33.4 55.6 56.0 18.3 230.8 51.2
SRL-caption 65.2 73.9 91.4 76.8 6.1 31.7 53.3 76.5 16.0 244.5 49.7
SRL-cosine 69.6 72.1 91.9 77.9 11.2 34.6 56.0 78.8 15.1 258.4 48.0
SRL-pmi 70.4 72.8 91.6 78.3 11.5 34.7 56.0 75.9 14.7 256.3 51.2
TGCN-SRL-cosine 70.3 72.3 90.5 77.7 10.9 34.9 56.0 84.0 14.9 263.4 52.3
TGCN-SRL-pmi 69.0 71.9 91.6 77.5 11.2 34.7 56.0 80.6 13.6 259.9 51.5
TGCN-cosine 65.7 75.5 91.8 77.6 9.2 33.9 55.6 84.3 16.5 260.6 39.1
TGCN-pmi 65.7 75.9 91.3 77.6 9.4 33.8 55.7 87.0 15.5 263.4 40.5

Table 1: Automatic metrics and average story length (Story Len.) for the 6 baselines vs. our 7 model variants.

respondents (5 per survey) were recruited where
each participant answered 400 questions, resulting
in 6000 instances collected in total.

5 Results

5.1 Overall Performance
Table 1 summarises several metrics for the 6 base-
lines and for the 7 different variations of SCO-
VIST. After filtering out broken images in the test
set and missing stories from the baseline mod-
els, a sample of 890 albums was used to calculate
these metrics. Considering our best model based
on the visual storytelling metric RoViST (SRL-
pmi), RoViST-VG performs on par with the more
recent baselines and significantly outperforms in
RoViST-C when considering all our 7 model vari-
ants. RoViST-NR however underperforms, but
we strongly emphasize that this is most likely at-
tributed to the short story lengths which have a
lower chance of repeating words as can be seen by
KG-Story which has a repetition score of 99.9 but
average story length of only 32.

Furthermore, studies in Wang et al. (2022a) em-
phasized that humans considered coherence to play
the most significant role when judging a story, fol-
lowed by visual grounding and non-redundancy.
Nevertheless, our models still achieve noticeably
better performance than the baselines when compar-
ing the overall RoViST with SRL-pmi considered
as the best model as it achieved a good balance of
high scores across RoViST-VG, C and NR.

Although classic automatic metrics are known
to correlate poorly with human judgement for VST,
it is still noteworthy to analyse them in conjunc-
tion with RoViST. Hence, ROUGE-L, METEOR
and CIDEr are shown in Table 2 of where we
observe that SRL-pmi resulted in lower scores.
This could be due to our model using knowledge
from COMET-Atomic2020 to enrich lexical di-
versity which results in lower performance in n-

Model ROUGE-L METEOR CIDEr

AREL 29.9 35.2 9.1
GLACNet 27.2 33.5 4.4
KG-Story 25.2 31.5 3.8
ReCo-RL 29.3 35.9 11.9
PR-VIST 26.1 31.4 7.6
TAPM 21.7 27.0 4.5
SRL-pmi 22.1 27.5 5.9

Table 2: Classic n-gram metrics for our top model, SRL-
pmi vs. the 6 baselines.

gram matching between the generated and ref-
erence stories. However, SRL-pmi still outper-
forms the baselines when comparing less classic
metrics like SPICE which focuses on semantic
propositional content, BLEURT which is based
on semantic meaning and slightly on MoverScore
which compares distances of word embeddings be-
tween reference and hypothesis stories. The un-
referenced metrics for evaluating open-ended text
generation, Perplexity and UNION also show sig-
nificant improvements. Most noticeably, UNION
which scores based on coherence, conflicting logic
and chaotic scenes is able to reach an upper bound
score of 87.0 with TGCN-pmi.

Finally, to gain a better overview of the overall
performance, we sum RoViST, SPICE, BLEURT,
MoverScore, and UNION and present the scores in
the R+S+B+M+U column. When comparing the
sum, the best performing models were the TGCN
methods with TGCN-SRL-cosine and TGCN-pmi
producing the highest scores.

5.2 Ablation Study
To analyse the effect of the storyline extraction
stage and different edge weight assignment meth-
ods, an ablation study was conducted to com-
pare the 7 different variations described in Section
4.2. We first compare just using the 5 captions
(SRL-caption) as the storyline versus extracting
the storyline from the commonsense story graph

1607



(SRL-cosine/pmi, TGCN-SRL-cosine/pmi). Sur-
prisingly, competitive RoViST-C and NR scores
was achieved from SRL-caption but underperforms
substantially in the VG criteria. Additionally,
SPICE, BLEURT, MoverScore, UNION and Per-
plexity were considerably worse. This implies that
captions alone have sufficient commonsense em-
bedded in them and can be useful features for gen-
erating plausible stories. However, the VG aspect
can be further enhanced by exploiting extra social
commonsense from external data.

Moreover, the TGCN-cosine/pmi approach con-
sisting of the end-to-end model with a TGCN com-
bined with the Transformer evidently produces
lower RoViST-VG and NR compared to the SRL
methods. SPICE, BLEURT, MoverScore and Per-
plexity scores were also mostly less optimal. This
suggests that feeding the node embeddings into the
Transformer for story decoding is not as good as ex-
tracting the storyline and explicitly using the words
as input which can provide more fine-grained de-
tails about the image contents for generating richer
stories. However, TGCN-cosine/pmi noticeably
yielded the best RoViST-C scores out of the 7 meth-
ods (> 75). This could be attributed to the shorter
outputs as it is often easier to stay coherent with
shorter generic sentences.

Finally, it is interesting to note that higher
UNION scores were obtained for all TGCN meth-
ods when compared to not using the TGCN. It is
hypothesised that incorporating learnt temporal in-
formation in the node embeddings implicitly via
TGCN training perhaps resulted in more logical
stories, thus improving the UNION score.

5.3 Visualising Diversity

Figure 2: Count of unique unigrams for different part-
of-speech (POS) tags for our proposed SRL-pmi vs. the
6 state-of-arts baselines.

We visualise the number of distinct unigrams,
nouns, verbs and adjectives outputted by SRL-pmi
versus the 6 baselines. Figure 2 illustrates that our
model can produce significantly more unigrams
overall especially when comparing nouns, suggest-
ing that leveraging social interaction commonsense
and the captions can generate richer and diverse
sentences with more novel expressions.

5.4 Qualitative Analysis

Figure 3: Generated stories for our SRL-pmi model
versus the 6 baselines models. Blue/red words represent
concepts relevant/irrelevant to the image sequence.

To evaluate our model qualitatively, we show ex-
amples of generated stories from SRL-pmi ver-
sus the 5 baselines. Figure 3 illustrates that our
model generates stories that are clearly more visu-
ally grounded. For instance, ReCo-RL in the first
example mentions several irrelevant phrases like
‘lot of fun’ while KG-Story incorrectly mentions
‘gave another speech’ in the last sentence. On con-
trary, our model’s stories are more detailed and less
generic such as the phrase, ‘ready to go on his mis-
sion’ and ‘sights and sounds of the enemy’, thus
highlighting the effectiveness of using captions and
social commonsense to capture events depicted and
implied by the images. By not solely relying on
visual features and using literal descriptions and
commonsense to construct storylines as input, our
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All Stories Event-based Object-based
Criteria Ours AREL Tie Agree Ours AREL Tie Agree Ours AREL Tie Agree

Visual Grounding 88.0% 6.6% 5.4% 0.64 86.5% 8.5% 5% 0.60 96.9% 2.5% 0.6% 0.71
Coherence 90.0% 4.8% 5.2% 0.70 88.2% 5.3% 6.5% 0.66 93.8% 3.7% 2.5% 0.82
Non-Redundancy 83.6% 3.0% 13.4% 0.56 82.4% 3.2% 14.4% 0.54 86.3% 2.4% 11.3% 0.60
Overall 93.4% 4.4% 2.2% 0.78 91.8% 5.3% 2.9% 0.74 96.9% 2.5% 0.6% 0.88
Criteria Ours ReCo-RL Tie Agree Ours ReCo-RL Tie Agree Ours ReCo-RL Tie Agree

Visual Grounding 82.2% 10.0% 7.8% 0.49 82.3% 10.6% 7.1% 0.49 81.9% 8.7% 9.4% 0.48
Coherence 93.4% 4.2% 2.4% 0.78 94.7% 3.8% 1.5% 0.81 90.6% 5% 4.4% 0.70
Non-Redundancy 71.6% 11.0% 17.4% 0.30 72.3% 12.4% 15.3% 0.31 70.0% 8.1% 21.9% 0.28
Overall 92.2% 5.0% 2.8% 0.75 93.8% 4.1% 2.1% 0.79 88.8% 6.8% 4.4% 0.66
Criteria Ours PR-VIST Tie Agree Ours PR-VIST Tie Agree Ours PR-VIST Tie Agree

Visual Grounding 78.8 % 17.2 % 4.0 % 0.52 79.1% 16.2% 4.7% 0.52 78.1% 19.4% 2.5% 0.52
Coherence 77.8% 18.4% 3.8 % 0.44 79.4% 17.9% 2.7% 0.47 74.4% 19.3% 6.3% 0.35
Non-Redundancy 63.0% 24.6% 12.4% 0.28 64.4% 22.4% 13.2% 0.29 60.0% 29.4% 10.6% 0.23
Overall 78.0% 16.4% 5.6% 0.46 78.5% 16.2% 5.3% 0.48 76.9% 16.8% 6.3% 0.43

Table 3: Pairwise comparison between SRL-pmi with AREL, ReCo-RL and PR-VIST across the visual grounding,
coherence, and non-redundancy criteria for all stories (500 instances) and when separated into event-based (340
instances) and object-based (160 instances) story categories. The ‘Agree’ column shows the Fleiss’ Kappa results.

stories are also consequently more coherent and
natural-sounding. Taking the last sentence from
AREL in the second story as an example, ‘This
is the view from the top of the mountain’ sounds
abrupt and is unrelated to the previous generated
sentences. Conversely, our story is capable of cap-
turing the changes between images while maintain-
ing a strong focus on the topic of ‘wine tasting’.

5.5 Human Evaluation: Pairwise Comparison
Table 3 reports the results of the pairwise com-
parison between SRL-pmi with AREL, ReCo-RL
and PR-VIST. The last column (‘Agree’) represents
results from the Fleiss’ kappa test used to assess
inter-rater consistency (Fleiss, 1971). Agreement
scores in the range [0.21, 0.40], [0.41, 0.60] and
[0.61, 0.80] means fair, moderate and strong agree-
ment between multiple annotators respectively.

When analysing all stories (‘All Stories’ sub-
table), our generated stories evidently outperform
the baselines by a large margin. All percentages
in the first column are over 63%, indicating that
the majority of annotators selected our story to be
better across all criteria. Moreover, when compar-
ing the ‘Overall’ criteria which asked evaluators to
choose the better story, over 78% of the responses
reported our stories to be better with the Fleiss’
kappa test result showing a moderate to strong level
of agreement between annotators. We believe the
higher votes for the visual grounding criteria for
our model is due to our method incorporating rele-
vant social-interaction commonsense. Additionally,
our constructed storyline is able to reflect the causal
events implied by the image stream, resulting in
improved story coherence and less repetition.

5.6 Human Evaluation: Story Categories
We analyse the human evaluation results by cate-
gorising the stories into ‘event-based’ and ‘object-
based’. Event-based stories refer to image streams
that focus on people performing actions and there is
a clear transition of events between images. Object-
based consists of images that mostly picture land-
scapes and objects. Such instances have no clear
event in the image, and thus require more imagi-
nation when creating the story. An example of an
event-based story is the top sequence in Figure 4
where we can clearly see a man taking a photo and
a girl running and sliding across the sand. Con-
versely, the second example is object-based as a
majority of the images depict scenery and build-
ings. It is harder to generate a story from this input
as the first 4 images are extremely similar while
the last image is totally different.

Observing the last two sub-tables of Table 3,
the first baseline AREL shows lower percentages
and ties for object versus event-based stories. As
AREL purely relies on generating stories from the
visual features, it fails to create coherent output
particularly when consecutive images are similar.
We qualitatively analyse it in Figure 4: AREL’s
story for the object-based example contains more
monotonous sentences (‘This is a picture of a city)
and repetition between consecutive sentences.

On contrary, our model can generate a more vi-
sually grounded and coherent story by utilising the
storyline. While this example shows several use-
ful concepts in the storyline that are not used in
the generated story (‘nativity scene’, ‘roman struc-
ture’), concepts such as ‘tall’, ‘take picture’, and
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Figure 4: AREL vs. SRL-pmi for an event-based story
(above) and object-based story (below). Blue words
indicate concepts implicitly or explicitly used in the
generated story while red represents irrelevant concepts.
Underlined words in the story represent concepts rele-
vant to the image stream.

‘tourists’ (highlighted in blue) did help in produc-
ing phrases related to these concepts, resulting in
a story containing more interesting, diverse and
relevant words. Furthermore, while there are error
cases where the storyline contains irrelevant infor-
mation such as the red words in the event-based
example, this information was not included in the
generated output. This is perhaps due to the ad-
vantages of the encoder-decoder cross-attentional
mechanism of BART which allows the model to
learn to select the more useful parts of the storyline.

Examining ReCo-RL, only the grounding and
non-redundancy aspect received lower votes for
object versus event-based instances. Compared to
AREL, its better performance may be due to its
framework incorporating RL rewards to directly
align the outputs more to a human story in terms of
the 3 criteria. PR-VIST however which first builds
a storyline like ours, outperforms AREL and ReCo-
RL and further, even yields slightly more votes
for object-based stories compared to its propor-
tion of votes received for event-based stories, thus
highlighting the effectiveness of storyline and con-
tent planning. Despite PR-VIST’s improvements,
our approach and storyline construction method is
evidently superior and substantially outperforms
PR-VIST in all aspects across the 2 categories.

6 Conclusion

In this paper, we presented SCO-VIST, a multi-
stage novel framework for visual storytelling that
utilises social-interaction knowledge for enhanc-
ing commonsense reasoning in stories. We design
a heterogeneous story graph with causal ordering
that connects captions and commonsense extracted
from external sources and employ shortest path
algorithms to find the optimal storyline for story
generation. Extensive experiments on the bench-
mark dataset, analysis of automatic metrics and
human evaluations demonstrate that SCO-VIST
outperforms existing baselines and is capable of
generating diverse stories that are highly coherent
with strong visual grounding.

Limitations

Benchmark Scope and Annotation Due to the
lack of a high-quality visual storytelling dataset,
most recent studies on visual story generation use
only one publicly available dataset, VIST. The
dataset size is large enough but the dataset used
in most visual storytelling research publications,
including this study, was limited in scope. The
VIST consists of images from Flickr, which is an
image/video-based social media platform and in-
cludes mostly personal images that captures peo-
ple’s daily lives or events. In addition, each Flickr
album has 5 human written stories where each story
is usually comprised of one sentence per image.
Those human annotators are not the Flickr album
owner and hence the gold standard annotations by
annotators may not be perfectly matched with the
intention of the original Flickr album. Future work
should investigate how to mitigate this issue by
establishing a new visual storytelling dataset via
adopting the image album descriptions from the
original authors, and providing better instructions
for human annotators that map generated stories to
objects/relations of images.

Adaptability to Low-Resource Languages
Moreover, our model pipeline requires a pre-trained
image captioning model in the first stage, which
may not be available for low-resource languages
that have relatively less data available for training
natural language processing systems. The met-
rics used for evaluation are also only capable of
judging English-written language. Nevertheless,
our pipeline can be reproduced and future study
should consider re-running experiments on other
languages once models and data become available.
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Model RoViST-VG RoViST-C RoViST-NR RoViST UNION SPICE Story Len.

CLIP-SRL-pmi 69.6 71.1 91.1 77.3 68.5 10.8 49.5
BLIP-SRL-pmi 70.8 69.8 90.5 77.0 72.1 11.3 51.2
VIST-SRL-pmi 72.0 74.1 90.6 78.9 82.5 12.5 57.6

Table 4: RoViST, UNION, and SPICE scores recorded when using different captioning models. All models are
implemented using the SRL-pmi SCO-VIST variant.

A Caption Ablation Study

Figure 5: An example of a storyline and matching story
generated using the SRL-pmi approach with different
pre-trained image captioning models. Underlined words
in the storyline are the image captions and blue words
are visually relevant concepts to the image sequence.

We conduct a preliminary ablation study to exam-
ine the performance of the stories when using dif-
ferent captioning models. For the experiments in
the main paper, we utilised ClipCap (Mokady et al.,
2021) to generate the image captions. For this
experiment, we additionally consider the BLIP cap-
tioning model (Li et al., 2022) which outperforms
ClipCap on COCO captions (Chen et al., 2015).
We also consider using the human-written captions
which are provided as part of the VIST dataset.
Note that for this experiment, we implement the
SRL-pmi SCO-VIST variant for all models. More-

over, all models were trained on a substantially
smaller dataset size (26939 instances for training,
3354 for validation and 3385 for testing) compared
to the dataset used to retrieve the results in the
main paper as ground-truth descriptions from VIST
were only available for approximately half of the
data. The CLIPCap and BLIP captions achieve a
BLEU-1 score of 13.7 and 17.5 respectively when
evaluated against the ground-truth VIST captions.

The RoViST, UNION and SPICE scores us-
ing each captioning method is displayed in Table
4. Firstly, it is evident that using human-written
captions in the story graph creation process re-
sults in a higher RoViST-VG, RoViST-C and Ro-
ViST score overall as observed by VIST-SRL-pmi.
UNION and SPICE were also considerably higher,
suggesting better captions lead to better stories
and SCO-VIST’s outputs can be perhaps further
improved with a stronger pre-trained captioning
model. However for this study, we did find that
using the BLIP captions produces a similar over-
all RoViST score. Neverthless, BLIP-SRL-pmi did
yield greater RoViST-VG, UNION and SPICE com-
pared to CLIP-SRL-pmi. The higher RoViST-VG
score could imply that the caption quality influ-
ences the visual grounding aspect the most. This
is reasonable as an incorrect caption could cause
irrelevant concepts to be generated in the storyline,
which can directly negatively impact the visual
grounding score (RoViST-VG).

To highlight a specific example, we further con-
duct a qualitative analysis in Figure 5 to assess
how the caption quality can affect the generated
storylines and stories. Taking CLIP-SRL-pmi for
instance, the incorrect captions ‘tourists looking at
the christmas tree’ and ‘a woman prays in front’ re-
sults in irrelevant concepts mentioned in the story
such as ‘church’ and ‘snow’. Conversely, using
more detailed and accurate captions as depicted in
BLIP-SRL-pmi and VIST-SRL-pmi clearly results
in better storylines which in turn, translates to more
visually grounding and detailed stories.
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B Implementation Details

To generate the image captions for Stage 1, we
use a pre-trained image captioning model called
ClipCap (Mokady et al., 2021). For commonsense
generation, we use the ‘comet_atomic2020_bart’
implementation of Comet-ATOMIC2020 (Hwang
et al., 2021). Sentence embeddings of the nodes
are then obtained with a Sentence Transformer us-
ing the ‘all-mpnet-base-v2’ model (Reimers and
Gurevych, 2019) which outputs embeddings of size
768. Since some generated commonsense were
found to be duplicated or similar, these similar or
identical commonsense were filtered out based on
if the sentence embedding cosine similarity score
between the two phrases exceeded a threshold of
0.50 for each of the BEFORE and AFTER events pro-
duced by each caption.

In Stage 2, the temporal GCN used to learn the
node embeddings consisted of 1 layer and the cho-
sen output dimension of the embeddings was 768.
Furthermore, the Transformer model used to take
in the 5 caption nodes to decode the story utilised
the ‘bart-base’ configuration of the BART Trans-
former model (Lewis et al., 2020). This model was
trained with a learning rate of 0.00001.

In Stage 3, the story decoder using the storyline
as input employed the ‘bart-large’ configuration
and was trained with a learning rate of 0.00002.
For all BART models, we initialise with the
pretrained weights and finetune them on our
VST task. All experiments also used a batch
size of 8, weight decay of 0.00001, learning rate
decay of 0.95 scheduled to decrease after every
epoch and the Adam optimizer (Kingma and Ba,
2015). Early stopping was further employed to
stop training after 3 consecutive epochs of no
improvement on the validation set. At inference,
we decode the story with nucleus sampling
using the recommended values of p = 0.9 and
temperature = 0.9 (Holtzman et al., 2019). All
training of models was conducted using a Nvidia
Tesla v100 16GB GPU which took approximately
15 hours to train.

Note that this is not the end of the Ap-
pendix section. The following page includes
Appendix C, D, and E.
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Figure 6: Final story graph generated from Stage 3 with red arrows indicating the optimal extracted storyline.

C Story Graph

Figure 6 shows the final directed story graph generated from Stage 2 with the additional dummy end
node added in Stage 3. Grey and blue nodes are theme and caption nodes respectively. Yellow nodes
are commonsense nodes from the BEFORE events group generated by the xNeed and xIntent relation
while red nodes are the AFTER events commonsense nodes from the xWant and xEffect relation. Due to
limited space, only the nodes corresponding to image 1, 2 and 5 are visualised and dotted lines are used
to indicate nodes in the graph that are not displayed. The red highlighted arrows show the shortest path
found by Floyd Warshall’s algorithm where the caption nodes and commonsense nodes are taken in order
to use as the storyline. For simplicity, edge weights are also not shown.

D Human Evaluation Survey

Figure 7 shows the survey instructions used in the human evaluation study and the format of the survey
questions. The 15 participants recruited were volunteers from a variety of age groups (20-60 years old),
occupation and gender (8 female, 7 male). All participants were proficient in English with at least a
university education level. Note that we modified and used similar instructions from the study proposed
in Wang et al. (2022a). It is also emphasised that annotators do not know which model generated which
story as for each example, we randomly swap the order of the baseline story and SCO-VIST’s story to be
presented as Story A and Story B.

Figure 7: Survey instructions and form format for the human evaluation study.
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E Event-based versus Object-based Stories

Figure 8 contains examples of more generated outputs from our SRL-pmi model versus AREL for event-
based and object-based stories as described in Section 5.6 of the paper. Here, blue words in the storyline
indicate concepts implicitly or explicitly used in the generated story while red words represent irrelevant
or not useful concepts in the storyline. The underlined words in the generated story represent concepts
relevant to the image stream.

Figure 8: AREL versus our SRL-pmi model for event-based and object-based stories.
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