@inproceedings{fettal-etal-2024-discriminative,
title = "More Discriminative Sentence Embeddings via Semantic Graph Smoothing",
author = "Fettal, Chakib and
Labiod, Lazhar and
Nadif, Mohamed",
editor = "Graham, Yvette and
Purver, Matthew",
booktitle = "Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = mar,
year = "2024",
address = "St. Julian{'}s, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.eacl-short.2",
pages = "8--13",
abstract = "This paper explores an empirical approach to learn more discriminantive sentence representations in an unsupervised fashion. Leveraging semantic graph smoothing, we enhance sentence embeddings obtained from pretrained models to improve results for the text clustering and classification tasks. Our method, validated on eight benchmarks, demonstrates consistent improvements, showcasing the potential of semantic graph smoothing in improving sentence embeddings for the supervised and unsupervised document categorization tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fettal-etal-2024-discriminative">
<titleInfo>
<title>More Discriminative Sentence Embeddings via Semantic Graph Smoothing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chakib</namePart>
<namePart type="family">Fettal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lazhar</namePart>
<namePart type="family">Labiod</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohamed</namePart>
<namePart type="family">Nadif</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yvette</namePart>
<namePart type="family">Graham</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthew</namePart>
<namePart type="family">Purver</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julian’s, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper explores an empirical approach to learn more discriminantive sentence representations in an unsupervised fashion. Leveraging semantic graph smoothing, we enhance sentence embeddings obtained from pretrained models to improve results for the text clustering and classification tasks. Our method, validated on eight benchmarks, demonstrates consistent improvements, showcasing the potential of semantic graph smoothing in improving sentence embeddings for the supervised and unsupervised document categorization tasks.</abstract>
<identifier type="citekey">fettal-etal-2024-discriminative</identifier>
<location>
<url>https://aclanthology.org/2024.eacl-short.2</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>8</start>
<end>13</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T More Discriminative Sentence Embeddings via Semantic Graph Smoothing
%A Fettal, Chakib
%A Labiod, Lazhar
%A Nadif, Mohamed
%Y Graham, Yvette
%Y Purver, Matthew
%S Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julian’s, Malta
%F fettal-etal-2024-discriminative
%X This paper explores an empirical approach to learn more discriminantive sentence representations in an unsupervised fashion. Leveraging semantic graph smoothing, we enhance sentence embeddings obtained from pretrained models to improve results for the text clustering and classification tasks. Our method, validated on eight benchmarks, demonstrates consistent improvements, showcasing the potential of semantic graph smoothing in improving sentence embeddings for the supervised and unsupervised document categorization tasks.
%U https://aclanthology.org/2024.eacl-short.2
%P 8-13
Markdown (Informal)
[More Discriminative Sentence Embeddings via Semantic Graph Smoothing](https://aclanthology.org/2024.eacl-short.2) (Fettal et al., EACL 2024)
ACL