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Abstract

Gender-neutral translation (GNT) that avoids
biased and undue binary assumptions is a piv-
otal challenge for the creation of more inclu-
sive translation technologies. Advancements
for this task in Machine Translation (MT), how-
ever, are hindered by the lack of dedicated par-
allel data, which are necessary to adapt MT
systems to satisfy neutral constraints. For such
a scenario, large language models offer hith-
erto unforeseen possibilities, as they come with
the distinct advantage of being versatile in var-
ious (sub)tasks when provided with explicit
instructions. In this paper, we explore this po-
tential to automate GNT by comparing MT
with the popular GPT-4 model. Through ex-
tensive manual analyses, our study empirically
reveals the inherent limitations of current MT
systems in generating GNTs and provides valu-
able insights into the potential and challenges
associated with prompting for neutrality.

1 Introduction

To foster greater inclusivity in our communication
practices, there has been a rise in the adoption of
gender-neutral language strategies (Hord, 2016; Pa-
padimoulis, 2018), which challenge gender norms
and embrace all identities by eschewing unneces-
sary gendered terms (e.g. police officer vs police-
man). Such strategies are now widespread across
various domains – including institutions (Höglund
and Flinkfeldt, 2023), academia (APA, 2020), and
industry (Langston, 2020), with their consequential
investigation for various natural language process-
ing (NLP) technologies (Cao and Daumé III, 2020;
Brandl et al., 2022; Wagner and Zarrieß, 2022).

While recent advancements in NLP have seen
the modeling of neutral language into monolin-
gual applications (Vanmassenhove et al., 2021; Sun
et al., 2021; Amrhein et al., 2023; Veloso et al.,
2023), research in cross-lingual settings is rela-
tively limited. Previous works in MT (Costa-jussà

and de Jorge, 2020; Savoldi et al., 2021; Choubey
et al., 2021; Alhafni et al., 2022; Piazzolla et al.,
2023, inter alia) have been mostly confined within
binary perspectives to improve the generation of
masculine/feminine forms into grammatical gender
languages (e.g. doctors → it: dottori/esse).1 Under
realistic scenarios though, systems often encounter
ambiguous input sentences that do not convey gen-
der distinctions (Saunders, 2023; Piergentili et al.,
2023a), and for which GNT would be preferable
to prevent undue gender assignments in the tar-
get language (e.g. en: doctors → it: personale
medico[the medical staff]).

Despite individual studies indicating that exist-
ing MT systems are ill-equipped to handle neu-
trality (Cho et al., 2019; Piergentili et al., 2023b;
Savoldi et al., 2023), the automation of GNT re-
mains an open challenge, hampered by the lack
of dedicated resources. To the best of our knowl-
edge, the work by Saunders et al. (2020) stands as
the sole effort to create gender-neutral MT models,
but their fine-tuning approach does not generalize
from their small artificial adaptation set. Within
this landscape, large language models (LLMs) can
offer a solution to meet the demand for gender neu-
trality, thanks to their adaptability to perform new
(sub)tasks based on explicit instructions and few
examples (Brown et al., 2020). In fact, albeit LLMs
still lag slightly behind traditional MT in overall
translation quality (Robinson et al., 2023; Vilar
et al., 2023; Zhang et al., 2023), their versatility
for controlling specific aspects in the output trans-
lation was proven for several attributes (Moslem
et al., 2023; Sarti et al., 2023; Garcia and Firat,
2022; Yamada, 2023).

In this paper, we thus seek to advance the au-
tomation of neutral translation by exploring the po-

1Although in grammatical gender languages also inanimate
nous are formally assigned to a gender class (Corbett, 1991),
we are hereby only concerned with (social) gender assignment
for human referents.
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tential of instruction-following models. To this aim,
we focus on English→Italian and systematically
compare the neutral capabilities of traditional MT
models with GPT-4 (OpenAI, 2023). By experi-
menting with different prompts and shot-exemplars,
we conduct a fine-grained, manual evaluation show-
ing that: i) used as is neither MT nor GPT are
suitable for GNT, but prompting GPT shows sur-
prising neutralization capabilities elicited with just
a few examples; ii) while including test set terms
as neutralization exemplars in the prompts leads to
slightly better GNT performance, GPT can general-
ize well also when provided with unseen examples.
Finally, extensive manual evaluations unveil that
iii) judging the quality and acceptability of auto-
matic GNT is a subjective task, with notable varia-
tions across annotators. To promote future research,
we make all our manual output annotations freely
available at: https://mt.fbk.eu/gente/.2

2 Methods and Settings

Test set. We run our experiments on GeNTE
(Piergentili et al., 2023b), a recently released par-
allel test set designed to evaluate models’ GNT
capabilitites. Built on Europarl data (Koehn, 2005),
it allows us to test MT on naturalistic instances
for en-it, a language pair that is highly represen-
tative of the challenges of performing GNT into
languages with extensive gendered morphology.
For such languages, neutral strategies can range
from simple word changes (e.g. omissions or syn-
onyms) to complex reformulations that can alter
the sentence structure (Gabriel et al., 2018). Hence,
generating suitable GNTs is a delicate and difficult
task, to be carefully weighted not to impact the ac-
ceptability of a translation. Here, we use a portion
of GeNTE consisting of 750 English sentences that
are gender-ambiguous,3 and which are thus to be
neutrally translated so as to avoid any undue gender
inference in Italian (e.g. I, with all my colleagues
wish to..., it-M: Io, con tutti i colleghi desidero...
→ it-GNT: Io, con ogni collega[each colleague],
desidero...).4

Systems. As MT models, we select two state-
of-the-art commercial systems: Amazon Trans-
late5 and DeepL.6 For GNT-PROMPTING, we use

2Released under a Creative Commons Attribution 4.0 In-
ternational license (CC BY 4.0).

3Set-N in the original corpus.
4For more details, see Appendix A.
5https://aws.amazon.com/it/translate/.
6https://www.deepl.com/en/translator.

BLEU CHRF BLEURT COMET

Amazon 31.04 57.54 82.84 84.07
DeepL 30.75 56.30 82.80 83.90
GPT-4 25.08 51.94 80.56 82.60

Table 1: Overall quality results for en-it.

GPT (gpt-4-0613), which achieved promising re-
sults in translation (Jiao et al., 2023), though espe-
cially for high-resource languages (Robinson et al.,
2023; Stap and Araabi, 2023). As an instruction-
following model (Chung et al., 2022; Ouyang et al.,
2022), GPT is suited to keep adherence to provided
guidance when performing a task, a valuable aspect
to control the neutral translation of gendered terms.

Experiments. We explore models’ neutralization
abilities under two experimental settings: i) BASE-
LINE, to compare if the MT models and GPT in
zero-shot conditions7 can perform GNT, without
being explicitly instructed/adapted for the task; and
ii) GNT-PROMPTING, to leverage GPT potential
when prompted with dedicated instructions and
examples. In both settings, for GPT we use tem-
perature 0.0, since Peng et al. (2023) attested a pro-
gressive translation degradation with higher tem-
perature values.

Before delving into their GNT capabilities, in
Table 1 we report the performance of all models
on the Europarl common test set.8 Such results
confirm that GPT exhibits good cross-lingual capa-
bilities, but does not match traditional MT models.

3 GNT-PROMPTING

To elicit GPT’s flexibility for neutral translations,
in the GNT-PROMPTING condition we experiment
with three few-shot templates inspired by existing
literature on prompting (Liu et al., 2023; Dong
et al., 2023). Our prompts, shown in Table 2, are:

(1) Contr: consisting of contrastive examples
of gendered and neutral translations for each En-
glish sentence, without additional verbalized in-
structions. This simple template has shown promis-
ing results for controlling the generation of (binary)
gender forms (Sánchez et al., 2023).

(2) CoT-src: based on chain-of-thought demon-
strations that break complex tasks into intermediate
reasoning steps (Wei et al., 2023). This prompt first
guides the identification of source terms that cor-

7We adopt the best performing prompt by Peng et al.
(2023): “Please provide the [TGT] translation of
the following sentence:”.

8https://www.statmt.org/europarl/.
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Contr
[English]: Secondly, how far does it increase transparency and accountability of the writers?
[Italian, gendered]: Secondariamente, fino a che punto aumenta la trasparenza e la responsabilità degli scrittori?
[Italian, neutral]: Secondariamente, fino a che punto aumenta la trasparenza e la responsabilità di chi scrive?

CoT-src

Q: Translate the following English sentence into Italian using a gender-neutral language to refer to human entities: [Secondly, how far does it increase
transparency and accountability of the writers]. Think step by step.

A: In the English sentence there is one expression which refers to human entities and could be translated in a non-neutral way: <of the writers>. A
gender-neutral translation of <of the writers> is <di chi scrive>. The final gender-neutral translation is [Secondariamente, fino a che punto aumenta la
trasparenza e la responsabilità di chi scrive?]

CoT-tgt

Q: Translate the following English sentence into Italian using a gender-neutral language to refer to human entities: [Secondly, how far does it increase
transparency and accountability of the writers?]. Think step by step.

A: The English sentence can be translated as [Secondariamente, fino a che punto aumenta la trasparenza e la responsabilità degli scrittori?]. There is
one «expression with <non-neutral terms>» that refers to human entities: «<degli scrittori>». A gender-neutral alternative to «<degli scrittori>» is «di
chi scrive». The final gender-neutral translation is [Secondariamente, fino a che punto aumenta la trasparenza e la responsabilità di chi scrive?].

Table 2: Examples of each prompt template. The source “of the writers” – corresponding to the gendered “degli
scrittori” in Italian – is neutralized as “di chi scrive” [of who writes]. CoT-tgt and CoT-src templates are
structured as Questions and Answers. The final gender-neutral translations are highlighted.

Seen Not seen

en it en it

MEPs parlamentari europei writers scrittori
President Signora Presidente manager direttore
everyone tutti employees impiegati

politicians politici musicians musicisti

fishermen pescatori freshmen
studenti

del primo anno

Table 3: Source English and target Italian pairs of seen
and not seen terms used in the exemplar sentences.

respond to a gendered expression in Italian, then
elaborates on the neutralization of each term to pro-
vide the final target translation.

(3) CoT-tgt: similar to CoT-src, but with dif-
ferent steps, i.e. this prompt provides an (interme-
diate) gendered translation and identifies the target
terms to be neutralized in the final translation.

Each prompt is used with 3 exemplar sentences
taken from the institutional domain, a context
where neutral language is increasingly employed,
and which is also covered by GeNTE. To verify
GPT’s ability to generalize from the provided ex-
amples, we experiment with two sets of sentences,
which only differ for the inclusion of terms to be
neutralized that are either i) present in GeNTE –
hence seen – or ii) terms that never occur in the test
set – hence not seen. We list such terms in Table 3,
whereas we refer to Appendix B for further details
concerning our prompting experiments.

4 Manual Evaluation Results

In this section, we present the results obtained by
all our models in BASELINE conditions, and by
GPT in GNT-PROMPTING conditions. Although
the assesment of GNT capabilites can be automated
with the official GeNTE evaluation protocol, the
approach would present two inherent limitations.
Since the protocol simply classifies whether the

Examples Neut. Acc.

A SRC I am pleased to make my contribution.
G –OUT Sono lieto di potere contribuire.

B SRC Respect for standards lies with the judges.
N AccOUT ... spetta all’autorità giudiziaria.

[judicial authority]

C SRC May I quote three actors in this field.
N UnOUT Posso citare tre persone [people]...

D SRC
Commissioner, I would like to
congratulate the rapporteur. P S-Acc

OUT Commissario, vorrei congratularmi
con chi ha redatto la relazione.
[who wrote the report]

Table 4: Output examples with annotations.

whole output translation is gendered or neutral, it
does not consider neutralization success/failure for
multiple terms in the sentence individually, nor the
correctness and acceptability of the corresponding
translations.10 To account for these aspects, we
hence resort to a two-layered manual evaluation
that first distinguishes i) fully Neutral (N) and ii)
fully Gendered (G), from iii) Partially neutral (P)
outputs where one or more gendered expressions
in the sentence are not neutralized. Then, we judge
whether the generated GNTs are acceptable (i.e.
if they sound fluent and adequately represent the
source meaning) on the Likert scale i) acceptable
(Acc), ii) somewhat acceptable (S-Acc), iii) some-
what unacceptable (S-Un), iv) unacceptable (Un).11

Example judgements are shown in Table 4.
For each model and prompt, we analyze the same

200 randomly selected and anonymized output sen-
tences, equally distributed across three evaluators
– all Italian native speakers, highly familiar with

10E.g., I am happy → Sono triste (“sad”) counts as a –
implicitly correct – neutralization, despite its inadequacy.

11More information on the manual analysis setup and guide-
lines is provided in Appendix C.
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(c) GNT-PROMPTING acceptability.

Figure 1: Manual Evaluation Results.9

neutral language.12 While each annotator worked
independently, for each system we ensured a 10%
of output sentences judged by all raters to verify
inter-annotator agreement (IAA).

For the first annotation layer (G,N,P), the Fleiss’
kappa on label assignment (Fleiss, 1971) amounts
to 0.89, which corresponds to “almost perfect
agreement” (Landis and Koch, 1977). Disagree-
ments were all oversights and thus reconciled.

For the acceptability annotations, instead, we
measure IAA with the intraclass correlation co-
efficient (ICC)13 (Fisher, 1925; Shrout and Fleiss,
1979). In this way, rather than solely focusing on la-
bel assignments (i.e. Acc, S-Acc, S-Un, Un) we
can account for the actual distance in scores across
raters on the 4-point acceptability Likert scale, and
thus capture when annotators strongly disagree (e.g.
Acc vs. Un) with respect to closer judgements (e.g.
Acc vs. S-Acc). The resulting ICC amounts to 0.48.
Thus, and as we further discuss in section §4.2,
judging acceptability emerges as a more complex
and variable task featuring moderate agreement.
Notably, the generative nature of the GNT task
does not entail a definitive ‘correct’ answer, and
the diverse perspectives can contribute to a range of
valid judgments (Popović, 2021; Plank, 2022). To
acknowledge such a variability, we did not enforce
reconciliation for disagreements.

4.1 BASELINE Results
In Figure 1a, the results achieved by Amazon,
DeepL and GPT in the BASELINE condition empir-
ically confirm that, used as is, these models are

12They are authors of the paper.
13We use the statistical analysis package Pingouin to

compute the ICC3 score: https://pingouin-stats.org/
build/html/generated/pingouin.intraclass_corr.
html.

unsuitable for GNT. They indeed generate only
a discouraging ~3% of neutral translations (both
N and P), with a ~97% of the outputs comprising
only (mostly masculine) gendered terms. Based
on qualitative insights, such sporadic neutraliza-
tions largely correspond to (highly probable) literal
translations, which incidentally avoid gendered ex-
pressions (e.g. src: we have addressed, ref-it: ci
siamo occupati [took care] → out-it: abbiamo af-
frontato [have addressed]). The few neutralizations
were unsurprisingly considered acceptable by all
evaluators, but their negligible amount and spo-
radic occurrence motivate testing GPT’s versatility
with dedicated prompts.

4.2 GNT-PROMPTING Results

Starting from the distribution of generated neutral-
izations, Figure 1b provides the results achieved by
GPT i) for each prompt template, and ii) across the
two sets of in-domain exemplars, respectively in-
cluding gendered terms that occur in GeNTE (S, for
seen) and terms that are not present in the test set
(NS, for not seen), for a total of six configurations
(§3). A bird’s eye view of these scores reveals very
promising results. Across all configurations, GPT
produces a notable amount of GNTs (~65-70%
N and ~15% P). Interestingly, despite slightly lower
GNT performance for CoT-src,14 we do not find
notable differences across templates for S and NS
examples, thus attesting GPT abilities to generalize
to newly encountered gendered terms.

By turning to the results in Figure 1c,15 instead,

13For automatic evaluation results, see Appendix D.
14We hypothesize that the lack of a contrastive gendered

translation in the prompt negatively impacts the GNT task.
15For the 10% commonly annotated outputs, we include

acceptability results by averaging the scores provided by the
three evaluators.
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the use of NS exemplars seems to slightly reduce the
acceptability degree of the generated GNTs. Still,
the results are overall positive, with the best config-
urations that produce over 60% of good quality
neutralizations, like the one in example B in Table
4, which ensures neutrality while fully preserving
fluency and adequate source meaning. Notably, we
attest a considerable number of somewhat accept-
able (S-Acc) / unacceptable (S-Un) GNTs. Indeed,
for several instances the raters found that GNT was
complex to perform without compromising fluency,
up to the point where in ~20-30% of the cases the
neutral rephrasings generated by GPT were consid-
ered as borderline or not completely satisfactory –
as in Table 4 example D, where a “rapporteur” is
the person in charge of reporting, but not necessar-
ily the one writing a report.

Indeed, the difficulty of judging GNTs is also re-
flected in the modest IAA measured for acceptabil-
ity (§4). Examples such as the following one attest
to the complexities of determining what makes a
good – or acceptable – neutralization:

src: Paramilitary groups have stepped up the mur-
ders journalists and human rights activists...

out: I gruppi paramilitari hanno intensificato
gli omicidi di persone che lavorano nel
giornalismo[people working in journalism]

e persone attive nella difesa dei diritti
umani[people active in human right

defence]

Two raters judged the GNT as S-ACC and S-UN

due to the allegedly awkward repetition of “peo-
ple”. Instead, the third evaluator considered the
GNT unacceptable due also to adequacy issues (i.e.
working in journalism does not necessarily imply
to be a journalist). Overall, we thus recognize
different sensitivities with respect to the potential
trade-off between adequacy, fluency and the satis-
faction of neutral constraints. As such, the qualita-
tive evaluation of GNT emerges as a subjective
task, even across annotators with comparable ex-
pertise in neutral language. This holds implications
not only from an evaluation perspective, but also
for an effective modeling of future automatic GNT
that accounts for such a variability (Kanclerz et al.,
2022; Frenda et al., 2023).

5 Conclusions

In response to the rising demand for inclusive lan-
guage (technologies), this study has focused on

the possibilities of automating the generation of
gender-neutral translations. In particular, given
the limitations of general-purpose MT models due
to the need for dedicated parallel data, we have
explored the potential of GPT to produce gender-
neutral outputs when translating from English into
Italian. Through extensive, fine-grained manual
analyses, we demonstrated that GPT offers promis-
ing avenues, as it can grapple with this complex
task when given only a few examples and still gen-
eralizes beyond them. Importantly, our evaluations
also show that determining the acceptability of
what constitutes a good, acceptable neutral trans-
lation comes with notable subjectivity. To enable
future research, all our manual output annotations
are made available 16 to the community to explore
the modeling and assessment of such variability.

6 Limitations

Naturally, this work comes with several limitations.
One language pair. Our experiments are car-

ried out for en-it only, and we are thus cautious to
indiscriminately generalize our findings. Nonethe-
less, Italian is a highly representative example of
the challenges faced in cross-lingual transfer from
English. Accordingly, we believe that our observa-
tions can broadly apply to other target grammatical
gender languages for high-resource scenarios, too.
Crucially, the decision to work on en-it was deter-
mined by the fact that – to the best of our knowl-
edge – the bilingual GeNTE corpus (§2) is the only
available resource for testing GNT.

Closed-source models. The study relies on dif-
ferent closed-source models. This has reproducibil-
ity consequences, since these systems are regularly
updated, thus potentially yielding future results that
differ from those reported in this paper. As a first at-
tempt to a new, complex task with relevant societal
impact such as GNT, we considered reasonable to
i) focus on general-purpose models used at scale by
millions of users ii) experiment GNT prompting on
the strong GPT model, which as of October 2023
holds the first position on the AlpacaEval leader-
board.17 In the future, we plan to test open-source
models for this task and investigate how to weigh
the strengths of MT (i.e. higher translation quality)
with those of LLMs (i.e. adaptability to neutral
constraints).

Prompts configurations. We tested the use gen-

16https://mt.fbk.eu/gente/.
17https://tatsu-lab.github.io/alpaca_eval/.
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der terms occurring/not occurring in GeNTE for
prompt exemplar sentences (§3), so as to inves-
tigate GPT’s ability to generalize from the given
examples. We recognize that a more comprehen-
sive investigation of GPT’s generalization ability
would advocate for the use of sentence exemplars
from varying domains, with more radical structural
and stylistic differences. However, for this first
exploration we followed existing studies advocat-
ing for the choice of demonstrations based on input
stylistic and semantic similarity (Zhang et al., 2023;
Vilar et al., 2023; Agrawal et al., 2023).

Evaluation. By relying on manual analyses
(§4), we enabled a comprehensive GNT evalua-
tion, and overcame the shortcomings of available
automated protocols. To provide an alternative
method was beyond the scope of this paper, though.
Also, although we attest moderate agreement for
the GNT acceptability judgments, it should not
be regarded as a shortcoming of our evaluation
procedure. Rather, on the one hand, it highlights
the nuances of judging open-ended generations, for
which multiple solutions and subjective perspective
are valid (Basile et al., 2021; Rottger et al., 2022).
On the other, as newly emerging forms, the per-
ceived acceptability of neutral language is highly
dependent on people’s attitudes and exposure to
such forms, and it is reasonable to expect that
they will change over time (Koeser and Sczesny,
2014). Among other aspects, our annotated sen-
tences could also allow to i) model this subjectivity,
and ii) track the acceptability trajectory of GNT in
time.

7 Ethics Statement

By investigating the automation of gender-neutral
translation, this work has an inherent ethical
component. In particular, it is concerned with
the impact of translation technologies that re-
flect exclusionary language, which potentially
reinforces stereotypes, masculine visibility, and
preclude the representation of non-binary gen-
der identities.18 Specifically, here we focus on
gender-neutralization techniques that rework ex-
isting forms and grammars to avoid using need-
less gendered terminology, and which are endorsed
by several institutions (e.g. universities, the EU).
These tactics can be viewed as an example of Indi-
rect Non-binary Language (INL) (Attig and López,

18We use non-binary as an umbrella term to encompass all
identities within and outside the masculine/feminine binary,
and that are not represented by binary language expressions.

2020), which prevent misgendering by eschew-
ing gender assumptions and, as we do in this pa-
per, equally elicit all gender identities in language
(Strengers et al., 2020). Instead, to enhance the
visibility of non-binary individuals, Direct Non-
binary Language (Attig and López, 2020) resorts
to the creation of neologisms, neopronouns, or even
neomorphemes (Lauscher et al., 2022). There-
fore, many concurring forms can fulfill the de-
mand for inclusive language (Comandini, 2021;
Knisely, 2020; Lardelli and Gromann, 2023). It is
thus important to emphasize that the neutralizing
techniques implemented in our work are not pre-
scriptively intended. Instead, they are orthogonal
to other approaches and non-binary expressions for
inclusive language (technologies) (Lauscher et al.,
2023; Ginel and Theroine, 2022).
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A Test set and GNT

The GeNTE corpus (Piergentili et al., 2023b) rep-
resents, to the best of our knowledge, the only
available resource for neutral translation into gram-
matical gender languages and for a variety of gen-
der phenomena. The only other resource being
the synthetic dataset by Cho et al. (2019), which
only focuses preserving pronouns neutrality for
English→Korean, namely into a genderless target
language (Stahlberg et al., 2007). The dataset INES
(Savoldi et al., 2023), instead, focuses on inclusive
translation from a grammatical gender language –
namely German – into English.

For each of its entry sentences, GeNTE includes
aligned i) source English, ii) gendered reference
translation, and iii) gender-neutral references trans-
lation triplets. The 750 sentences which we are
focusing on contain at least one – and potentially
several more – source expressions corresponding to
Italian gendered terms that require to be either neu-
tralized. Their gendered translations corresponds
to the original Europarl references (Koehn, 2005),
which propagate the use of masculine generics to
refer to generic referents (e.g., en: It represents a
threat to man and animals→ ref-g: Rappresenta
una minaccia per l’uomo e gli animali) or assign
target masculine forms to unspecified referents
(e.g., en: All the citizens→ ref-g: Tutti i cittadini).
The neutral translations are created by replacing the
gendered expressions and terms with neutral alter-
natives (e.g. essere umano[human beings], tutta la
cittadinanza][the whole citizenship]) with differ-
ent degrees of interventions to ensure i) adherence
to the source meaning, and ii) fluency in the target
language, so to avoid perceiving the use of neutral
language as intrusive and unsuitable. Accordingly,
for each source gender-ambiguous human entity it
is ensured that a gender-neutral translation in the
target language is feasible.

B Prompts

This section discusses relevant aspects of the
prompts used in the experiments and the interaction
with GPT-4.

Language. As English emerged as the most ef-
fective language for prompting (Shi et al., 2022;

Zhang et al., 2023), we use English instructions in
our prompts, except for the Italian examples in the
task demonstrations.

Task demonstrations. We use 3-shots prompts,
which were shown to be a valid compromise be-
tween performance and prompt length (i.e. affect-
ing costs and inference time) in our preliminary
experiments. The creation of sentence exemplars
proceeded as follows:

• The three initial parallel source sentences and
the gendered references used in the demon-
strations were selected from Europarl’s en-it
test set, excluding any entry that was already
included in GeNTE.

• Source and reference translations were then
modified to the include pre-selected seen gen-
dered terms, which occur more than 20 times
in the used GeNTE subset, and ii) the unseen
terms, which never occur in the used GeNTE
subset.

• For such parallel sentences, all gender-neutral
translations were produced by one of the eval-
uators, a linguist experienced with neutral lan-
guage strategies.

• Finally, the resulting 6 exemplar sentences
(shown in Table 5) and their GNTs were ap-
proved by all evaluators before proceeding
with the experiments.

Length. Table 6 reports the length of each
prompt configuration (each template and set of
sentence demonstrations) measured per number of
tokens. The values were calculated via OpenAI’s
tokenizer.19

Model interaction. We interacted with GPT-4
via the chat completions API. Iterating over the
test set, we included the complete content of the
prompt and the input source sentence in a single
message with the user role. The overall cost for
the generation of 200 completions for each of the
three prompts with both sets of shots was 29.15$.

Post-processing To perfom our manual analysis,
we post-process GPT’s output so to only extract the
final neutral translations to be evaluated.

19https://platform.openai.com/tokenizer.
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Seen

SRC Secondly, how far does it increase transparency and accountability of the MEPs?
GEND Secondariamente, fino a che punto aumenta la trasparenza e la responsabilità dei parlamentari europei?

NEUT
Secondariamente, fino a che punto aumenta la trasparenza e la responsabilità dei membri del Parlamento
Europeo [of the members of the European Parliament]?

SRC President, everyone must continue to adopt an ambitious approach on these issues.
GEND Signora Presidente, su tali questioni sarà necessario che tutti continuino a dare prova d’ambizione.

NEUT
Presidente [President], su tali questioni sarà necessario che ogni persona [every person] continui a dare
prova d’ambizione.

SRC Several fishermen have joined with the politicians in Belgrade.
GEND A Belgrado, molti pescatori si sono schierati dalla parte dei politici.

NEUT
A Belgrado, molte persone che lavorano nella pesca [many people who work in fishery] hanno preso le
parti [have taken the side of] di chi fa politica [of those who engage in politics].

Not seen

SRC Secondly, how far does it increase transparency and accountability of the writers?
GEND Secondariamente, fino a che punto aumenta la trasparenza e la responsabilità degli scrittori?

NEUT
Secondariamente, fino a che punto aumenta la trasparenza e la responsabilità di chi scrive [of those who
write]?

SRC HR manager, the employees must continue to adopt an ambitious approach on these issues.

GEND
Direttore delle risorse umane, su tali questioni sarà necessario che gli impiegati continuino a dare prova
d’ambizione.

NEUT
Responsabile delle risorse umane [HR manager], su tali questioni sarà necessario che il personale [the
staff] continui a dare prova d’ambizione.

SRC Several freshmen have joined with the musicians in Belgrade.
GEND A Belgrado, molti studenti del primo anno si sono schierati dalla parte dei musicisti.

NEUT
A Belgrado, molte matricole [many first-years] hanno preso le parti [have taken the side of] delle
persone del mondo della musica [of the people in the music business].

Table 5: All the <source sentence, gendered translations, and neutral translations> triplets used as demonstrations in
both the S and NS sets of examples. Relevant terms for the gendered/neutral comparison are in bold. GNT glosses
are available in square brackets.

Prompt Tokens

Contr_S 294
Contr_NS 304
CoT-src_S 560
CoT-src_NS 568
CoT-tgt_S 743
CoT-tgt_NS 781

Table 6: Number of tokens of for each of the six prompt
configurations.

C Manual Analysis

In our analysis, we evaluate the same set of 200 out-
put translations for each models in the BASELINE

condition (Amazon, DeepL, GPT) and for each of
the six GNT-PROMPTING configurations of GPT
(i.e. Contr/CoT-tgt/CoT-src, with both S and NS
exemplares). Hence, for a total of 9 generations
and 1,800 output sentences. The evaluations were
carried based on detailed guidelines – created by
the same evaluator that designed the prompt exam-
ples – which are available with the annotated data
release.

Evaluation Design. To annotate the neutrality
and acceptability of the outputs sentence, we pro-
vided all evaluators with the GeNTE i) source
English sentences, and the ii) gendered reference
translations, so to allow them to – respectively –
identify which gendered terms had to be neutral-
ized in the output as well as judge the adequacy of
the translation with respect to the input sentence.
By design, the annotators were tasked to only fo-
cus on and judge the portions of the sentence that
had to be neutralized, thus disregarding the overall
quality of rest of the sentence.20 To ensure consis-
tency and train the evaluators, we conducted a first
round of trial annotations, which allowed to us to
address liminal instances and identify blindspots.
We have updated the final annotations guidelines
accordingly.

20To facilitate this task, we i) automatically extracted all
gendered terms in the Italian references, i.e. only words differ-
ing between the gendered and neutral reference in GeNTE, and
ii) marked them in the sentences provided to the annotators.
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Figure 2: Neutrality for the BASELINE and the GNT-
PROMPTING settings evaluated by the classifier.

Overall Neutral Gendered
Amazon 85.35 7.84 86.53
DeepL 86.94 8.70 88.14
GPT-4 86.30 12.00 87.43
Contr_NS 74.65 84.69 49.46
Contr_S 79.30 87.42 61.22
CoT-src_NS 77.55 85.11 64.41
CoT-src_S 79.34 86.81 66.07
CoT-tgt_NS 75.50 87.08 47.62
CoT-tgt_S 79.07 87.90 55.81

Table 7: Percentage agreement (F1 scores) between
classifier-based and manual annotation evaluations, with
percentages presented for both the overall agreement
(weighted F1) and individual class agreements.

D Automatic Evaluation

We report the automatic evaluations results for all
models and GPT configurations using the GeNTE
evaluation protocol.21 As displayed in Figure 2, the
classifier’s scores contrast with the outcomes of our
manual analysis. For example, there is a visible dis-
parity in the number of output sentences of the MT
systems automatically classified as GNTs. For this
reason we exploit our manual analysis contribution
to verify the reliability of such an evaluation by
calculating i) Kendall’s Tau (τ ) on the GNT system
rankings resulting from the classifier and manual
analysis,22 and ii) percentage agreement calculated
as F1 scores of the classifier on the ground truth
labels obtained with the manual evaluation (see Ta-
ble 7). To ensure a fair assessment of the classifier
– which offers a binary classification (Neutral vs

21Classifier v2.0: https://github.com/hlt-mt/
fbk-NEUTR-evAL/blob/main/solutions/GeNTE.md.

22Calculated with SciPy (https://scipy.org/).

Gendered) – we combined the G and P human la-
bels. The τ coefficient yields a positive value of
0.91, indicating that the classifier correlates very
well with humans in raking systems based on the
amount of generated GNTs. In general, the F1 re-
sults vary depending on the system, showing vary-
ing levels of satisfaction. F1 scores range from 7.84
for Amazon, where the number of true neutral sen-
tences is notably low (as reflected in the weighted
global scores), to 87.90 in the CoT-tgt_S for the
neutral class. This calls for future investigation on
the performance of the classifier, which is however
beyond the scope of this paper.
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