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Abstract

We address the task of machine translation
(MT) from extremely low-resource language
(ELRL) to English by leveraging cross-lingual
transfer from closely-related high-resource
language (HRL). The development of an MT
system for ELRL is challenging because these
languages typically lack parallel corpora and
monolingual corpora, and their representations
are absent from large multilingual language
models. Many ELRLs share lexical similarities
with some HRLs, which presents a novel
modeling opportunity. However, existing
subword-based neural MT models do not
explicitly harness this lexical similarity, as they
only implicitly align HRL and ELRL latent
embedding space. To overcome this limitation,
we propose a novel, CHARSPAN, approach
based on character-span noise augmentation
into the training data of HRL. This serves as
a regularization technique, making the model
more robust to lexical divergences between
the HRL and ELRL, thus facilitating effective
cross-lingual transfer. Our method significantly
outperformed strong baselines in zero-shot
settings on closely related HRL and ELRL pairs
from three diverse language families, emerging
as the state-of-the-art model for ELRLs.

1 Introduction

Recent advancements in multilingual modeling
have expanded the coverage of Natural Language
Processing (NLP) technologies to many LRLs
by transferring knowledge from HRLs to LRLs.
As a result, this progress has led to remarkable
advancement in multiple NLP tasks, including MT,
transliteration, natural language understanding, and
text generation (Johnson et al., 2017; Kunchukuttan
et al., 2018; Conneau et al., 2020; Liu et al., 2020)
for LRLs. However, most of the existing work
has focused on the top few hundred languages

∗Work done during first author’s internship at Microsoft.
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  HRL (HIN):            इस सीज़न म� बीमारी के शु�आती मामले जुलाई के आ�खर म� सामने आए थे।
  ENG:                          The initial cases of the disease this season were reported in late July.

  HRL (HIN)+CSN:  ए_ सीज़न म बीमारी के __प_ मामले जुलाई के आ�खर म सामने आए _।

  ELRL1 (BHO):      ए सीजन म� ई बीमारी क पिहला मामला जुलाई क आ�खर म� सामने आ गइल रहले।

  ELRL2 (HNE):       ए सीजन म ए बीमारी के पिहला मामला जुलाई के आ�खर म सामने आए रिहस।

Figure 1: Hindi (HIN; HRL), Bhojpuri (BHO; ELRL) and Chhattisgarhi (HNE;
ELRL) parallel sentences. Additionally, the corresponding noisy Hindi example
with character-span noise. BHO and HNE are closely related to HIN.

represented on the web (Joshi et al., 2020b). The
availability of monolingual corpora and/or parallel
corpora for these languages has been the driving
force behind this progress, achieved either through
direct training, few-shot training, or learning with
large multilingual language models (mLLMs).
This enables learning common embedding spaces
that facilitate cross-lingual transfer (Nguyen
and Chiang, 2017; Khemchandani et al., 2021).
However, there is a long tail of languages for which
no monolingual or parallel corpora are available,
and they are absent from mLLMs. These languages
are referred to as ELRLs. This paper is a step
toward building MT systems for ELRLs.

Fortunately, many of ELRLs are lexically
similar to some HRLs. Lexical similarity refers
to languages sharing words with similar form
(spelling and pronunciation) and meaning.1 This
includes cognates, lateral borrowings and loan
words. We explore if cross-lingual transfer can
be enabled or improved for ELRLs by explicitly
taking lexical similarity into account. In particular,
we explore MT from an ELRL to another language
(English) with transfer enabled by a related HRL
on the source side. Our key insight is that cognates
in ELRL having similar spelling to the HRL word
can be thought of as misspellings of the latter. For
example, the wordlgtA (lagta) in Hindi (HRL) is
spelled as lAgatA (laagata) in Bhojpuri (LRL).
If we make the HRL model robust to spelling
variations, it will improve cross-lingual transfer
to related ELRLs. To achieve spelling variation

1https://en.wikipedia.org/wiki/
Lexical_similarity
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Figure 2: Overview of proposed CHARSPAN model

robustness, we propose novel character-span noise
augmentation (CHARSPAN) in the HRLs training
data. A sample example is presented in Fig. 1. This
acts as a regularizer and makes the model more
robust to perturbations in representations of words
in closely related languages and improves model
generalization for lexically similar languages.

Our key contributions are: (1) We propose
a novel model CHARSPAN: Character-Span
noise augmentation, which considers surface
level lexical similarity to improve cross-lingual
transfer between closely-related HRLs and LRLs.
The proposed approach shows a 12.5% chrF
improvement over baseline NMT models across
all considered ELRLs. Our model also shows
performance improvement over various data
augmentation baselines. (2) We show that our
approach generalizes across three typologically
diverse language families, comprising 6 HRLs
and 12 ELRLs. (3) We provide detailed ablation
and analysis to gain insights and demonstrate the
effectiveness of our approach.

2 Related Work

Traditionally, character-level noise has been
used to improve the robustness of MT systems
to spelling mistakes and ASR errors (Sperber
et al., 2017; Vaibhav et al., 2019; Karpukhin
et al., 2019). However, these approaches
are mostly investigated for their impact on
robustness rather than for cross-lingual transfer.
More recently, token/BPE-level general noise
augmentation approaches such as WordDropout
(Sennrich et al., 2016a) and SwitchOut (Wang et al.,
2018) have been proposed, but they have limited
cross-lingual transfer capabilities. Close to our
work, Aepli and Sennrich (2022) and Blaschke
et al. (2023) show that augmenting data with
character-level noise can help cross-lingual transfer.
The models were evaluated with NLU tasks. n
contrast, our work focuses on MT, an NLG task,
which is much more challenging than an NLU

task in a zero-shot setting. Furthermore, we
explore span noise augmentation, which considers
larger lexical divergence (less lexical similarity
between the HRL and ELRL) and enables better
cross-lingual transfer.

In other work on utilizing lexical similarity,
Patil et al. (2022) proposed OverlapBPE, which
takes lexical overlap between HRL and LRL into
account while learning BPE vocabulary. Provilkov
et al. (2020) introduced BPE-Dropout, providing
on-the-fly non-deterministic segmentations while
training. Soft Decoupled Encoding (SDE) Wang
et al. (2019) utilizes lexical information without
pre-segmenting the data by decoupling the lexical
and semantic representations. SDE requires small
monolingual data for modeling. In contrast, the
CHARSPAN model does not require any training
resources for ELRLs. It only needs script similarity
between the HRL and ELRL.

3 The CHARSPAN Model

Figure 2 presents an overview of the proposed
CHARSPAN model, for ELRL to English MT task.
The model has two phases: supervised training
with noisy HRL and zero-shot generation with
ELRLs.
Model Training and Generation: In the
supervised training phase, the source-side training
data of the HRL pair (DH) is augmented with
character-span noise (described later) to create
the augmented parallel corpus (D′

H = η(DH)),
where η is the noise function. η(DH) can be
considered as the proxy parallel data for the
ELRL-English translation task. Next, we learn a
subword vocabulary (V) using D′

H, i.e., the noise
is augmented before learning the vocabulary. A
standard encoder-decoder transformer model (M;
Vaswani et al. (2017)) is then trained with D′

H and
V from scratch in a supervised setting to obtain
the trained model M′

. Finally, in the zero-shot
generation phase, for a given source ELR language
L, the target English translation is obtained using
M′

and V in the zero-shot setting.
Character Span Noise Function: The noise
functions serve to make the model robust to
spelling variations between related languages.
This acts as a regularizer and helps improve
cross-lingual representation and transfer.
Intuitively, the existing unigram character
noise might address limited lexical variations
between HRL and ELRLs. To address larger
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lexical divergence, we propose a CHARSPAN

where span noise is augmented. Formally, for
a given sentence, x ∈ X from DH(X ,Y) with
indices I = 1, 2, . . . , |x|, a subset of these indices
Is ⊂ I is randomly and uniformly selected as
the starting point for the noise augmentation.
Subsequently, 1-3 character gram spans are
iteratively sampled until the noise augmentation
budget (i.e., 9% - 11% characters) is exhausted.
We employ span deletion and span replacement
with a single random character of ELRL, both
with equal probability as the noising operations2.
This CHARSPAN is inspired by SpanBERT (Joshi
et al., 2020a)3. A formal algorithm is presented
in the Algorithm 1. We conducted experiments
with all three operations (including insertion), with
different percentages of noise and various other
experimental setups, as outlined in Appendix Table
13. We found the presented noise augmentation
configuration to be the most effective.

4 Experimental Setup

We seek answers to the following questions:
(1) Does the span noise augmentation improve
cross-lingual transfer, i.e., zero-shot performance
for related ELRLs for MT task? (2) Why does
the model’s cross-lingual transfer improve? -
Insights from the learned embedding space. (3)
Is the proposed approach scalable to typologically
diverse language families?

4.1 Datasets and Languages
We evaluated the performance of the proposed
model on three language families: Indo-Aryan,
Romance, and Malay-Polynesian. We considered
six HRLs and twelve LRLs (two HRLs and
several ELRLs from each family). All the ELRLs
are lexically similar and have the same script
with corresponding HRLs, as shown in Figure
4 (Appendix D). Parallel training data for the
HRLs was selected from publicly available datasets.
The model’s performance was evaluated on the
FLORES-200 devtest set (Costa-jussà et al., 2022).
Dataset statistics are presented in the Appendix.

4.2 Baselines and Evaluation Metrics
Based on recent literature in low-resource MT, we
compare our approach with the following strong

2We explored some linguistically motivated noising
schemes, but these were not beneficial.

3SpanBERT applies denoising to subword tokens while
we apply it at the character level.

baselines: (a) Vanilla NMT with BPE segmentation
(BPE; Sennrich et al. (2016b)), (b) General data
augmentation methods: (Sub)WordDropout and
(Sub)WordSwitchOut, (c) Methods using lexical
similarity: Overlap BPE, BPE-Dropout, SDE and
unigram char-noising (Aepli and Sennrich, 2022).
Baselines and model training details are provided
in Appendix. Following recent studies on MT
for ELRLs (Costa-jussà et al., 2022; Siddhant
et al., 2022), we use chrF (Popović, 2015) as the
primary evaluation metric. In addition, we also
report BLEU (Papineni et al., 2002) and two neural
metrics viz., BLEURT (Sellam et al., 2020) and
COMET (Rei et al., 2020) scores in Appendix C.

5 Results and Analyses

The proposed CHARSPAN and baseline models’
results across different language families are
presented in Table 1. The following are the major
observations:

Noise vs. Baselines: All the proposed noise
augmentation models outperform vanilla NMT and
all baseline models that utilize lexical similarity
(i.e., OBPE, BPE-Dropout, and SDE). This trend is
consistent across all language families and ELRLs.
Moreover, existing lexical similarity-based
baselines do not provide any major improvement
in translation quality over vanilla NMT. Possible
reasons for this can be twofold: (1) most of
the ELRLs either do not have monolingual data
(OBPE and SDE are required) or have small data,
and (2) we observe that in OBPE, approximately
90% of vocabulary tokens are already overlapping
among HRLs and ELRLs, leaving little room for
learning additional overlapping tokens. This is
expected, as these two language sets are closely
related. The proposed CHARSPAN method also
outperforms general data augmentation methods
like (Sub)WordDropout and (Sub)WordSwitchout,
showing its effectiveness.

Unigram vs. Char-Span Noise: We are
first to explore unigram char noise (Aepli and
Sennrich, 2022) for related language MT. We
see that unigram char noise is beneficial for
the task. However, our proposed CHARSPAN

provides significant improvements over unigram
character noise. We believe our proposed data
augmentation is more effective in bringing
language representations closer.
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Algorithm 1 CHARSPAN: Character-span Noise Augmentation Algorithm
Require: [Inputs] high resource language data (DH(X ,Y)) from H-En parallel corpus, range of noise augmentation

percentage [P1, P2], set of noise augmentation candidates C (see Fig. 3), largest character n-gram size N that will
be considered for noising

Ensure: [Output] Noisy high resource language data (D′
H)

1: Augmentation percentage (Ip) = random float(P1, P2) # find a random float value between P1 and P2
2: Augmentation factor (α) = int(Ip/N )
3: for each h in X do
4: Let sz be the number of characters in h.
5: Let Indices = {⌈(N/2)⌉, · · · , sz − ⌈(N/2)⌉} # Leaving ⌈(N/2)⌉ character indices from beginning and end
6: Randomly select S = N ∗ α character indices from Indices
7: for each k in S do
8: Span gram (SpN ) = sample character-span size uniformly from {1, 2, . . . , N} with equal probability
9: Operation (Op) = sample operations uniformly from { delete, replace } with equal probability

10: Cd ={}
11: if (Op) is replace then
12: Candidate char (c) = single sample character uniformly from C with equal probability
13: Append candidate char c in Cd

14: end if
15: if SpN == 1 then
16: Perform the operation (Op) with Cd at the index k
17: else
18: Perform the operation (Op) with Cd at the indexes from k − int((SpN − 1)/2) to k + int((SpN − 1)/2)
19: end if
20: end for
21: end for

Models Indo-Aryan Romance Malay-Polynesian AverageGom Bho Hne San Npi Mai Mag Awa Cat Glg Jav Sun
BPE* 26.75 39.75 46.57 27.97 30.84 39.79 48.08 46.28 33.32 53.75 31.44 32.21 38.06
WordDropout 27.01 39.57 46.19 28.13 31.91 40.31 47.37 46.48 34.20 52.21 32.03 32.52 38.16
SubwordDropout 27.91 40.11 46.26 29.46 32.56 40.99 47.91 47.43 35.09 52.28 33.38 33.47 38.90
WordSwitchOut 25.17 38.81 45.87 26.21 29.95 39.69 47.53 44.54 32.98 51.81 31.84 32.49 37.24
SubwordSwitchOut 26.08 38.84 45.84 28.19 30.81 40.19 47.28 45.93 33.26 53.71 31.24 32.06 37.78
OBPE 27.90 40.57 47.46 28.52 31.99 40.71 49.10 47.16 32.33 52.77 29.98 30.88 38.28
SDE 28.01 40.91 47.88 28.66 32.03 40.82 48.96 47.30 33.72 53.95 31.84 31.24 38.77
BPE-Dropout* 28.65 40.84 46.58 28.80 31.88 40.79 47.86 47.32 34.56 55.83 32.01 32.97 39.00
unigram char-noise** 28.85 42.53 49.35 29.80 34.61 42.67 50.97 49.43 43.16 54.81 35.42 36.69 41.52
BPE → SpanNoise*** (ours) 28.66 41.94 49.48 30.49 35.66 44.75 50.55 49.21 43.11 54.89 36.12 37.11 40.16
CHARSPAN (ours) 29.71 43.75 51.69 31.40 36.52 45.84 51.90 50.55 43.51 55.46 36.24 37.31 42.82
CHARSPAN + BPE-Dropout (ours) 29.91 44.02 51.86 30.88 37.15 46.52 52.99 51.34 44.93 55.87 36.97 38.09 43.37

Table 1: Zero-shot chrF scores results for ELRLs → English machine translation. We conducted statistical significance tests to
compare CHARSPAN with the diverse baselines: BPE, BPE-Dropout, Unigram char-noise, and BPE → SpanNoise, using paired
bootstrap sampling (Post, 2018). CHARSPAN improvements over these baselines are statistically significant with *(p < 0.0001),
**(p < 0.001), and *** (p < 0.05). Similar observations hold across other evaluation metrics presented in the Appendix.

When to introduce noise? To understand when
noise augmentation is effective, we augmented
noise after learning the vocabulary in the baseline
(BPE → SpanNoise). This leads to improved
performance over all baselines. This enables
scalability since augmenting noise after learning
the vocabulary allows the application of this
method to large language models that have fixed
vocabulary. However, the results suggest that
applying noise prior to learning the vocabulary,
as in CHARSPAN, yields slightly better results.
Further, we conducted statistical significance
tests to compare BPE → SpanNoise with BPE,
BPE-Dropout, and Unigram char-noise baselines
using paired bootstrap sampling (Post, 2018). We
observed that the BPE → SpanNoise model is

superior to the baseline BPE and BPE-Dropout
methods (statistically significant at p < 0.001),
demonstrating that adding noise after segmentation
is also highly effective. Additionally, we noticed
that BPE → SpanNoise outperforms unigram
char-noise for 11 out of 12 languages at p < 0.05.
Thus, introducing character span noise after
segmentation provides a statistically significant
improvement over baselines, which can be
advantageous when working with pre-trained
models.

Combining noise and BPE-dropout: We see that
combining CHARSPAN with BPE-dropout gives
the best-performing results.

Performance on Less Similar Languages: We
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Langs. BPE Unigram Noise Char-Span Noise Sim
Guj-Deva 34.36 36.17 38.09 0.42
Pan-Deva 29.18 33.34 36.50 0.40
Ben-Deva 25.35 28.42 30.28 0.34
Tel-Deva 23.30 24.05 24.12 0.27
Tam-Deva 13.81 13.69 14.40 0.15

Table 2: Zero-shot chrF scores with additional lexically less
similar languages. HRL: hi and mr; sim: lexical similarity

evaluate the model’s performance on languages
that are less lexically similar to the considered
languages and have different scripts. The
languages are Gujarati (Guj), Punjabi (Pan),
Bengali (Ben), Telugu (Tel), and Tamil (Tam). We
first perform script-conversion of these languages
to HRL by Kunchukuttan (2020)). The training
setup is similar to the Indo-Aryan family. Table
2 shows that the ELRLs, which are lexically
similar to HRLs, demonstrate a larger performance
gain, while those with less lexical similarity show
limited improvement. This suggests that the
model’s effectiveness is closely tied to the lexical
similarity of the languages in CHARSPAN.

Impact of Cross-lingual Transfer: In
this analysis, we investigate the encoded
representations of the sentences to gain insights
into how performance improves with char-span
noise augmentation. We collected pooled
last-layer representations of the encoder for
HRL and LRLs across all parallel test examples
using BPE, unigram char-noise (UCN), and
the CharSpan models. We then calculated the
average cosine similarity scores across the test
set, presented in Table 3. Notably, the CharSpan
model demonstrates high similarity, indicating
a well-aligned embedding space for enhanced
cross-lingual transfer.

Models Bho Hne San Npi Mai Mag Awa
BPE 0.761 0.793 0.701 0.744 0.762 0.809 0.792
UCN 0.853 0.888 0.765 0.821 0.849 0.897 0.883
CHARSPAN 0.871 0.909 0.789 0.858 0.868 0.913 0.901

Table 3: Average cosine similarity between representations
of source HRLs and source ELRLs for Indo-Aryan family.
Results for other families are in the Appendix F.

Importance of Selecting Right HRLs: Table
4 presents an analysis of the impact of lexically
diverse HRLs used for training. Results indicate
that the CHARSPAN model demonstrates a
performance gain when lexically similar HRLs
were considered for noise injection. When the
HRLs are less lexically similar, a degradation in
performance is observed. These findings indicate

the importance of using lexically similar HRLs.

Model Hne Mag Mai Npi San
Training with Lexically Similar HRLs: Hin, Mar, Pan, Guj, Ben

BPE 43.04 45.08 39.51 31.92 29.29
Char-span Noise 45.89 45.82 41.67 34.40 30.34
Training with Lexically less similar HRLs: Hin, Tel, Tam, Mal, Ora
BPE 41.87 42.27 36.95 30.50 26.95
Char-span Noise 39.93 40.34 37.98 29.20 25.84

Table 4: Analysis experiment to show zero-shot chrF scores
with lexically diverse HRLs. Due to computational constraints,
we have considered 1 million parallel data for each HRL.

Impact of small ELRL parallel Data: Here,
we combined small ELRLs parallel data with
the HRLs training data for BPE and CHARSPAN

model. The results are presented in Table 14 in the
appendix E. The additional data boosts both model
performance, and CHARSPAN still outperforms the
BPE model.

Error Analyses: In Appendix G, we have
conducted two error analyses: Transliteration
Errors and Grammatical Well-formedness. In
Fig. 7, it can be observed that the unigram
model often performs transliteration instead of
translation for many input words. However, the
proposed model does not encounter such errors,
and the impact of transliteration errors is minor.
This observation holds across test data. This
is possible because CHARSPAN augments the
span, resulting in stronger regularization and
enabling more contextual zero-shot cross-lingual
transfer. In Table 16, there is a comparison
of sentence well-formedness, indicating that
zero-shot generations for the unigram model,
as opposed to CharSpan, are not grammatically
well-formed.

6 Conclusion

This study presents a simple yet effective
novel character-span noise argumentation model,
CHARSPAN, to facilitate better cross-lingual
transfer from HRLs to closely related ELRLs. The
approach generalizes to closely related HRL-ELRL
pairs from three typologically diverse language
families. The proposed model consistently
outperformed all the baselines. To the best of
our knowledge, we are the first to apply noise
augmentation for the NLG task. In the future,
we will extend CHARSPAN to other NLP tasks,
combine it with pre-trained models, and investigate
noise augmentation in English-to-ELRL MT task.
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Limitations

The current work only addresses cross-lingual
transfer during translation from ELRLs to English.
It still remains to be investigated if noise
augmentation is beneficial for translation from
English to extremely low-resource languages.
We assume that the related languages also use
the same script or scripts that can be easily
mapped/transliterated to each other. This method
might not be effective for transfer between related
languages that are written in very different scripts
e.g. Hindi is written in the Devanagari script, while
Sindhi is written in the Perso-Arabic script.

Ethics Statement

We have formulated low-resource languages as a
misspelled version of a high-resource language.
We would like to clarify that our suggestion is
not that the low-resource languages are misspelled
versions of higher-resource-related languages. This
is not a linguistic claim, and as would be evident
from comparative linguistics, most such scenarios
are likely co-evolutions of related languages. This
perspective of related languages is only a technical
tool to make use of the fact that the end result of
the co-evolution of related languages is that they
“look like” spelling variations of each other, and
hence, robustness methods applied to NMT can be
adapted for this scenario.

This work did not involve any new data
collection and did not employ any annotators for
data collection. We use publicly available datasets
for experiments reported in this work. Some of
these datasets originate from webcrawls and we do
not make any explicit attempt to identify any biases
in these datasets and use them as-is.
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A Baselines

We compare the proposed model performance with
the following strong baselines:

• Vanilla NMT (BPE; Sennrich et al.
(2016b)): Neural Machine Translation model
training with the standard BPE algorithm.

• WordDropout (Sennrich et al., 2016a): In
this baseline, randomly selected words in the
source/target sentence have their embeddings
set to 0. We have selected 10% words in the
source sentence as the noise augmentations
are done in the source.

• SubwordDropout: It is a variant of
WordDropout baseline where we drop the
BPE tokens instead of words.

• WordSwitchOut (Wang et al., 2018):
This baseline employs a data augmentation
technique where random words in both the
source and target sentences are replaced with
randomly selected words from their respective
vocabularies. We have utilized the officially
released implementation with a 10% word
replacement rate.

• SubwordSwitchOut: It is a variant of
WordSwitchOut baseline where we use the
BPE tokens instead of words.

• Overlap BPE (OBPE; Patil et al. (2022)):
The approach modifies the BPE algorithm
to encourage more shared tokens between
high-resource and low-resource languages
tokens in the vocabulary. This model required
a monolingual dataset for ELRLs. We
use a small monolingual dataset, based on
availability, for the ELRLs. Earlier work
applied OBPE for NLU tasks only - we are
the first to investigate it for MT.

• Soft Decoupled Encoding (SDE; (Wang
et al., 2019)): In the SDE approach, the
authors have designed a framework that
effectively decouples word embeddings into
two interacting components: representing
the spelling of words and capturing the
latent meaning of words. This modeling
technique has demonstrated its effectiveness
in improving the performance of low-resource
languages. In our study, we utilized the
officially released implementation of SDE.

• BPE-Dropout (Provilkov et al., 2020):
It utilizes the BPE algorithm to learn
the vocabulary and sample different
segmentations for input text during training
(on-the-fly).

• Unigram Character Noise (UCN; Aepli
and Sennrich (2022)): Inspired by the
UCN model, we augment character-level
noise (with all three operations) instead of
char-span, the rest of the setup is similar to
CHARSPAN.

• BPE → Char-Span Noise: In this
ablation, we first learn vocabulary with clean
HRLs. Subsequently, character-span noise
is augmented into training data. This will
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demonstrate the significance of learning the
BPE vocab with the noisy dataset.

• Char-Span Noise + BPE-Dropout: In this
model, we train the BPE-Dropout model with
char-span noise augmented HRLs training
dataset.

B Model Training Details

We used the FairSeq library (Ott et al., 2019)
to train proposed CHARSPAN and other baseline
models. Training and implementation details are
presented in Table 6. The best checkpoint was
selected based on validation loss. The training
time for the Indo-Aryan family of languages
was approximately 8 hours; for the Romance
languages, it was approximately 7 hours, and for
the Malay-Polynesian languages, it was less than
1 hour. Each language inference was completed
within a time frame of less than 5 minutes. Due
to computational limitations, the performance of
the model was reported based on a single run.
During the generation process, a batch size of
64 and a beam size of 5 were used, with the
remaining parameters set to the default values
provided by FairSeq. For data-pre-processing and
script conversion for Indic languages, we use the
Indic NLP library6.

C Performance Evaluation with BLEU,
BLEURT and COMET Metrics

BLEU7, BLEURT and COMET scores are reported
in Table 7, 8 and 9, respectively. We observe the
same trends as reported in the main paper for chrF8.

D Language Similarity Histogram

As depicted in Fig. 4, a similarity analysis in
the form of a heatmap for the selected language
families and languages is presented. The analysis
shows that extremely low-resource languages
(ELRLs) are closely related to high-resource
languages (HRLs). The lexical similarity between
languages was measured using character-level
longest common subsequence ratio (LCSR) metric
(Melamed, 1995). The similar heat map is

6https://github.com/anoopkunchukuttan/
indic_nlp_library

7computed with SacreBLEU BLEU signature:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1

8computed with SacreBLEU chrF signature:
nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1

also presented for less similar languages in Fig.
5. These languages were used in the multiple
analyses.

E Impact of Additional Small ELRLs
parallel Data

Here, we combined small ELRL parallel data with
the HRLs training data for BPE and CHARSPAN

model. The results are presented in Table 14. The
inclusion of additional data boosts both model
performance, and CHARSPAN still outperforms the
BPE model.

F Effect of Cross-Lingual Transfer

We did the following studies to understand why
noise helps. The effectiveness of cross-lingual
transfer depends on how well-aligned the
representations of the HRL and ELRL are.
Our hypothesis is that regularization with
char-level noise brings the representations of
the HRL and ELRL closer to each other, thus
improving cross-lingual transfer. To measure
these, we computed the cosine similarity of
encoder representations from parallel HRL and
ELRL sentences of 3 different models (baseline
BPE, Unigram character-noise, CHARSPAN).
The encoder representations were computed by
mean-pooling the token representations of the top
layer of the encoder. The Table -15 shows the
results (we report average results over the test
set). We can clearly see that the similarity of
encoder representations significantly increases in
noise-augmented models. Further, CHARSPAN

improves over unigram char-noise, reflecting
improved translation quality.

G Error Analyses

G.1 Basline Generations are Transliterated

Fig. 7 presents a few sample examples where
baseline models give generation error. Here, we
look for transliteration errors. It can observed that
many of the source words are directly transliterated
in target generation for baseline models; however,
the proposed CHARSPAN model successfully
mitigates these errors.

G.2 Grammatical Well-Formedness

It is often observed that the generations are
grammatically not sound, and such features are
easily missed by performance evaluation metrics
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Family Code Language Script Family Subgrouping Res. Train Dev Test Data Source

1

Hin Hindi Devanagari Indo-European Indo-Aryan High 10M 1000 2390 Ramesh et al. (2022)
Mar Marathi Devanagari Indo-European Indo-Aryan High 3.6M 1000 2390 Ramesh et al. (2022)
Bho Bhojpuri Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
Gom Konkani Devanagari Indo-European Indo-Aryan Low - - 2000 ILCI4

Hne Chhattisgarhi Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
San Sanskrit Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
Npi Nepali Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
Mai Maithili Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
Mag Magahi Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
Awa Awadhi Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200

2

Spa Spanish Latin Indo-European Romance High 6.6M 670 1131 Rapp (2021)
Pot Portuguese Latin Indo-European Romance High 4.8M 681 1103 Rapp (2021)
Cat Catalan Latin Indo-European Romance Low - - 1012 FLORES-200
Glg Galician Latin Indo-European Romance Low - - 1012 FLORES-200

3

Ind Indonesian Latin Austronesian Malay-Polynesian High 0.5M 2500 3000 OPUS5

Zsm Malay Latin Austronesian Malay-Polynesian High 0.3M 1500 2000 OPUS
Jav Javanese Latin Austronesian Malay-Polynesian Low - - 1012 FLORES-200
Sun Sundanese Latin Austronesian Malay-Polynesian High - - 1012 FLORES-200

Others

Pan Panjabi Gurmukhi Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200
Guj Gujarati Gujarati Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200
Ben Bengali Bengali Indo-European Indo-Aryan High 1M* 1000* 1012 FLORES-200
Tam Tamil Tamil Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200
Tel Telugu Dravidian Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200
Mal Malayalam Malayalam Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200
Ora Oriya Oriya Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200

Table 5: Dataset details and Statistics. * are obtained from Ramesh et al. (2022)

Language Family Script Candidate Alphabets

Indo-Aryan Devanagari

 '◌ं', '◌ृ', 'प', '◌ॆ', '◌ु', 'ञ', 'ऐ', 'अ', '°', 'र', 'फ', 'ग', 'ह', 'इ' 'न', '◌ँ', 
 'स', 'ए', 'ऑ', 'ल', 'ध', 'ई', 'ऊ', '◌ौ', '◌া', 'ð', 'म', '◌ী', 'छ', '◌ॉ' 'ि◌', 
 'क', 'ण', 'भ', 'ट', '◌ॅ', 'ळ', 'ऋ', 'ष', 'ङ', '◌ै', 'ठ', 'ऌ', 'श', 'ब', 'ল', 
 '◌ी', 'ও', 'त', 'झ', 'ख', 'ज', 'थ', 'उ', '◌ू', '◌े', 'ओ', 'ड', '◌ീ', '◌्', 'T', 
 'ऎ', 'ॠ', '◌ो', 'ऒ', '◌ा', 'द', 'হ', '◌ॊ', 'घ', 'च', 'ढ', '◌ু', 'Ձ', 'य', 'औ', 
 'व', 'आ', 'ऍ'

Italic and Malay-
Polynesian Latin

 A, a, B, b, C, c, D, d, E, e, F, f, G, g, H, h, I, i, J, j, K, k, L, 
 l, M, m, N, n, O, o, P, p, Q, q, R, r, S, s, T, t, U, u, V, v, W, 
 w, X, x, Y, y, Z, z, ñ, ó, ã, à, ç, í, é, ñ

Figure 3: Candidate alphabets for noise augmentation. For the Indo-Aryan language family, the Devanagari alphabet
is used, while the Latin alphabet is employed for the Romance and Malay-Polynesian language families.
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Figure 4: Lexical similarity (LCSR) heatmaps for three languages families. The Indo-Aryan languages are
considered to use the Devanagari script, while the Latin script is used by the other two language families.
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Figure 5: Lexical similarity heatmap for additional languages used in the analysis section. Here we have shown similarity scores for Assamese (asm), Bengali (ben),
Gujrati (guj), Panjabi (pan), Hindi (him), Marathi (mar), Oriya (ory), Malayalam (mal), Kannada (kan), Tamil (tam) and Telugu (tel) languages.

 Bhojpuri → English Source: साल 2017 के आ�खर म� िसिमनॉफ़, QVC शॉिपंग 
             टीवी चैनल पर देखाई देहलन.

Ref:   In late 2017, Siminoff appeared on shopping television channel QVC.  
Gen:  At the end of 2017, Siminauff appeared on QVC Shopping TV channel. 

 KonKani → English Source: आतां ही बंदखण एका सं�हालया�ा �पान           
              बदल�ा. 

Ref:   Now this prison has been converted into a museum. 
Gen:  Now, this prison has turned into a museum. 

 Maghai → English Source: रॉ�ी सं�ा जेतना छोट होतई, चंुबकीय उ�मण 
             के संबंध म� तारा ओतना ही कम सि�य होतई।

Ref:   The smaller the Rossby number, the less active the star with respect to magnetic reversals. 
Gen:  The smaller the number of rosbys, the less active the star with respect to magnetic evolution. 

Chhattisgarhi → English Source: रॉिबन उथ�ा ह पारी ल उ�तम स् ल र बनाया, 11
चौके अउ 2 छ�े ल मारकर केवल 41 ग�दो ंम� 70 रन बन

Ref:   Robin Uthappa made the innings highest score, 70 runs in just 41 balls by hitting 11 fours and 2 sixes. 
Gen:  Robin Uthappa made highest scored 70 off just 41 balls with 11 boundaries and 2 sixes. 

 Maithili → English Source: टेलीिवजन �रपोट्�स मे पौधा सँ उजर धुआं िनकलैल 
             देखार भए रहल अिछ।

Ref:   Television reports show white smoke coming from the plant. 
Gen:  Television reports showed smoke coming out of the plant. 

 Awadhi → English Source: द िस�संस से पिहले साइमन अलग अलग पद प 
              कई शो मा काम िकिहन रहा।

Ref:   Before The Simpsons Simon had worked on several shows in various positions. 
Gen:  Before The Simpson, Simon worked on several shows in different positions. 

 Nepali → English Source: िह�ु प�रवारको अिधकांश जीवन खुला हावामा 
              िब��ो।

Ref:   Much of the Hebrew family's life was open. 
Gen:  Most of the life of the Hebrew family happened is open. 

 Sanskrit → English Source: स�ा�य�षु एकमेव आ�य�म् The Great Pyramid 
             at Giza इित अ�ािप ��थतम् अ��।

Ref:   The Great Pyramid at Giza is the only one of the seven wonders that is still standing today. 
Gen:  The Great Pyramid at Giza is wonder one of 7 sill standing today. 

 Catalan → English Source: Inicialment, la vestimenta estava fortament 
              influïda per la cultura bizantina a orient.

Ref:   Initially, the clothing was heavily influenced by the eastern Byzantine culture. 
Gen:  The Great Pyramid at Giza is wonder one of 7 sill standing today  in the east. 

 Galician → English
Source: Ao mesmo tempo, a mariña alemá,
empregando fundamentalmente os U-boats, trataba
de deter ese tráfico.  

Ref:   At the same time, the German navy, using mainly U-boats, was trying to stop this traffic. 
Gen:  At the same time, the German maritime industry, using primarily U-boats, tried to stop this traffic. 

 Javanese → English

 Sundanese → English

Source: Anggota tim virtual asring dadi titik kontak 
             kanggo klompok fisik langsunge.

Source: Amérika di Wétan tengah keur ngahadapan
situasi anu bénten sareng rakyat Eropa atawa
Arab.

Ref:  Virtual team members often function as the point of contact for their immediate physical group. 
Gen: Virtual team members are at a direct point of contact for immediate physical group members. 

Ref:   American citizens in the Middle East might face different situations from Europeans or Arabs. 
Gen:  Americans in Middle East face a situation or benefit from European citizens or Arabs.  

Figure 6: Zero-shot Sample generations with CHARSPAN model for ELRLs.
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Figure 7: The generation errors (transliteration) from different baseline models. The proposed CHARSPAN model
successfully mitigates those errors. Colors indicate the corresponding transliteration in a generation.

architecture encoder-decoder (transformers)
# encoder layers 6
# decoder layers 6
# parameters 46,956,544 shared
learning rate (lr) 5e−4

optimizer adam
dropout rate 0.2
input size 210 tokens (both side)
epochs 15
tokens per batch 32768
clip-norm 1.0
lr scheduler inverse sqrt
# GPUs 8
type of GPU V100 Nvidia
generation batch size 64
beam size 5

Table 6: Model implementation and training details

like ChrF and BLEU. With this error analysis, we
aim to investigate the grammatical well-formedness
of generations from different baseline models. To
score the grammatical well-formedness, we use
L’AMBRE tool9. The results are reported in Table
16. For simplicity, we have shown results for only
the Indo-Aryan family. The CharSpan shows better
Grammatical formation than BPE and Unigram
char-noise model across all ELRL.

These error analyses further prove that the
performance gains are genuine for the CHARSPAN

model.

9https://github.com/adithya7/lambre

H Literature Review

In this section, we presented details of three threads
of literature review related to the proposed work.
This is summarized in Section 2 of the main paper.

H.1 MT for Low-resource Languages

Due to the unavailability of the large bi-text dataset
for low-resource languages, much of the existing
research focuses on multilingual MT. This enables
cross-lingual transfer (Nguyen and Chiang, 2017;
Zoph et al., 2016) and allows related languages to
learn from each other (Fan et al., 2021; Costa-jussà
et al., 2022; Siddhant et al., 2022). While this
direction has gained significant attention, the
performance improvement for LRLs as compared
to HRLs has been limited (Tran et al., 2021) and
remains an open area of research. In another thread,
efforts have been made for MT models directly
from the monolingual dataset (Artetxe et al., 2018;
Lample et al., 2018; Lewis et al., 2020). These
unsupervised approaches show promise but still
require a large amount of monolingual data, which
should ideally match the domain of the HRLs
(Marchisio et al., 2020). However, for many LRLs,
monolingual datasets are not available (Artetxe
et al., 2020). In contrast, we propose a model that
does not require any bi-text/monolingual dataset
and is scalable to any number of LRLs/dialects.
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Models Indo-Aryan Romance Malay-Polynesian AverageGom Bho Hne San Npi Mai Mag Awa Cat Glg Jav Sun
BPE 4.36 10.62 15.76 3.43 4.36 9.36 16.7 15.6 5.23 22.99 5.74 6.02 10.01
WordDropout 4.62 11.21 15.71 4.11 5.47 9.96 16.76 16.31 6.19 22.26 5.90 6.02 10.37
SubwordDropout 4.57 9.99 14.47 3.93 5.25 9.08 15.53 16.03 5.85 20.72 4.78 4.93 09.59
WordSwitchOut 4.03 10.75 15.86 3.56 4.92 9.91 16.85 15.54 5.27 21.97 5.95 6.35 10.08
SubwordSwitchOut 4.13 10.56 15.93 3.76 4.49 9.69 16.61 16.69 5.19 23.82 6.02 6.01 10.24
OBPE 4.65 10.62 16.31 3.63 4.95 9.18 16.88 15.69 5.03 22.91 5.33 5.81 10.08
SDE 4.77 10.69 16.21 3.66 5.42 9.86 16.80 16.03 5.47 23.51 5.88 6.39 10.39
BPE-Dropout 5.24 11.33 15.64 3.71 4.94 10.00 16.62 16.63 5.94 24.07 5.79 6.65 10.54
unigram char-noise 5.21 12.62 18.29 3.81 6.55 11.29 19.47 18.95 11.82 24.09 7.35 6.87 12.19
BPE → SpanNoise (ours) 5.39 13.06 19.00 4.48 7.01 13.17 20.30 19.69 11.91 24.27 7.51 7.30 12.75
CHARSPAN (ours) 5.77 13.01 19.52 4.63 7.13 13.43 20.81 20.36 12.21 24.72 7.52 7.32 13.03
CHARSPAN + BPE-Dropout (ours) 5.81 13.81 21.03 4.64 8.10 14.33 22.11 21.25 12.64 25.35 7.52 7.31 13.65

Table 7: Zero-shot BLEU scores results for ELRLs → English machine translation

Models Indo-Aryan Romance Malay-Polynesian AverageGom Bho Hne San Npi Mai Mag Awa Cat Glg Jav Sun
BPE 0.461 0.494 0.522 0.414 0.461 0.494 0.537 0.549 0.357 0.495 0.403 0.401 0.474
WordDropout 0.467 0.502 0.527 0.419 0.465 0.497 0.542 0.565 0.344 0.496 0.392 0.391 0.475
SubwordDropout 0.454 0.493 0.513 0.393 0.459 0.481 0.526 0.554 0.319 0.468 0.382 0.383 0.460
WordSwitchOut 0.456 0.501 0.528 0.395 0.445 0.497 0.552 0.551 0.309 0.477 0.381 0.381 0.464
SubwordSwitchOut 0.459 0.494 0.519 0.415 0.455 0.496 0.535 0.555 0.365 0.496 0.383 0.385 0.467
OBPE 0.466 0.496 0.518 0.419 0.459 0.491 0.537 0.551 0.431 0.428 0.396 0.381 0.464
SDE 0.486 0.499 0.515 0.511 0.496 0.542 0.543 0.553 0.440 0.481 0.406 0.405 0.489
BPE-Dropout 0.474 0.494 0.501 0.413 0.461 0.481 0.522 0.555 0.443 0.443 0.407 0.412 0.467
unigram char-noise 0.471 0.523 0.547 0.403 0.456 0.486 0.571 0.592 0.495 0.501 0.403 0.405 0.487
BPE → SpanNoise (ours) 0.469 0.528 0.553 0.400 0.459 0.491 0.579 0.595 0.499 0.511 0.405 0.413 0.491
CHARSPAN (ours) 0.471 0.541 0.571 0.403 0.471 0.534 0.593 0.616 0.502 0.555 0.419 0.422 0.508
CHARSPAN + BPE-Dropout (ours) 0.478 0.548 0.582 0.421 0.478 0.535 0.604 0.623 0.505 0.567 0.419 0.429 0.515

Table 8: Zero-shot BLEURT (computed with BLEURT-20 checkpoint) scores results for ELRLs → English

Models Indo-Aryan Romance Malay-Polynesian AverageGom Bho Hne San Npi Mai Mag Awa Cat Glg Jav Sun
BPE 0.536 0.632 0.671 0.511 0.525 0.593 0.694 0.716 0.494 0.714 0.444 0.441 0.580
WordDropout 0.551 0.648 0.678 0.521 0.557 0.618 0.695 0.728 0.565 0.715 0.451 0.443 0.597
SubwordDropout 0.541 0.638 0.659 0.528 0.548 0.607 0.684 0.717 0.524 0.686 0.437 0.428 0.583
WordSwitchOut 0.544 0.647 0.681 0.522 0.563 0.621 0.706 0.719 0.529 0.702 0.453 0.452 0.594
SubwordSwitchOut 0.542 0.641 0.668 0.521 0.528 0.601 0.694 0.721 0.567 0.718 0.452 0.451 0.592
OBPE 0.541 0.629 0.667 0.504 0.527 0.589 0.691 0.715 0.492 0.721 0.363 0.611 0.587
SDE 0.549 0.636 0.666 0.513 0.529 0.591 0.697 0.735 0.513 0.731 0.357 0.618 0.594
BPE-Dropout 0.549 0.638 0.644 0.506 0.531 0.589 0.677 0.721 0.504 0.747 0.373 0.626 0.592
unigram char-noise 0.562 0.679 0.701 0.536 0.573 0.634 0.728 0.754 0.554 0.741 0.408 0.621 0.624
BPE → SpanNoise (ours) 0.557 0.676 0.706 0.542 0.581 0.651 0.724 0.755 0.561 0.751 0.403 0.622 0.627
CHARSPAN (ours) 0.571 0.695 0.723 0.556 0.611 0.685 0.747 0.772 0.568 0.759 0.417 0.627 0.644
CHARSPAN + BPE-Dropout (ours) 0.579 0.705 0.733 0.551 0.616 0.687 0.757 0.778 0.572 0.756 0.414 0.631 0.648

Table 9: Zero-shot COMET (computed with Unbabel/wmt22-comet-da model) scores results for ELRLs → English

XX → EN Indo-Aryan Romance Malay-Polynesian

Models BLEU chrF BLEU chrF BLEU chrF
Hin Mar Hin Mar Spa Pot Spa Pot Ind Zsm Ind Zsm

BPE 37.44 26.31 64.04 54.47 41.44 35.38 68.71 63.27 29.61 21.76 58.31 49.14

WordDropout 36.54 26.31 63.27 53.96 39.32 32.73 66.89 60.86 27.59 20.42 56.72 48.22
SubwordDropout 36.64 26.22 63.46 54.57 39.84 33.04 67.56 61.58 26.73 18.80 57.02 48.82
WordSwitchOut 34.12 23.84 60.98 51.84 35.27 30.63 63.25 58.38 27.04 19.60 55.69 46.93
SubwordSwitchOut 37.11 26.03 63.78 54.06 42.26 35.68 68.65 62.97 27.12 19.76 55.72 47.34

OBPE 37.32 26.90 64.05 55.03 41.81 36.44 68.17 63.45 28.14 21.83 57.11 49.21
SDE 37.22 26.19 63.98 55.44 41.41 35.51 68.61 62.89 29.11 21.52 58.25 48.98
BPE-Dropout 37.22 26.93 64.11 55.31 41.88 36.72 68.06 63.79 30.39 22.54 59.33 50.17

unigram char-noise 37.05 26.95 63.81 54.83 39.83 32.91 67.62 61.24 28.79 22.01 57.65 49.91
BPE → SpanNoise (ours) 36.66 26.93 63.80 54.84 39.92 32.22 66.83 61.06 27.84 22.16 57.15 50.19
CHARSPAN (ours) 36.68 26.70 63.87 54.59 40.04 32.36 66.95 61.03 27.84 21.87 56.75 49.58
CHARSPAN + BPE-Dropout (ours) 37.62 27.10 64.15 55.03 41.21 33.64 66.90 61.39 28.91 22.26 57.99 50.59

Table 10: BLEU and chrF Scores: High resource language performance for all three language families. It can be
observed that, even with the inclusion of noise augmentation, the proposed model exhibits only a slight decrease in
performance for HRLs.
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XX → EN Indo-Aryan Romance Malay-Polynesian

Models BLEURT COMET BLEURT COMET BLEURT COMET
Hin Mar Hin Mar Spa Pot Spa Pot Ind Zsm Ind Zsm

BPE 0.775 0.726 0.891 0.857 0.769 0.720 0.871 0.830 0.687 0.561 0.821 0.701

WordDropout 0.774 0.725 0.891 0.854 0.755 0.701 0.86 0.814 0.681 0.555 0.815 0.693
SubwordDropout 0.773 0.725 0.889 0.854 0.757 0.691 0.861 0.806 0.672 0.548 0.803 0.683
WordSwitchOut 0.756 0.706 0.879 0.842 0.707 0.651 0.826 0.775 0.665 0.547 0.804 0.688
SubwordSwitchOut 0.776 0.724 0.892 0.855 0.771 0.721 0.872 0.833 0.663 0.548 0.801 0.687

OBPE 0.777 0.731 0.893 0.861 0.766 0.727 0.863 0.821 0.672 0.551 0.811 0.697
SDE 0.772 0.721 0.889 0.856 0.765 0.721 0.866 0.832 0.679 0.558 0.818 0.699
BPE-Dropout 0.773 0.727 0.891 0.858 0.772 0.7281 0.881 0.839 0.706 0.586 0.838 0.729

unigram char-noise 0.775 0.731 0.892 0.857 0.756 0.683 0.861 0.798 0.681 0.574 0.815 0.716
BPE → SpanNoise (ours) 0.773 0.728 0.891 0.857 0.755 0.685 0.861 0.801 0.685 0.581 0.821 0.724
CHARSPAN (ours) 0.775 0.726 0.892 0.856 0.755 0.681 0.861 0.799 0.671 0.569 0.829 0.714
CHARSPAN + BPE-Dropout (ours) 0.775 0.726 0.892 0.856 0.768 0.683 0.877 0.801 0.685 0.582 0.823 0.726

Table 11: BLEURT and COMET Scores: High resource language performance for all three language families

Experimental Setup Indo-Aryan Average
Bho Hne San Npi Mai Mag Awa

ChrF Scores
CHARSPAN with Hin, Mar, Pan, Guj, Ben 38.81 45.39 30.34 34.4 41.67 45.82 43.78 40.03
CHARSPAN with Hin, Mar, Pan, Guj 37.68 43.49 28.44 32.22 39.43 44.34 42.33 38.27
CHARSPAN with Hin, Mar, Pan 33.32 38.81 25.71 29.21 54.82 39.17 26.47 35.35
CHARSPAN with Hin, Mar 29.70 33.13 23.83 26.12 31.88 33.83 33.13 30.23
CHARSPAN with Hin 20.96 21.92 15.90 17.97 20.85 22.85 21.75 20.31

BLEU Scores
CHARSPAN with Hin, Mar, Pan, Guj, Ben 10.46 15.97 4.87 7.02 11.83 16.32 14.65 11.58
CHARSPAN with Hin, Mar, Pan, Guj 9.55 14.32 3.92 5.99 9.85 14.71 13.47 10.25
CHARSPAN with Hin, Mar, Pan 7.41 10.21 2.91 4.63 7.88 11.01 9.89 7.70
CHARSPAN with Hin, Mar 5.30 7.06 2.40 3.20 5.00 7.28 6.96 5.31
CHARSPAN with Hin 2.03 2.27 0.6 0.97 1.77 2.23 2.39 1.75

Table 12: Zero-shot multilingual performance of char-span noise augmentation model. We have considered multiple
combinations of high-resource languages for a multilingual setup. Due to computational constraints, 1 million parallel training
data for each language was considered. All the languages are considered from the FLORES-200 test set.

Experimental Setups BLEU (XX → EN) chrF (XX → EN)
Gom Bho Hne Gom Bho Hne

char-noise (9%-11% + replacement with only vowels) 4.77 11.21 15.17 28.08 40.36 46.13
char-noise (9%-11%+ replacement with only consonants) 4.79 11.25 15.3 26.95 40.51 46.17
char-noise (9%-11% + replacement with char sound similarity ) 4.55 10.7 15.78 27.86 40.45 46.98
char-noise (9%-11% + with number and punctuation) 5.13 12.07 17.66 27.66 41.43 48.68

char-noise (9%-11% + only insertion) 5.04 12.3 17.81 27.50 41.87 48.74
char-noise (9%-11% + only replacement) 5.58 12.8 18.75 28.85 42.43 49.68
char-noise (9%-11%+ only deletion) 4.22 11.92 18.39 28.65 42.02 49.36

char-noise (4%-6% + all three operations + equal probability) 5.44 11.66 18.01 28.62 40.95 48.63
char-noise (14%-16% + all three operations + equal probability) 5.17 11.4 17.01 27.93 40.32 47.61
char-noise (9%-11% + all three operations + equal probability) 5.21 12.62 18.29 28.85 42.53 49.35

char-span noise (9%-11% + 1-3 grams + replacement: N random chars -> span ) 3.80 8.80 13.11 25.38 28.22 43.39
char-span noise (9%-11% + 1-3 grams + insertion: 1 random chars -> span ) 5.84 13.29 20.49 29.29 43.51 51.33
char-span noise (9%-11% + 1-3 grams + insertion: N random chars -> span ) 4.81 12.21 17.36 26.98 41.26 47.91
char-span noise (9%-11% + 1-3 grams + all three operations + equal probability) 4.01 10.41 16.33 27.99 36.66 46.13

char-span noise (9%-11% + 1-2 grams + replacement and deletion + equal probability) 5.42 12.08 18.02 29.17 42.21 49.17
char-span noise (9%-11% + 1-4 grams + replacement and deletion + equal probability) 5.79 11.85 18.02 29.71 42.41 49.74
char-span noise (9%-11% + 1-5 grams + replacement and deletion + equal probability) 5.56 11.36 17.06 24.13 26.35 29.55
char-span noise (9%-11%+ 1-3 grams + replacement and deletion +unequal probability ) 5.48 12.12 18.16 29.01 41.74 49.37

Proposed: char-span noise ( 9%-11% + 1-3 grams + replacement and deletion + equal probability) 5.81 13.81 21.03 29.71 43.75 51.69

Table 13: Ablation Study and Different Experimental Setups. Similar trends were observed for other ELRLs and
language families. Approximately 200 experiments were performed.
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Setup Gom Bho Hne San Npi Mai
BPE 26.75 39.75 46.57 27.97 30.84 39.79
BPE+ELRLpar 26.54 42.66 52.52 31.88 38.09 43.22
CHARSPAN 29.71 43.75 51.69 31.40 36.52 45.84
CHARSPAN+ELRLpar 29.65 45.39 53.38 33.92 39.66 47.18

Table 14: Translation quality (chrF) with an additional 1000 ELRL-English parallel sentences (ELRLpar).

Models Indo-Aryan Romance Malay-Polynesian AverageBho Hne San Npi Mai Mag Awa Cat Glg Jav Sun
BPE 0.761 0.793 0.701 0.744 0.762 0.809 0.792 0.721 0.813 0.731 0.736 0.760
UCN 0.853 0.888 0.765 0.821 0.849 0.897 0.883 0.803 0.879 0.813 0.811 0.842
CHARSPAN 0.871 0.909 0.789 0.858 0.868 0.913 0.901 0.831 0.903 0.846 0.856 0.867

Table 15: Average cosine similarity between representations of source HRLs and source LRLs. UNC: Unigram
Char-Noise

Models Indo-Aryan
Bho Hne San Npi Mai Mag Awa

BPE 0.9782 0.9813 0.9444 0.9624 0.9647 0.9784 0.9812
UCN 0.9754 0.9616 0.9504 0.9592 0.947 0.9708 0.9753
CHARSPAN 0.9856 0.9865 0.9658 0.9735 0.9802 0.9842 0.9836

Table 16: Grammatical Well-Formedness for different models with L’AMBRE

H.2 Vocabulary Adaptation for MT

Early exploration of character-based MT showed
the promise (Chung et al., 2016; Lee et al., 2017)
with coverage and robustness (Provilkov et al.,
2020; Libovický and Fraser, 2020). However,
recent modeling concludes a number of challenges
(Gupta et al., 2019; Libovický and Fraser, 2020) in
terms of training/inference times and performance
as compared to the subwords models. Specifically,
Shaham and Levy (2021) shows that character
MT and Byte MT (Costa-jussà et al., 2017) have
worse performance than the Byte Pair Encoding
(BPE; (Sennrich et al., 2016b)) model and limits
their practical usage (Libovický et al., 2022). The
effectiveness of the BPE algorithm (Gage, 1994)
is reported for NMT (Sennrich et al., 2016b)
and serval other NLP tasks (Liu et al., 2019).
Other algorithms like Sentencepiece (Kudo and
Richardson, 2018) and Wordpiece (Google-2018,
2022) are similar to BPE. We take inspiration from
existing works and proposed a model on BPE.

Given the potential of the BPE model, various
methodologies have been developed for vocabulary
modification/generation/adaption (Provilkov et al.,
2020; Khemchandani et al., 2021; Patil et al., 2022;
Minixhofer et al., 2022). In particular, the work of
Provilkov et al. (2020) utilizes the BPE algorithm
to generate the vocabulary and sample different
segmentations during training. Patil et al. (2022)

introduce an extension of BPE, referred to as
Overlapped BPE (OBPE), which takes into account
both HRLs and LRLs tokens during vocabulary
creation. They demonstrate the effectiveness of
this approach in only NLU tasks. In contrast, in
this study, we adopt the standard BPE model on
noisy HRL data for the MT task.

H.3 Surface/Lexical Level Noise for MT

Several previous studies (Sperber et al., 2017;
Koehn and Knowles, 2017; Karpukhin et al.,
2019; Vaibhav et al., 2019) have examined the
use of noise augmentation strategies, including
substitution, deletion, insertion, flip, and swap,
at various levels of text granularity for machine
translation. These strategies are explored to
stabilize/improve the robustness of the model
with naturally occurring noises, such as spelling
mistakes. Further, these noising schemes are
utilized to obtain non-canonical text in adversarial
settings (Heigold et al., 2018). Close to ours, Aepli
and Sennrich (2022) proposed a character-based
noise model to transfer the supervision from HRLs
to LRLs in a zero-shot setting. They evaluated
the proposed model on two NLU tasks with
the pre-trained model. Unlike this, we have
trained the model from scratch for the machine
translation task, which is very different and more
challenging than NLU tasks. Moreover, we
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explore the span-denoise, which outperformed char
denoise-based models and emerged as a desirable
MT model for extremely low-resource languages
and dialects.
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