
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 2: Short Papers, pages 368–379

March 17-22, 2024 c©2024 Association for Computational Linguistics

Extreme Fine-tuning: A Novel and Fast Fine-tuning Approach
for Text Classification

Boonnithi Jiaramaneepinit1, Thodsaporn Chay-intr1, Kotaro Funakoshi2

and Manabu Okumura2

1School of Engineering, Tokyo Institute of Technology
2Institute of Innovative Research, Tokyo Institute of Technology

{jiara.boon, chayintr, funakoshi, oku}@lr.pi.titech.ac.jp

Abstract

Although fine-tuning a pre-trained model with
a conventional approach has shown to be ef-
fective in various downstream tasks, previous
work has used only backpropagation to fine-
tune the model, which causes a massive amount
of computational resources and time. We pro-
pose Extreme Fine-Tuning (EFT), a novel ap-
proach for fine-tuning a pre-trained model ef-
fectively and efficiently. EFT uses backprop-
agation for a brief fine-tuning and an iterative
extreme learning machine for training a clas-
sifier. We applied EFT to four text classifica-
tion datasets, MELD, IEMOCAP, IMDb, and
AG News, and compared its performance with
state-of-the-art (SOTA) approaches. The re-
sults indicate that EFT noticeably outperformed
the other approaches in training-time measure-
ment with comparable model performance. We
will release our code at https://github.com/up-
33/extreme-fine-tuning.

1 Introduction

Artificial neural networks (ANNs) have been suc-
cessfully applied to many tasks such as natural lan-
guage processing (NLP) (Vaswani et al., 2017; Ot-
ter et al., 2019; Li et al., 2022) and computer vision
(Minaee et al., 2020). One of the essential com-
ponents under their hood is backpropagation (BP),
a gradient-descent-based learning algorithm. The
BP became the conventional approach to train an
ANN model due to its ability to learn sophisticated
patterns from a large amount of data (Schmidhuber,
2015). However, training a model on large-scale
data from scratch requires massive computational
resources (Conneau and Lample, 2019; Zhuang
et al., 2021).

Pre-trained models (PTMs), e.g., bidirectional
encoder representations from transformers (BERT)
(Devlin et al., 2019), have been proposed to acquire
a huge amount of general knowledge from large-
scale data. Adding a fully connected (FC) layer as

the last layer of the pre-trained model enables fine-
tuning to specific tasks. In fine-tuning, the layer can
be modified for specific tasks. Its parameters are
adjusted to minimize task-specific loss for accurate
prediction (Howard and Ruder, 2018). However, it
usually applies iterative weight updates through the
BP, which consumes unnecessary computational
resources, particularly for large and deep ANNs
(Sun et al., 2017).

Apart from training the FC layer through the
BP, an extreme learning machine (ELM), an ANN
training framework, was proposed by Huang et al.
(2004) to accelerate the training of a single hidden
layer feedforward neural network (SLFN). While
the BP offers flexibility, the ELM provides simpler
and more computationally efficient solutions. It cal-
culates weights based on another arbitrary weights,
making it faster than the BP (Huang et al., 2012).
Variants such as a constrained ELM (CELM) (Zhu
et al., 2014) and an iterative ELM (I-ELM) (Jiara-
maneepinit and Watchareeruetai, 2018) have been
also developed to improve performance and reduce
memory consumption.

To the best of our knowledge, most studies have
used only the BP to transfer or fine-tune a PTM
to a specific task (Devlin et al., 2019; Liu et al.,
2019; Kim and Vossen, 2021; Song et al., 2022;
Lee and Lee, 2022; Shen et al., 2021; Heinsen,
2022; Bingyu and Arefyev, 2022). This makes
the training process consume an enormous amount
of computational resources and time. Thus, we
propose Extreme Fine-Tuning (EFT), a novel fine-
tuning approach that keeps up model performance
and improves training efficiency. EFT utilizes the
BP and I-ELM to speed up fine-tuning, improving
training performance comparing with other fine-
tuning approaches. We conducted experiments for
measuring model performance and training effi-
ciency through text classification tasks. Our con-
tributions are as follows: 1) We propose EFT that
speeds up the conventional way to fine-tune PTMs

368

by adopting I-ELM to replace a BP-based FC layer
for text classification tasks. 2) Applying EFT to
four datasets for text classification produced com-
parable results compared with the previous studies
(Kim and Vossen, 2021; Song et al., 2022; Lee
and Lee, 2022; Shen et al., 2021; Heinsen, 2022;
Bingyu and Arefyev, 2022). Nonetheless, EFT
requires noticeably less training time.

2 Related Work

2.1 Models Trained with Backpropagation

Most studies integrated PTMs and various ANNs,
and relied on the BP (Song et al., 2022; Lee and
Lee, 2022), emphasizing performance rather than
training efficiency. This makes more parameters
need to be adjusted, thus increasing model size (Yu
et al., 2022a,b) and affecting training time.

Even though various speed-up techniques have
been proposed to address the time-consuming as-
pect of the BP, prior studies have primarily focused
on development- or precision-oriented optimiza-
tion for training or inference through the BP (Guo
et al., 2019; Yang et al., 2022; Zaiem et al., 2023).

2.2 Extreme Learning Machines

ELMs are frameworks for training an ANN. They
were proposed to be an alternative way to train a
SLFN (Huang et al., 2004). ELMs solved model
parameters in one-shot calculation based on Moore-
Penrose inverse, that makes the training faster
than the BP. The ELM procedure is described
in Appendix A. However, the ELM has several
drawbacks, such as out-of-memory issues and pri-
oritizing hard-to-predict instances. To address
these problems, I-ELM was proposed to enable
iteratively training instances (Jiaramaneepinit and
Watchareeruetai, 2018). Model parameters are
stored and calculated by dividing a dataset into
batches, instead of the whole dataset at once. The
procedure to train ANNs with I-ELM is fully ex-
plained in Appendix B.

3 Extreme Fine-tuning

EFT incorporates the BP followed by I-ELM to
speed up the training of a network. We first build a
BP-based feature extractor by fine-tuning a PTM,
e.g., BERT or RoBERTa (Liu et al., 2019), and
removing its BP-based classifier, enabling the ex-
traction of prior knowledge and an overview of the
input data. We then use the output from the feature

Datasets Type |Class| Avg. Len. Train Test
MELD Emotion 7 8 9,989 2,610
IEMOCAP Emotion 6 22 4,778 1,622
IMDb Sentiment 2 292 25,000 25,000
AG News Topic 4 44 120,000 7,600

Table 1: Statistics of four datasets

extractor to build an I-ELM-based classifier for fi-
nal output inference. We show our EFT procedure
in Algorithm 1, given S instances of training data.

Algorithm 1 EFT procedure to fine-tune a model
1: Initialize feature extractor Pf using a PTM.
2: Add fully connected layer FCα as the last layer to feature

extractor Pf for mapping output representations to labels.
3: Unfreeze all model parameters.
4: Fine-tune the model using BP for k epochs to obtain fine-

tuned BP-based classifier FCα
′ and fine-tuned feature

extractor Pf
′.

5: Remove FCα
′, retaining Pf

′.
6: Construct I-ELM-based classifier FCz with arbitrary or-

thogonal matrix W and bias vector b.
7: Calculate hidden layer H of I-ELM where H ∈ RS×nh

with nh hidden nodes.
8: Calculate Λ and Γ of I-ELM using H where Λ ∈ Rr×nh,

Γ ∈ RS×nh, and r is the number of classes or nodes in
the output layer.

9: Calculate output weight matrix U of I-ELM using Λ and
Γ where U ∈ Rr×nh.

10: if performance or iteration criteria is acceptable then
11: Go to Step 17.
12: else
13: Identify misclassified instances Xw by feedforward-

ing X through the model.
14: Update Λ and Γ with Xw.
15: Go back to Step 9.
16: end if
17: Integrate FCz to Pf

′ for final output inference.

Our EFT-based model is represented in Figure 1.
The purpose of Step 4 is to let the feature extractor
get familiar with the task and the whole dataset.
Note that, during the k epochs in this step, using a
non-optimal learning rate helps the feature extrac-
tor, fine-tuned with the BP-based classifier, learn
overall features faster without focusing on optimal
network weights.

4 Experiments

4.1 Datasets

We used four datasets, MELD, IEMOCAP, IMDb,
and AG News, to compare EFT and prior stud-
ies. Table 1 lists their statistics. Their details are
described in Appendix C. While we followed the
official data split for MELD and IEMOCAP, we
split 10% of the training set for validation for IMDb
and AG News, which have no validation set.

369

BP-based Feature Extractor
(Pf

')

Input Output

h1

h2

hnh

g'

I-ELM-based Classifier (FCz)

BP-based
Classifier

(FCα
')

Figure 1: Overview of our EFT-based model after integrating the I-ELM-based classifier

4.2 Setups
Hyperparameters, including the number of back-
propagation epochs k for all models and the num-
ber of hidden nodes nh for our model, were tuned
based on validating scores. We first increased k and
stopped when the validating score starts to drop.
We then replaced a classifier with I-ELM. Next,
we increased nh and stopped when the validating
score starts to drop. The resultant values of k and
nh for each model are described in Appendix D.
During I-ELM training, we randomly generated an
orthogonal matrix for an arbitrary weight. There-
after, we trained a model using I-ELM with only
one iteration. All models were trained on a single
machine with a Ryzen 9 3900X CPU, a Geforce
RTX 3090 GPU, and 64GB of DDR4 RAM. Ap-
pendix E further describes the environment setups.

4.3 Evaluation Metrics
We compared the model performance and effi-
ciency with current SOTA models across the four
datasets. The performance was measured using
weighted-F1 (WF1), accuracy (ACC), or error,
while the efficiency was assessed by training time
(TTM). These values were the average of three
runs. We showed both reproduced and reported (*)
scores. The training time of baselines was mea-
sured based on the duration of feedforwarding and
BP, while the training time of EFT was measured
by calculating the duration between Steps 4 and
9, including BP (Steps 4 to 5), feedforwarding for
I-ELM (Steps 6 to 7), and weight calculation of
I-ELM (Steps 8 to 9). These are further described
in Appendix F.

For a fair comparison, we used the PTM in the
compared models for our model. We also tried the
experiments with RoBERTa-large, a large PLM,
when the compared models did not utilize it. We

performed a significance test using paired boot-
strap resampling (Koehn, 2004). Since MELD and
IEMOCAP consist of sequences of utterances, we
additionally introduced variations that incorporated
128 tokens of past and future utterances into the
input data for MELD and 128 tokens of past utter-
ances into the input data for IEMOCAP.

4.4 Results

In Table 2, our EFT-RoBERTa-large and EFT⋆-
RoBERTa-large stood out to be the most efficient,
taking only 5 and 25 minutes, respectively, on
MELD, while the performances in WF1 are com-
parable to the best baseline model. This suggests
that EFT offers a promising trade-off between the
performance and the efficiency on MELD.

Models PTM k WF1* WF1 TTM
(Kim and Vossen, 2021)⋆

RoBERTa
large

5 65.61 64.76 190
(Song et al., 2022) 5 66.50 65.63 46
(Lee and Lee, 2022) 10 66.52 63.60 285
EFT [Ours] 3 - ‡64.76 5
EFT⋆ [Ours] 3 - ‡65.82 25

Table 2: Comparison of weighted-F1 (WF1) and train-
ing time in minutes (TTM) on MELD. Scores with an as-
terisk (*) are reported scores. ⋆ indicates the model was
trained with surrounding utterances (Kim and Vossen,
2021). ‡ indicates the model’s WF1 scores are compa-
rable to the best baseline model with the same PTM
(underlined) (p<0.05).

Table 3 presents a comparison of models in terms
of WF1 and training time on IEMOCAP. Our EFT⋆-
RoBERTa-large achieved the highest WF1 of 69.44
with the training time of only 46 minutes. We
observed the improvement in WF1 and TTM over
the baseline models.

The IMDb results in Table 4 show that EFT-
RoBERTa-base and EFT-RoBERTa-large achieved
accuracies of 95.26 and 96.15, respectively, which

370

Model PTM k WF1* WF1 TTM
(Kim and Vossen, 2021)⋆

RoBERTa
large

5 68.57 67.21 360
(Lee and Lee, 2022) 10 66.61 65.79 220
EFT [Ours] 6 - 53.43 6
EFT⋆ [Ours] 6 - ‡69.44 46

Table 3: Comparison of weighted-F1 (WF1) and train-
ing time in minutes (TTM) on IEMOCAP. The notations
are the same as in Table 2.

are comparable to the baselines. They significantly
outperformed the baselines in training-time effi-
ciency, taking only 15 and 69 minutes, respectively.

Model PTM k ACC* ACC TTM
(Bingyu and Arefyev, 2022) RoBERTa

base
10 95.79 95.74 78

EFT [Ours] 1 - ‡95.26 15
(Heinsen, 2022) RoBERTa

large
10 96.20 96.36 295

EFT [Ours] 2 - ‡96.15 69

Table 4: Comparison of model accuracy (ACC) and
training time in minutes (TTM) on IMDb. The notations
are the same as in Table 2.

Table 5 shows the results in terms of error and
training time on AG News. EFT-RoBERTa-large
achieved the low error of 4.79 and the training time
of 111 minutes. To compare EFT-BERT-base with
the BERT-base-based baseline model, we achieved
the error of 5.77 with the training time of only 30
minutes.

Model PTM k Error* Error TTM
(Sun et al., 2020) BERT

base
3 4.80 4.68 549※+196

EFT [Ours] 1 - ‡5.77 30

EFT [Ours] RoBERTa
large 3 - ‡4.79 111

Table 5: Comparison of model error and training time
in minutes (TTM) on AG News. The notations are the
same as in Table 2. The symbol ※ denotes the training
time for pre-training on an RTX Titan due to the specific
model setup. Since there is no RoBERTa-large-based
baseline model, the BERT-base-based baseline model
was used to compare to EFT-RoBERTa-large for ‡.

Table 6 presents training time in EFT focusing
on a single training epoch for traditional BP and I-
ELM. The training time was measured in minutes.

TTM of 1 BP epoch: This column refers to the
training time in minutes needed to complete a sin-
gle BP epoch using the given model. All parame-
ters were unfrozen to be able to be updated during
the training. For instance, on the MELD dataset,
the EFT-RoBERTa-large model requires 1 minute
for one BP epoch of updating the whole model.

TTM of 1 I-ELM epoch: This column provides
the training time in minutes that I-ELM needs to

finish one epoch. Note that parameters from the BP
step were frozen, and only parameters in an I-ELM
classifier was updated. For instance, on the MELD
dataset, 0.5 minutes (30 seconds) are needed for
one I-ELM epoch to finish training of a classifier
for EFT-RoBERTa-large.

Dataset Model TTM of TTM of
1 BP epoch 1 I-ELM epoch

MELD
EFT-RoBERTa-large 1 0.5
EFT⋆-RoBERTa-large 7 3

IEMOCAP
EFT-RoBERTa-large 0.5 0.25
EFT⋆-RoBERTa-large 7 2.5

IMDb
EFT-RoBERTa-base 8 4
EFT-RoBERTa-large 27 13

AG News
EFT-BERT-base 15 11
EFT-RoBERTa-large 32 14

Table 6: Comparative overview of training time for
models trained with EFT, focusing on a single BP or
I-ELM epoch. ⋆ indicates the model was trained with
surrounding utterances.

Table 7 shows the estimated numbers of floating-
point operations (FLOPs) of the breakdown of the
EFT procedure, focusing on the amount of compu-
tation. The FLOPs numbers of feedforward and BP
were estimated with a FLOP profiler from Deep-
Speed (Rasley et al., 2020).
BP-based feature extractor: This column pro-
vides the number of FLOPs used for fine-tuning
the feature extractor during k epochs of BP.
BP-based classifier: This column provides the
number of FLOPs used for fine-tuning the classifier
during k epochs of BP.
Feedforward for I-ELM: This column provides
the number of FLOPs used for computing the in-
puts of I-ELM by feedforwarding inputs through
the BP-based feature extractor.
I-ELM-based classifier: This column provides
the number of FLOPs used for computing I-ELM.
This includes the calculation of matrices H and
Û, which contain matrix inverse operation. See
Appendix G for the FLOP estimation of the matrix
inverse operation.

In summary, Table 6 offers training efficiency
and computation amount of EFT on different
datasets. We could find that the training time for
one I-ELM epoch is consistently approximately a
half of the time required for one BP epoch across
different datasets and models. In addition, Table 7
offers computation amount of EFT. By analyzing
the table, we could find that the FLOPs used for the
I-ELM-based classifier is significantly lower than
the FLOPs used for a BP-based classifier, except

371

Dataset Model Estimated FLOPs
BP-based features extractor BP-based classifier Feedforward for I-ELM I-ELM-based classifier

MELD
EFT-RoBERTa-large 1,166.57T 126.55G 391.27T 3.28G
EFT⋆-RoBERTa-large 13,179.98T 126.55G 4398.65T 3.28G

IEMOCAP
EFT-RoBERTa-large 979.82T 120.95G 162.45T 3.64G
EFT⋆-RoBERTa-large 16,065.33T 120.95G 2,678.19T 3.64G

IMDb
EFT-RoBERTa-base 4,349.81T 53.22G 4,347.75T 18.19G
EFT-RoBERTa-large 28,031.60T 189.11G 14,006.80T 8.08G

AG News
EFT-BERT-base 4,377.90T 1.33G 4,371.37T 241.00G
EFT-RoBERTa-large 29,467.68T 1364.26G 9,822.83T 38.47G

Table 7: Comparative overview of estimated numbers of floating-point operations (FLOPs) of the breakdown of the
EFT procedure.

for EFT-BERT-base on AG News. The differences
of training time and numbers of FLOPs play a cru-
cial role in understanding why the proposed EFT
achieves superior training speed.

4.5 Discussion
We evaluated our EFT upon text classification tasks,
emphasizing the effects of different dataset charac-
teristics and model architectures. We considered
several criteria for dataset characteristics, such as
the dataset size, the task type variation, and the
number of classes. We found that EFT works
well with any selected datasets. To demonstrate
the effectiveness across model architectures, we
fine-tuned both BERT and RoBERTa with differ-
ent sizes. We found that our EFT can improve
the training time for any PTMs, while it maintains
the performance. On average, EFT reduces fine-
tuning time by 74.82% when compared to the best-
performing baseline models. From our analysis,
we also found that one I-ELM epoch takes approx-
imately a half of one BP epoch, emphasizing the
efficiency of EFT. This enables EFT to train the
models in a fast manner. The numbers of FLOPs
are also significantly lower in most of the cases,
except for EFT-BERT-base on AG News. This is
possibly due to the hyperparameter tuning, which
leads to the classification of two classes with an
excessively low BP epoch number (1 BPE) and
an excessively high I-ELM hidden node number
(1,000 I-ELM hidden nodes).

The superiority of I-ELM over BP lies in its
adoption of a one-shot calculation of ELM, which
directly obtains weights without the need of com-
puting losses or errors. On the other hand, BP, re-
lying on gradient descent, has significant computa-
tional overhead by feeding errors backward through
the model layers. EFT capitalizes on this efficiency
contrast. It outperforms baseline fine-tuning strate-
gies by leveraging its efficiency through a unique
combination of just 1 to 6 epochs of BP and 1 epoch

of I-ELM, ensuring fast model training. In contrast,
traditional baselines employ 5 to 10 epochs of BP
for PTMs, introducing a time-intensive process.

5 Conclusion

We proposed EFT, a novel approach for fine-tuning
a pre-trained model effectively and efficiently. We
showed our EFT demonstrates shorter training
time with competitive performance than the current
SOTA models. These results highlight the poten-
tial of EFT as promising options for various NLP
tasks, offering a favorable balance between model
performance and efficiency. The potential of EFT
is not limited to text classification but also extends
to other classification and even non-classification
tasks, such as generation tasks. It would be inter-
esting to delve into the capability of EFT in such
other fields.

6 Limitations

While EFT offers advantages in training efficiency,
there are several limitations that should be taken
into consideration.
Applicability to Specific Tasks: The effectiveness
of EFT may vary depending on tasks and dataset
characteristics. In our study, we evaluated EFT
on four different text classification datasets. Fur-
ther research might be required to investigate the
effectiveness of EFT across a wider range of tasks.
Optimal Configuration of EFT: The performance
and efficiency of EFT may be sensitive to the con-
figuration, including the BP epoch number, BP
learning rate, activation function, and number of
hidden nodes in I-ELM. Determining the optimal
configuration requires careful experimentation and
tuning. Our study provides a baseline configuration
for EFT, but further investigation might be needed
to explore its sensitivity.
Model Size of EFT: The size of models trained
with EFT increases depending on the number of

372

hidden nodes of I-ELM. Our observations revealed
that excessive increase of the hidden nodes results
in overfitting issues.

Acknowledgements

Our gratitude extended to MEXT and Shippusu
(Thailand) Co., Ltd. for supporting us. Special
thanks should go to Sakulthip Rassameecharern-
tham for the encouragement and several forms of
support.

References

Zhang Bingyu and Nikolay Arefyev. 2022. The doc-
ument vectors using cosine similarity revisited. In
Proceedings of the Third Workshop on Insights from
Negative Results in NLP, pages 129–133, Dublin,
Ireland. Association for Computational Linguistics.

Carlos Busso, Murtaza Bulut, Chi-Chun Lee,
Ebrahim (Abe) Kazemzadeh, Emily Mower Provost,
Samuel Kim, Jeannette N. Chang, Sungbok Lee,
and Shrikanth S. Narayanan. 2008. Iemocap: inter-
active emotional dyadic motion capture database.
Language Resources and Evaluation, 42:335–359.

Alexis Conneau and Guillaume Lample. 2019. Cross-
Lingual Language Model Pretraining. Curran Asso-
ciates Inc., Red Hook, NY, USA.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

William Falcon and The PyTorch Lightning team. 2019.
PyTorch Lightning.

Yunhui Guo, Honghui Shi, Abhishek Kumar, Kristen
Grauman, Tajana Rosing, and Rogerio Feris. 2019.
Spottune: Transfer learning through adaptive fine-
tuning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR).

Franz A. Heinsen. 2022. An algorithm for routing vec-
tors in sequences.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Chao-Chun Hsu, Sheng-Yeh Chen, Chuan-Chun Kuo,
Ting-Hao Huang, and Lun-Wei Ku. 2018. Emotion-
Lines: An emotion corpus of multi-party conversa-
tions. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Guang-Bin Huang, Hongming Zhou, Xiaojian Ding,
and Rui Zhang. 2012. Extreme learning machine
for regression and multiclass classification. IEEE
Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 42(2):513–529.

Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew.
2004. Extreme learning machine: a new learning
scheme of feedforward neural networks. In 2004
IEEE International Joint Conference on Neural Net-
works (IEEE Cat. No.04CH37541), volume 2, pages
985–990 vol.2.

Boonnithi Jiaramaneepinit and Ukrit Watchareeruetai.
2018. Iterative extreme learning machine. In 2018
22nd International Computer Science and Engineer-
ing Conference (ICSEC), pages 1–6.

Taewoon Kim and Piek Vossen. 2021. Emoberta:
Speaker-aware emotion recognition in conversation
with roberta. CoRR, abs/2108.12009.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing, pages 388–395, Barcelona,
Spain. Association for Computational Linguistics.

Joosung Lee and Wooin Lee. 2022. CoMPM: Con-
text modeling with speaker’s pre-trained memory
tracking for emotion recognition in conversation. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5669–5679, Seattle, United States. Association
for Computational Linguistics.

Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu
Yang, Lichao Sun, Philip S. Yu, and Lifang He. 2022.
A survey on text classification: From traditional to
deep learning. ACM Transactions on Intelligent Sys-
tems and Technology, 13(2).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

373

https://doi.org/10.18653/v1/2022.insights-1.17
https://doi.org/10.18653/v1/2022.insights-1.17
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.5281/zenodo.3828935
http://arxiv.org/abs/2211.11754
http://arxiv.org/abs/2211.11754
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://aclanthology.org/L18-1252
https://aclanthology.org/L18-1252
https://aclanthology.org/L18-1252
https://doi.org/10.1109/TSMCB.2011.2168604
https://doi.org/10.1109/TSMCB.2011.2168604
https://doi.org/10.1109/IJCNN.2004.1380068
https://doi.org/10.1109/IJCNN.2004.1380068
https://doi.org/10.1109/ICSEC.2018.8712783
http://arxiv.org/abs/2108.12009
http://arxiv.org/abs/2108.12009
http://arxiv.org/abs/2108.12009
https://aclanthology.org/W04-3250
https://aclanthology.org/W04-3250
https://doi.org/10.18653/v1/2022.naacl-main.416
https://doi.org/10.18653/v1/2022.naacl-main.416
https://doi.org/10.18653/v1/2022.naacl-main.416
https://doi.org/10.1145/3495162
https://doi.org/10.1145/3495162
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://aclanthology.org/P11-1015

Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio
Plaza, Nasser Kehtarnavaz, and Demetri Terzopoulos.
2020. Image segmentation using deep learning: A
survey.

Daniel W. Otter, Julian R. Medina, and Jugal K. Kalita.
2019. A survey of the usages of deep learning in
natural language processing.

Soujanya Poria, Devamanyu Hazarika, Navonil Ma-
jumder, Gautam Naik, Erik Cambria, and Rada Mi-
halcea. 2019. MELD: A multimodal multi-party
dataset for emotion recognition in conversations. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 527–
536, Florence, Italy. Association for Computational
Linguistics.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,
and Yuxiong He. 2020. Deepspeed: System opti-
mizations enable training deep learning models with
over 100 billion parameters. In Proceedings of the
26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’20,
page 3505–3506, New York, NY, USA. Association
for Computing Machinery.

Jürgen Schmidhuber. 2015. Deep learning in neural
networks: An overview. Neural Networks, 61:85–
117.

Weizhou Shen, Siyue Wu, Yunyi Yang, and Xiaojun
Quan. 2021. Directed acyclic graph network for
conversational emotion recognition. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1551–1560, Online.
Association for Computational Linguistics.

Xiaohui Song, Liangjun Zang, Rong Zhang, Songlin
Hu, and Longtao Huang. 2022. Emotionflow: Cap-
ture the dialogue level emotion transitions. In
ICASSP 2022 - 2022 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 8542–8546.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and
Abhinav Gupta. 2017. Revisiting unreasonable ef-
fectiveness of data in deep learning era. In 2017
IEEE International Conference on Computer Vision
(ICCV), pages 843–852.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2020. How to fine-tune bert for text classification?

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Yoonseok Yang, Kyu Seok Kim, Minsam Kim, and
Juneyoung Park. 2022. GRAM: Fast Fine-tuning of

Pre-trained Language Models for Content-based Col-
laborative Filtering. In Proceedings of the 2022 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 839–851, Seattle, United
States. Association for Computational Linguistics.

Youngwoo Yoo and Se-Young Oh. 2016. Fast training
of convolutional neural network classifiers through
extreme learning machines. In 2016 International
Joint Conference on Neural Networks (IJCNN), pages
1702–1708.

Tan Yu, Hongliang Fei, and Ping Li. 2022a. Cross-probe
bert for fast cross-modal search. In Proceedings of
the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’22, page 2178–2183, New York, NY, USA.
Association for Computing Machinery.

Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu,
Qingyun Wang, Heng Ji, and Meng Jiang. 2022b. A
survey of knowledge-enhanced text generation. ACM
Comput. Surv., 54(11s).

Salah Zaiem, Robin Algayres, Titouan Parcollet, Slim
Essid, and Mirco Ravanelli. 2023. Fine-tuning strate-
gies for faster inference using speech self-supervised
models: a comparative study. In ICASSP 2023 - In-
ternational Conference on Acoustics, Speech, and
Signal Processing, Rhodes, Greece.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

Wentao Zhu, Jun Miao, and Laiyun Qing. 2014. Con-
strained extreme learning machine: A novel highly
discriminative random feedforward neural network.
In 2014 International Joint Conference on Neural
Networks (IJCNN), pages 800–807.

Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. 2021. A
robustly optimized BERT pre-training approach with
post-training. In Proceedings of the 20th Chinese
National Conference on Computational Linguistics,
pages 1218–1227, Huhhot, China. Chinese Informa-
tion Processing Society of China.

A Procedure for Extreme Learning
Machines

ELMs train a network in the following three steps:

1. Generate an arbitrary input weight matrix
WN×D, which connects the input layer of D
nodes to the hidden layer of N nodes, and an
arbitrary bias vector bN×1.

2. Calculate a matrix H of the response hidden
layer as

H = σ (WX + b) , (1)

374

http://arxiv.org/abs/2001.05566
http://arxiv.org/abs/2001.05566
http://arxiv.org/abs/1807.10854
http://arxiv.org/abs/1807.10854
https://doi.org/10.18653/v1/P19-1050
https://doi.org/10.18653/v1/P19-1050
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.18653/v1/2021.acl-long.123
https://doi.org/10.18653/v1/2021.acl-long.123
https://doi.org/10.1109/ICASSP43922.2022.9746464
https://doi.org/10.1109/ICASSP43922.2022.9746464
https://doi.org/10.1109/ICCV.2017.97
https://doi.org/10.1109/ICCV.2017.97
http://arxiv.org/abs/1905.05583
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/2022.naacl-main.61
https://doi.org/10.18653/v1/2022.naacl-main.61
https://doi.org/10.18653/v1/2022.naacl-main.61
https://doi.org/10.1109/IJCNN.2016.7727403
https://doi.org/10.1109/IJCNN.2016.7727403
https://doi.org/10.1109/IJCNN.2016.7727403
https://doi.org/10.1145/3477495.3531826
https://doi.org/10.1145/3477495.3531826
https://doi.org/10.1145/3512467
https://doi.org/10.1145/3512467
https://hal.science/hal-04076307
https://hal.science/hal-04076307
https://hal.science/hal-04076307
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://doi.org/10.1109/IJCNN.2014.6889761
https://doi.org/10.1109/IJCNN.2014.6889761
https://doi.org/10.1109/IJCNN.2014.6889761
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108

where XD×S = [x1 x2 · · · xS] is a matrix of
S training instances and σ(·) is an activation
function.

3. Calculate an output weight matrix UC×N as
shown in Eq. (2):

Û = TH†, (2)

where H† is the Moore-Penrose inverse of
the corresponding matrix H, with which the
output weight matrix U connects the hid-
den layer to the output layer of C nodes.
They project the matrix H to a target matrix
TC×S = [t1 t2 · · · tS], corresponding to the
training matrix X, as shown in Eq. (3):

T = UH. (3)

Moreover, another ELM variation that incorpo-
rates L2 regularization was proposed (Huang et al.,
2012). It calculates a solution Û using the follow-
ing equation Eq. (4):

Û = TH⊤(
I
C

+ HH⊤)−1, (4)

where I is an identity matrix and C is a parameter
used for restricting the effect of L2 regularization.
The equation can be re-written as

Û = Λ(
I
C

+ Γ)−1, (5)

Λ = TH⊤,

= [t1 t2 · · · tS][h1 h2 · · · hS]
⊤,

=

S∑

s=1

tsh⊤
s ,

(6)

Γ = HH⊤,

= [h1 h2 · · · hS][h1 h2 · · · hS]
⊤,

=

S∑

s=1

hsh⊤
s ,

(7)

where Eqs. (6) and (7) can be calculated as the sum
of products (Yoo and Oh, 2016).

B Procedure for an Iterative Extreme
Learning Machine

The I-ELM procedure is as follows:

1. Given training data with feature inputs X and
target outputs T of S instances, generate an
arbitrary input weight matrix W and a bias
vector b.

2. Calculate the hidden layer H using Eq. (1).

3. Calculate the matrices Λ and Γ using Eqs. (6)
and (7), then store them into the memory.

4. Calculate the output weight matrix U using
Eq. (5).

5. Feedforward the matrix X through the model.

6. In accordance with the target output T, iden-
tify misclassified instances Xw. If the perfor-
mance of the current model is acceptable, end
the algorithm. Otherwise; go to the next step.

7. Update the matrices Λ and Γ as follows:

Λ← Λ+ TwH⊤
w , (8)

Γ← Γ+ HwH⊤
w , (9)

where Hw = f(WXw + b) is the output of
the hidden layer given the feature input ma-
trix Xw, and Tw is the target output matrix
corresponding to Xw.

8. Go back to step 4.

C Datasets in Detail

Multimodal Emotion Lines Dataset (MELD): A
dataset of conversations between two people anno-
tated with seven emotions, i.e., anger, disgust, sad-
ness, joy, neutral, surprise, and fear. It consists of
12,599 instances. Each instance includes a speaker
name, an utterance, and an emotion. We followed
the official data split from Poria et al. (2019); Hsu
et al. (2018).
Interactive Emotional Dyadic Motion Capture
(IEMOCAP): A dataset of dyadic conversations
recorded and annotated for emotional information
(Busso et al., 2008). It has been widely used for de-
veloping models for downstream tasks. It contains
transcripts, audio, and video data from scripted-
and improvised conversations among 10 actors (5
men and 5 women).
Internet Movie Database (IMDb): A dataset of
movie reviews used for sentiment analysis and
other NLP tasks (Maas et al., 2011). It contains
25,000 reviews each for training and testing data,
50,000 reviews in total. Each review is annotated

375

with either a positive or negative label. The re-
views are written in English, and were collected
from IMDb.1 This dataset is widely used for train-
ing and testing models for sentiment analysis, text
classification, and natural language understanding.

AG News: A dataset of news articles, which is
well-balanced and contains contents from a variety
of sources, created from the AG’s corpus for topic
classification tasks (Zhang et al., 2015). It contains
approximately 120,000 news articles, consisting
of four classes, i.e., world, sports, business, and
science/technology, with 30,000 articles each.

D Hyperparameter Tuning

Hyperparameters were selected based on validating
scores. Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 show
validating scores for k. Figures 12, 13, 14, 15, 16,
17, 18, 19, 20, and 21 show validating scores for
nh. Furthermore, the learning rate was set to 1e-5
for MELD and IMDb, and 5e-6 for IEMOCAP and
AG News.

E Environment Setup

The experiments were conducted with PyTorch
Lightning (Falcon and The PyTorch Lightning
team, 2019). The floating point precision was set to
float32. Data loaders from Kim and Vossen (2021)
were modified to be compatible with EFT.

F Training Time of EFT

The training time of EFT includes BP, feedforward-
ing for I-ELM, and weight calculation of I-ELM.

BP (Steps 4 to 5): We apply BP to make the feature
extractor briefly adapts to a whole dataset. This
takes only few epochs, comparing to the baselines.

Feedforward for I-ELM (Steps 6 to 7): We feed-
forward the inputs through the feature extractor for
the hidden layer H.

Weight calculation of I-ELM (Steps 8 to 9): We
calculate the output weight based on values from
the hidden layer H.

G FLOP estimation of Matrix Inverse
Operation

The FLOP estimation of matrix inverse operation
was computed by the summation of FLOPs of LU
decomposition and equation solving of Ly = b
and Ux = y. Given nh hidden nodes of I-ELM,

1https://www.imdb.com

the number of FLOPs for LU decomposition is ap-
proximately 2/3× nh3 (assuming a dense matrix),
and the number of FLOPs for forward substitution
(solving Ly = b) and back substitution (solving
Ux = y) are each approximately nh2.

50.00

52.00

54.00

56.00

58.00

60.00

62.00

1 2 3 4 5 6 7 8 9

◦

Figure 2: Validating WF1 of fine-tuned RoBERTa-base
over k BPE on MELD

56.00

58.00

60.00

62.00

64.00

1 2 3 4 5 6 7 8 9

◦

Figure 3: Validating WF1 of fine-tuned RoBERTa-large
over k BPE on MELD

376

https://www.imdb.com

45.00

47.00

49.00

51.00

53.00

55.00

57.00

1 2 3 4 5 6 7 8 9

◦

Figure 4: Validating WF1 of fine-tuned RoBERTa-base
over k BPE on IEMOCAP

20.00

24.00

28.00

32.00

36.00

40.00

44.00

48.00

52.00

56.00

1 2 3 4 5 6 7 8 9

◦

Figure 5: Validating WF1 of fine-tuned RoBERTa-large
over k BPE on IEMOCAP

94.00

94.50

95.00

95.50

96.00

1 2 3 4 5 6 7 8 9

◦

Figure 6: Validating WF1 of fine-tuned RoBERTa-base
over k BPE on IMDb

95.50

95.75

96.00

96.25

96.50

1 2 3 4 5 6 7 8 9

◦

Figure 7: Validating WF1 of fine-tuned RoBERTa-large
over k BPE on IMDb

92.00

92.50

93.00

93.50

94.00

1 2 3 4 5 6 7 8 9

◦

Figure 8: Validating WF1 of fine-tuned BERT-base-
uncased over k BPE on AG News

92.50

92.75

93.00

93.25

93.50

93.75

94.00

94.25

94.50

1 2 3 4 5 6 7 8 9

◦

Figure 9: Validating WF1 of fine-tuned BERT-large-
uncased over k BPE on AG News

92.50

93.00

93.50

94.00

94.50

95.00

1 2 3 4 5 6 7 8 9

◦

Figure 10: Validating WF1 of fine-tuned RoBERTa-base
over k BPE on AG News

92.50

93.00

93.50

94.00

94.50

95.00

1 2 3 4 5 6 7 8 9

◦

Figure 11: Validating WF1 of fine-tuned RoBERTa-
large over k BPE on AG News

377

57.50

58.00

58.50

59.00

59.50

100 200 300 400 500 600 700 800 900 1000 1100 1200

◦

Figure 12: Validating WF1 of fine-tuned EFT-RoBERTa-
base over nh I-ELM hidden nodes on MELD

60.00

60.50

61.00

61.50

62.00

100 200 300 400 500 600 700 800 900 1000 1100 1200

◦

Figure 13: Validating WF1 of fine-tuned EFT-RoBERTa-
large over nh I-ELM hidden nodes on MELD

50.00

51.00

52.00

53.00

54.00

100 200 300 400 500 600 700 800 900 1000 1100 1200

◦

Figure 14: Validating WF1 of fine-tuned EFT-RoBERTa-
base over nh I-ELM hidden nodes on IEMOCAP

53.00

54.00

55.00

56.00

100 200 300 400 500 600 700 800 900 1000 1100 1200

◦

Figure 15: Validating WF1 of fine-tuned EFT-RoBERTa-
large over nh I-ELM hidden nodes on IEMOCAP

94.50

94.75

95.00

95.25

95.50

100 200 300 400 500 600 700 800 900 1000 1100 1200

◦

Figure 16: Validating WF1 of fine-tuned EFT-RoBERTa-
base over nh I-ELM hidden nodes on IMDb

95.50

95.75

96.00

96.25

96.50

100 200 300 400 500 600 700 800 900 1000 1100 1200

◦

Figure 17: Validating WF1 of fine-tuned EFT-RoBERTa-
large over nh I-ELM hidden nodes on IMDb

93.00

93.25

93.50

93.75

94.00

100 200 300 400 500 600 700 800 900 1000 1100 1200

◦

Figure 18: Validating WF1 of fine-tuned EFT-BERT-
base-uncased over nh I-ELM hidden nodes on AG News

378

94.10

94.15

94.20

94.25

94.30

94.35

94.40

100 200 300 400 500 600 700 800 900 1000 1100 1200

◦

Figure 19: Validating WF1 of fine-tuned EFT-BERT-
large-uncased over nh I-ELM hidden nodes on AG
News

93.50

93.75

94.00

94.25

94.50

100 200 300 400 500 600 700 800 900 1000 1100 1200

◦

Figure 20: Validating WF1 of fine-tuned EFT-RoBERTa-
base over nh I-ELM hidden nodes on AG News

94.50

94.65

94.80

94.95

95.10

95.25

100 200 300 400 500 600 700 800 900 1000 1100 1200

◦

Figure 21: Validating WF1 of fine-tuned EFT-RoBERTa-
large over nh I-ELM hidden nodes on AG News

379

