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Abstract

Recent studies demonstrate that query expan-
sions generated by large language models
(LLMs) can considerably enhance information
retrieval systems by generating hypothetical
documents that answer the queries as expan-
sions. However, challenges arise from mis-
alignments between the expansions and the re-
trieval corpus, resulting in issues like hallucina-
tions and outdated information due to the lim-
ited intrinsic knowledge of LLMs. Inspired by
Pseudo Relevance Feedback (PRF), we intro-
duce Corpus-Steered Query Expansion (CSQE)
to promote the incorporation of knowledge em-
bedded within the corpus. CSQE utilizes the
relevance assessing capability of LLMs to sys-
tematically identify pivotal sentences in the
initially-retrieved documents. These corpus-
originated texts are subsequently used to ex-
pand the query together with LLM-knowledge
empowered expansions, improving the rele-
vance prediction between the query and the
target documents. Extensive experiments re-
veal that CSQE exhibits strong performance
without necessitating any training, especially
with queries for which LLMs lack knowledge.1

1 Introduction

Query expansion enhances the effectiveness of in-
formation retrieval systems by incorporating ad-
ditional texts into the original query, which are
traditionally identified via pseudo-relevance feed-
back (Amati and Van Rijsbergen, 2002; Robert-
son, 1990) or by leveraging external lexical knowl-
edge sources (Bhogal et al., 2007; Qiu and Frei,
1993). Recent studies (Gao et al., 2022; Wang et al.,
2023; Jagerman et al., 2023; Mackie et al., 2023)
show query expansions generated by LLMs are
able to significantly boost retrieval effectiveness,
especially in zero-shot scenarios. For instance, Gao

1Our code is publicly available at https://github.com/
Yibin-Lei/CSQE.

Figure 1: Overview of CSQE. Given a query Biology
definition and the top-2 retrieved documents, CSQE
utilizes an LLM to identify relevant document 1 and ex-
tract the key sentences from document 1 that contribute
to the relevance. The query is then expanded by both
these corpus-originated texts and LLM-knowledge em-
powered expansions (i.e., hypothetical documents that
answer the query) to obtain the final results.

et al. (2022) demonstrates the effectiveness of uti-
lizing LLMs to generate hypothetical documents
answering the original query as additional texts
to augment the query. Mackie et al. (2023) show
the efficacy of applying pseudo-relevance feedback
upon the LLM-generated answers for expansion.
Despite variations in prompts or expansion meth-
ods, a common foundational element across these
approaches is the reliance on the intrinsic knowl-
edge of LLMs.

Despite their effectiveness, generations that rely
on the intrinsic parametric knowledge within LLMs
encounter various issues. These include hallucina-
tion (Zhang et al., 2023), inability to update (Kasai
et al., 2022), and a deficiency in long-tail knowl-
edge (Kandpal et al., 2023). Such generations may
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introduce irrelevant or misleading texts, degrading
retrieval performance (Weller et al., 2023). These
query expansions can be seen as an evolution of
earlier query expansions reliant on external lexical
knowledge. In contrast, tradition PRF that typically
chooses additional texts from the top-retrieved doc-
uments, has received less attention. However, given
that the expanded texts are sourced directly from
the original documents, these methods hold signifi-
cant potential for enhancing factuality.

To this end, we propose Corpus-Steered Query
Expansion (CSQE). Unlike methods that rely
on the intrinsic parametric knowledge of LLMs,
CSQE exclusively leverages the strong relevance
assessing capability of LLMs (Faggioli et al., 2023;
Thomas et al., 2023). As illustrated in Figure 1,
given a query and its initially retrieved documents,
CSQE utilizes a LLM to first identify relevant doc-
uments to the query and then extracts pivotal sen-
tences that contribute to their relevance. These
corpus-originated texts are then combined together
with LLM-knowledge empowered expansions to
expand the original query. By incorporating query
expansions that strictly originate from the cor-
pus, CSQE balances out the limitations commonly
found in LLM-knowledge empowered expansions.

To sum up, our contributions are 3-fold:
1) We propose CSQE, which exclusively exploits
the relevance assessing capability of LLMs to over-
come the hinderance posed by LLM-knowledge
empowered expansions.
2) Experimental results reveal that CSQE combined
with a simple BM25 model, without necessitating
any training, outperform not only LLM-knowledge
empowered expansion methods but also the SOTA
supervised ContrieverFT model across two high-
resource web search datasets and six low-resource
BEIR datasets.
3) Further analysis demonstrates the advantages of
BM25 over dense retrieval with query expansion
from LLMs, as well as query expansion over large-
scale fine-tuning upon Contriever.

2 Method

In this section, we first describe how we imple-
ment a Knowledge Empowered Query Expansion
baseline based on LLMs (KEQE), then present the
details of CSQE to enhance BM25.

KEQE Inspired by recent works that directly gen-
erate hypothetical documents to answer the query
via LLMs for boosting retrieval (Gao et al., 2022;

Wang et al., 2023; Jagerman et al., 2023; Mackie
et al., 2023), we implement a KEQE baseline in a
similar pattern for fair comparison. Given a query
q, we use LLMs to generate the hypothetical an-
swer a via a task-agnostic prompt shown in Table 1.
The concatenation of q and a is then used as the ex-
panded query to BM25 to retrieve the final results.

It is worth noting that these hypothetical docu-
ments are inevitably susceptible to issues like hal-
lucination that can adversely affect retrieval per-
formance, due to the limitation of LLMs’ intrinsic
knowledge. To mitigate such problems, we propose
CSQE to incorporate corpus-originated expansions
with knowledge embedded in the corpus.

KEQE Prompt

Please write a passage to answer the question
Question: {q}
Passage:

Table 1: Prompt of KEQE. {·} denotes the placeholder
for the corresponding text.

CSQE Given a query q and the document col-
lection D, we first retrieve the top-k documents
{d1, d2, . . . , dk} using BM25. Then we elicit
large language models to directly perform pseudo-
relevance feedback via one-shot prompting as
shown in Table 2, where the current retrieved doc-
uments are integrated. The learning context in the
prompt is constructed from the TREC DL19 dataset
for constraining the structure of generated texts.
Noting that such a prompt remains unchanged for
all tasks, we can therefore consider our method
with minimal relevance supervision and being a
zero-shot approach for all datasets excluding DL19
(which is used in the prompt).

Based on the above prompting, the generation
of LLMs will contain (1) the indices of documents
that are identified as relevant to the query and (2)
the key sentences that contribute to their relevance,
denoted as S = {s1, s2, . . . , sn}. Then we expand
the query by concatenating q, all sentences in S,
and the generations from KEQE to form a new
query for BM25 retrieval, where the results in this
turn are regarded as the final retrieved documents.
Since these key sentences are usually identical to
the existing texts in the corpus2, they are much less
prone to issues such as hallucinations and shortness
of long-tail knowledge and can balance out the
limitations of KEQE expansions.

2In our preliminary study, we found 830 out of 1000 key
sentences extracted by GPT-3.5-Turbo are identical to sen-
tences in the initially-retrieved documents.
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To increase diversity, we sample N genera-
tions from the LLM for expansion. For KEQE,
N = 5. As CSQE involves both KEQE and corpus-
originated expansions, we sample N = 2 for both
KEQE and corpus-originated expansions, in total
only 4 generations for fair comparison. We repeat
the initial query q a number of times equal to the
number of expansions during concatenation.

CSQE Prompt

Query: "how are some sharks warm blooded"
Retrieved documents:
1. Most sharks are cold-blooded. Some, like the Mako and the Great white shark, are
partially warmblooded (they are endotherms). . .
2. Are sharks cold-blooded or warm-blooded? Sharks have a reputation as cold-blooded
and despite how negative that term is. . .
3. Great white sharks are some of the only warm blooded sharks. This allows them to
swim in colder waters in addition to warm, tropical waters. . .
You will begin by examining the initially retrieved documents and identifying the ones
that are relevant, even partially, to the query. Once the relevant documents are identified,
you will extract the key sentences from each document that contribute to their relevance.

Based on the query "how are some sharks warm blooded", I have examined the initially
retrieved documents. Here are the relevant documents and the key sentences extracted
from each:
Document 1:
"Most sharks are cold-blooded. Some, like the Mako and the Great white shark, are
partially warm-blooded (they are endotherms)."
Document 3:
"Great white sharks are some of the only warm-blooded sharks."

Query: "{q}"
Retrieved documents:
1. {d1}
2. {d2}
. . .
{k}. {dk}
You will begin by examining the initially retrieved documents and identifying the ones
that are relevant, even partially, to the query. Once the relevant documents are identified,
you will extract the key sentences from each document that contribute to their relevance.

Table 2: Prompt of CSQE. {·} denotes the placeholder
for the corresponding text. Refer to Appendix A.1 for
the complete prompt.

3 Experiments

3.1 Setup

Datasets. Following Gao et al. (2022), we eval-
uate on (1) two web search datasets: TREC
DL19 (Craswell et al., 2020) and TREC
DL20 (Craswell et al., 2021), which are based on
the high-resource MS-MARCO dataset (Bajaj et al.,
2016); and (2) six low-resource retrieval datasets
from BEIR (Thakur et al., 2021) covering a variety
of domains (e.g., medicine and finance) and query
types (e.g., news headlines and arguments).
Baselines. We consider baselines from two cate-
gories: PRF methods and query expansion meth-
ods using LLMs. The PRF method we include is
BM25+RM3 (Lavrenko and Croft, 2001; Jaleel
et al., 2004). The query expansion methods
with LLMs include: (1) Contriever+HyDE, a
KEQE method that employs hypothetical docu-
ments generated by LLMs to enhance unsuper-
vised Contriever (Izacard et al., 2022) model;
(2) BM25+GPR (Mackie et al., 2023), a query

expansion method that applies PRF upon LLM-
knowledge empowered hypothetical texts. GPR is
a strong baseline that outperforms multiple SOTA
PRF methods; (3) BM25+Q2D/PRF (Jagerman
et al., 2023), a method that given initially-retrieved
documents generates hypothetical documents in-
stead of extracting key sentences from them; and
(4) BM25+KEQE.

Moreover, we also include three supervised
dense retrievers that are trained with over 500k
human-labeled data of MS-MARCO for reference:
(1) DPR; (2) ANCE, which involves sophisticated
negative mining; and (3) ContrieverFT, which is
the fine-tuned version of Contriever.
Implementation. We utilize GPT-3.5-Turbo3 as
our serving LLM for the trade-off between perfor-
mance and cost. We sample from the LLM with
a temperature of 1.0. BM25 retrieval and RM3
query expansion are performed using Pyserini (Lin
et al., 2021) with default hyper-parameters. CSQE
utilizes the top-10 retrieved documents, with each
truncated to at most 128 tokens, excluding the Ar-
guana dataset where we keep the top-3 documents
due to its lengthy passages. To increase diversity,
for each API call, we sample N generations. For
KEQE, N = 5. As CSQE involves both KEQE
and corpus-originated expansions, we sample N =
2 for both KEQE and corpus-originated expansions,
making only 4 generations total for fair comparison.
The expanded query of each generation is further
concatenated together to form the final query.

3.2 Web Search Results

Table 3 shows the retrieval results on TREC DL19
and DL20. CSQE is able to bring a substan-
tially larger improvement over BM25 compared
to the strong PRF baseline RM3. Despite utiliz-
ing fewer LLM generations for expansion, CSQE
surpasses KEQE on 5/6 metrics, showing the effec-
tiveness of our corpus-steered approach. Moreover,
CSQE consistently outperforms GPR on 5/6 met-
rics, which employs PRF on KEQE expansions,
emphasizing the necessity of corpus-steered ex-
pansions. Comparing to Q2D/PRF, CSQE shows
superiority across all metrics. We interestingly find
a phenomenon that if LLMs find no relevant docu-
ments in the initially-retrieved set, they will yield
no expansions. However, in the case of Q2D/PRF,
LLMs still need to generate documents, potentially

3We use the GPT-3.5-Turbo-0301 version. In our prelimi-
nary study, updating HyDE’s LLM from Text-Davinci-003 to
GPT-3.5-Turbo cannot improve results.
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DL19 DL20

mAP nDCG@10 Recall@1k mAP nDCG@10 Recall@1k

w/o training
BM25 30.1 50.6 75.0 28.6 48.0 78.6
BM25+RM3 34.2 52.2 81.4 30.1 49.0 82.4
Contriever+HyDE 41.8 61.3 88.0 38.2 57.9 84.4
BM25+GRF 44.1 62.0 79.7 48.6 60.7 87.9
BM25+Q2D/PRF 43.6 65.4 87.1 40.5 61.0 87.2
BM25+KEQE 45.0 65.9 88.8 42.8 60.5 88.3
BM25+CSQE 47.2 67.3 88.5 46.5 66.2 89.1

reference. w/ training
DPR 36.5 62.2 76.9 41.8 65.3 81.4
ANCE 37.1 64.5 75.5 40.8 64.6 77.6
ContrieverFT 41.7 62.1 83.6 43.6 63.2 85.8

Table 3: Results on TREC DL19 and DL20 datasets. In-domain supervised models DPR, ANCE and ContrieverFT

are trained on the MS-MARCO dataset and listed for reference. Bold indicates the best result across all models.

Scifact Arguana Trec-Covid FiQA DBPedia TREC-NEWS Avg.

nDCG@10

w/o training
BM25 67.9 39.7 59.5 23.6 31.8 39.5 43.7
BM25+RM3 64.6 38.0 59.3 19.2 30.8 42.6 42.4
Contriever+HyDE 69.1 46.6 59.3 27.3 36.8 44.0 47.2
BM25+Q2D/PRF 71.7 41.4 73.8 29.0 37.1 47.6 50.1
BM25+KEQE 70.5 40.7 66.6 22.0 38.8 48.3 47.8
BM25+CSQE 69.6 40.3 74.2 25.0 40.3 48.7 49.7

reference. w/ training
DPR 31.8 17.5 33.2 29.5 26.3 16.1 25.7
ANCE 50.7 41.5 65.4 30.0 28.1 38.2 42.3
ContrieverFT 67.7 44.6 59.6 32.9 41.3 42.8 48.2

Table 4: Results on low-resource retrieval datasets. Bold indicates the best result across all models.

being adversely affected by the presence of noisy
documents (Yoran et al., 2023). Without any train-
ing, CSQE with simple BM25 is able to beat the
SOTA ContrieverFT model across all metrics by a
substantial margin.

Model nDCG@1 nDCG@5 nDCG@10

BM25 61.9 60.9 68.4
BM25+KEQE 50.0 48.7 62.0
BM25+CSQE 85.7 79.6 82.6
RankGPT 76.2 74.2 75.7

Table 5: Results of CSQE on NovelEval. RankGPT
refers to the GPT-3.5-Turbo-based reranker in Sun et al.
(2023).

3.3 Low-Resource Retrieval Results

The results on 6 low-resource BEIR datasets are
shown in Table 4. Applying RM3 leads to perfor-
mance drops on 5/6 datasets, while CSQE is robust
to domain shifts and is able to consistently improve
BM25 on all datasets. Although KEQE can achieve
similar results as ContrieverFT, CSQE is able to out-
perform both KEQE and ContrieverFT by a large

margin, demonstrating the strong generalizability
of CSQE. CSQE remains competitive when com-
pared to Q2D/PRF, verifying the importance of
corpus knowledge in low-resource scenarios.

4 Analysis

4.1 CSQE on Queries that LLMs Lack
Knowledge

To further verify that the reduction of hallucination
leads to the performance improvements, we evalu-
ate CSQE on NovelEval (Sun et al., 2023). NovelE-
val is a test set with queries and passages published
after the release of GPT-4, serving as a testbed
where current LLMs have no knowledge and thus
can only hallucinate. Following Sun et al. (2023),
we report nDCG@1, nDCG@5, and nDCG@10.
Interestingly, we find KEQE is not able to bring
improvements while CSQE leads to remarkable im-
provements. Notably, BM25+CSQE outperforms a
GPT-3.5-Turbo-based reranker which is more time-
consuming to run, providing additional confirma-
tion of the effectiveness of CSQE.
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4.2 CSQE on Dense Retrieval

To test the versatility of CSQE, we apply CSQE
on the unsupervised Contriever in Table 6. Fol-
lowing Gao et al. (2022), we encode each query
expansion separately into dense embeddings and
average their embeddings with the original query
embedding as the final embedding. As the only dif-
ference between HyDE and KEQE on Contriever is
their utilized LLMs (Text-Davinci-003 versus GPT-
3.5-Turbo), we find they achieve similar results.
Similar to the impact of CSQE on BM25, CSQE is
able to improve Contriever significantly. Interest-
ingly, it is worth noting that in all cases, Contriever
performs worse than BM25. Surprisingly, query ex-
pansion (Contriever+CSQE) is proven to be more
effective than fine-tuning the model using 500K
human-labeled data (ContrieverFT).

Model mAP nDCG@10 Recall@1k

Contriever 24.0 44.5 74.6
+HyDE 41.8 61.3 88.0
+KEQE 41.7 62.2 87.4
+CSQE 44.0 65.6 88.6

BM25 30.1 50.6 75.0
+KEQE 45.0 65.9 88.8
+CSQE 47.6 68.6 89.0

ContrieverFT 41.7 62.1 83.6

Table 6: Results of CSQE on Contriever on DL19.

4.3 CSQE with Different LLMs

We apply different LLMs for CSQE in Ta-
ble 7. Utilizing Llama2-Chat-70B, we observe that
BM25+CSQE outperforms MS-MARCO-tuned
DPR, ANCE, and even ContrieverFT. However,
a noticeable performance gap persists between
Llama models and GPT-3.5-Turbo. Furthermore,
we observe a consistent performance improvement
with the increase in model size for both CSQE
and KEQE. Across the models, CSQE consistently
outperforms KEQE, verifying the effectiveness
of CSQE. This conclusion also applies to DL20
with the exception that BM25+CSQE with Llama2-
Chat-70B can not outperform but obtains compa-
rable performance to the fine-tuned dense retrieval
models, as outlined in Appendix A.3.

4.4 Case Studies

Two qualitative examples of CSQE are shown in
Table 8. As illustrated, KEQE has the tendency
to hallucinate and introduce misleading unrelated
keywords, while corpus-originated expansion in

Model mAP nDCG@10 Recall@1k

BM25+CSQE
Llama2-Chat-7B 39.1 59.9 86.5
Llama2-Chat-13B 41.4 61.6 86.1
Llama2-Chat-70B 43.6 63.4 87.6
GPT-3.5-Turbo 47.2 67.3 88.5

BM25+KEQE
Llama2-Chat-7B 37.5 57.1 82.0
Llama2-Chat-13B 38.8 58.3 83.7
Llama2-Chat-70B 40.9 59.3 84.9
GPT-3.5-Turbo 45.0 65.9 88.8

reference.
DPR 36.5 62.2 76.9
ANCE 37.1 64.5 75.5
ContrieverFT 41.7 62.1 83.6

Table 7: Results of CSQE with different LLMs on
DL19.

contrast is able to introduce meaningful and rele-
vant texts to balance out KEQE’s limitations.

Query: What is the screen resolution of vision pro?
KEQE: Vision pro is a software product from zeiss that is used for data
management and evaluation in the field of optometry. However, since
vision pro is a software program, it doesn’t have a screen resolution of
its own. Instead, the screen resolution you experience when using vision
pro will depend entirely on the specifications of your computer hardware
and display monitor. . .
Corpus-Originated Expansion: The extremely high-resolution displays
are one of the many features that set vision pro apart from its competitors.
Vision pro uses micro-oled technology to pack 23 million pixels into
two displays, each the size of a postage stamp the vision pro display
resolution is one of the many benefits of the device over its rivals the
company refers to it as "micro-oled", which has led some to mistake it
for microled. . .

Question: What are the new features of pytorch 2?
KEQE: Pytorch 2 brings a host of new features and improvements. No-
tably, it introduces a new feature called "hybrid frontend", which enables
users to write complex models using both pytorch and tensorflow syn-
tax. This allows for seamless integration of pytorch with other libraries
and frameworks, offering users greater flexibility and control over their
models. . .
Corpus-Originated Expansion: Pytorch 2.0 has been released with
fundamental changes to the way it works at the compiler level, faster
performance, and support for dynamic shapes and distributed. The
new release includes a stable version of accelerated transformers; and
torch.compile, a feature that improves pytorch performance. . .

Table 8: Examples of CSQE on NovelEval. KEQE tends
to produce non-factual and irrelevant texts, whereas
Corpus-Originated Expansion introduces various mean-
ingful and relevant texts. Certain expansions are omitted
for the sake of space.

5 Conclusion

In this paper, we propose CSQE, which utilizes the
relevance assessing ability of LLMs to balance out
limitations associated with the intrinsic knowledge
of LLMs. Experimental evaluation demonstrates
CSQE’s superiority over the LLM-knowledge em-
powered expansion methods and SOTA supervised
ContrieverFT model across various datasets.
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Limitations

We acknowledge two limitations in our work: com-
putational overhead and reliance on closed-source
models. The utilization of OpenAI LLMs neces-
sitates API calls, resulting in increased process-
ing time and latency. However, in retrieval tasks
where latency is less crucial, such as legal case re-
trieval, our method may offer benefits. Moreover,
our approach does not necessitate training, making
it more accessible to researchers and practitioners
without extensive GPU resources. Additionally,
the unavailability of the LLMs’ source models and
training data restricts our ability to conduct thor-
ough analysis. There may exist data contamination
issues (Magar and Schwartz, 2022) where some of
our test examples are already present in the training
data of the LLMs.

We utilized ChatGPT to correct the grammar in
our paper and ensured that none of the text was
directly generated by ChatGPT.
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A Appendix

A.1 Instruction of CSQE

Query: "how are some sharks warm blooded"
Retrieved documents:
1. Most sharks are cold-blooded. Some, like the Mako and the Great white shark, are partially
warmblooded (they are endotherms). Cold blooded although if you’ve ever seen a Great White
Shark hunt sea lions you’d be thinking they would have to be hotblooded. Actually the Salmon
Shark is a warm blooded shark.
2. Are sharks cold-blooded or warm-blooded? Sharks have a reputation as cold-blooded and
despite how negative that term is, it is not entirely inaccurate. Sharks are by no means evil, vicious
killers like that quote suggests. Nonetheless, sharks are, for the most part anyways, efficient
ectothermic predators. Endo vs Ecto.
3. Great white sharks are some of the only warm blooded sharks. This allows them to swim in
colder waters in addition to warm, tropical waters. Great White sharks can be found asâ¦ north
as Alaska and as south as the southern tip of South America. They exist worldwide, everywhere
in-between. 5 people found this useful.
4. Sharks’ blood gives them turbo speed. Several species of shark and tuna have something special
going on inside their bodies. For a long time, scientists have known that some fish species appear
warm-blooded. Salmon sharks can elevate their body temperatures by up to 20 degrees compared
to the surrounding water, for example.
You will begin by examining the initially retrieved documents and identifying the ones that are
relevant, even partially, to the query. Once the relevant documents are identified, you will extract
the key sentences from each document that contribute to their relevance.

Based on the query "how are some sharks warm blooded", I have examined the initially
retrieved documents. Here are the relevant documents and the key sentences extracted from each:
Document 1:
"Most sharks are cold-blooded. Some, like the Mako and the Great white shark, are partially
warm-blooded (they are endotherms)."
"Actually, the Salmon Shark is a warm-blooded shark."
Document 3:
"Great white sharks are some of the only warm-blooded sharks."
"This allows them to swim in colder waters in addition to warm, tropical waters."
Document 4:
"Salmon sharks can elevate their body temperatures by up to 20 degrees compared to the
surrounding water, for example."

Query: "{q}"
Retrieved documents:
1. {d1}
2. {d2}
. . .
{k}. {dk}
You will begin by examining the initially retrieved documents and identifying the ones that are
relevant, even partially, to the query. Once the relevant documents are identified, you will extract
the key sentences from each document that contribute to their relevance.
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A.2 Dataset Statistics
Details about the retrieval datasets are shown in Table 9.

Dataset #Test #Corpus

DL19 43 8,841,823
DL20 50 8,841,823
Scifact 300 5183
Arguana 1406 8674
Trec-Covid 50 171,332
FiQA 648 57,638
DBPedia 400 4,635,922
TREC-NEWS 57 594,977
NovelEval 21 420

Table 9: Dataset Statistics

A.3 CSQE with Different LLMs on DL20

Model mAP nDCG@10 Recall@1k

BM25+CSQE
Llama2-Chat-70B 41.4 61.5 86.5
GPT-3.5-Turbo 46.5 66.2 89.1

BM25+KEQE
Llama2-Chat-70B 42.0 58.5 85.2
GPT-3.5-Turbo 42.8 60.5 88.3

reference.
DPR 41.8 65.3 81.4
ANCE 40.8 64.6 77.6
ContrieverFT 43.6 63.2 85.8

Table 10: Results of CSQE with different LLMs on DL20.
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