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Abstract

Recent work in open-domain question answer-
ing (ODQA) has shown that adversarial poi-
soning of the search collection can cause large
drops in accuracy for production systems. How-
ever, little to no work has proposed methods
to defend against these attacks. To do so, we
rely on the intuition that redundant information
often exists in large corpora. To find it, we in-
troduce a method that uses query augmentation
to search for a diverse set of passages that could
answer the original question but are less likely
to have been poisoned. We integrate these new
passages into the model through the design of
a novel confidence method, comparing the pre-
dicted answer to its appearance in the retrieved
contexts (what we call Confidence from An-
swer Redundancy, i.e. CAR). Together these
methods allow for a simple but effective way to
defend against poisoning attacks that provides
gains of nearly 20% exact match across varying
levels of data poisoning/knowledge conflicts.1

1 Introduction

Open-domain question answering (ODQA) is the
task of answering a given question based on evi-
dence from a large corpus of documents. In order
to do so, a system generally first retrieves a smaller
subset of documents (typically between 5-100) and
then answers the question based on those docu-
ments. Previous research in ODQA has resulted in
many well-curated datasets that evaluate a model’s
ability to answer questions on a wide array of top-
ics (Kwiatkowski et al., 2019; Joshi et al., 2017;
Dunn et al., 2017; Yang et al., 2015).

However, most internet users search across less-
carefully curated sources, where malicious actors
are able to affect articles that may be used by an
ODQA system (Figure 1). Furthermore, even in

1Code and data will be made public at https://
github.com/orionw/disinformation-defense
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Obama was born at the Medical Center for 
Women and Children in Honolulu, Hawaii Kenya ...

Obama (born 1961 in Hawaii) is an American 
politician who served as the 44th President  ...

 Where was Barack Obama born?Q

Q1

Q2

What is Barack Obama's city of birth?

What hospital was Barack Obama born in? 

 

 

Poisoned ODQA 

Our Method

CAR

Hawaii

Hawaii

1

2

3

Q

31 2

 Where was Barack Obama born?

5 23

31 4

Kenya

Query Augmentation

Kenya

Hawaii

Figure 1: An example of a poisoning attack on an open-
domain question answering (ODQA) pipeline with our
method (Lower) vs a standard system (Upper). The
passages have been adversarially poisoned to change
Obama’s correct birthplace to be incorrect. Our pro-
posed defense method uses query augmentation to find
new contexts that are less likely to be poisoned (#4 and
#5). It then uses a novel confidence-based aggregation
method (CAR) to predict the correct answer.

curated knowledge sources like Wikipedia, we fre-
quently see attacks (e.g. malicious edits/fake pages)
that have even impacted production QA systems.2

Recent work has recognized the potential for bad
actors to influence automated knowledge-intensive
NLP systems that involve retrieval: Du et al. (2022)
explored how poisoned information affects auto-
mated fact verification systems using sparse non-
neural information retrieval systems, while Chen
et al. (2022); Longpre et al. (2021); Pan et al. (2023)

2For examples of disinformation attacks on popular entities
that motivate our approach see Appendix A or the “Reliability
of Wikipedia" or “Vandalism on Wikipedia" pages.
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have studied the effect of knowledge conflicts and
poisoning attacks on ODQA pipelines. All of these
works have illustrated that poisoning attacks signif-
icantly decrease system performance, even when
using state-of-the-art models; however, only Pan
et al. (2023) has even briefly considered the task
of defending against poisoning attacks (which are
becoming increasingly common, see Appendix A
for real-life examples) and their proposed method,
majority voting over different documents, provides
only minor gains.

We seek to fill this gap by proposing a simple but
effective defense against these attacks. Building on
the intuition that information is usually available
in multiple places and that it is unlikely that all
sources (or pages) will be poisoned, we propose
a novel query augmentation scheme to gather a
larger set of diverse passages. We also propose a
new confidence method to decide when to use the
newly gathered contexts vs the original, which we
call Confidence from Answer Redundancy (CAR).

Our proposed approach involves no gradient up-
dates, can easily be applied to existing frameworks,
and uses a simple resolution approach to arrive at
the predicted answer. Together, our methods can
provide gains of nearly 20 points in exact match,
helping to reduce the negative effects of data poi-
soning and disinformation attacks on ODQA.

2 Experimental Details

We seek to mimic realistic disinformation attacks
on a curated knowledge source; thus, for our exper-
iments we use Wikipedia as the knowledge collec-
tion for both original and augmented queries, and
simulate an attack on each question independently.
We follow Du et al. (2022) and poison the entirety
of each Wikipedia page that corresponds to each
of the retrieved passages.3 We vary the amount of
poisoned pages from 1 to 100.4 Note that we do
not poison the entire corpus, as poisoning millions
of pages is beyond the scope of common attacks.

2.1 Data
For our experiments we use Natural Questions
(NQ) (Kwiatkowski et al., 2019) and TriviaQA
(Joshi et al., 2017), two popular datasets for open-

3e.g. if at least one of the 100 retrieved passages was from
Obama’s Wikipedia page, the rest of his page is poisoned

4As 100 passages are given to the models (so 100 is all
passages - see Appendix F for why scores are non-zero). We
also experimented with poisoning random retrieved passages
in the top 100 and found similar results (Appendix D)

domain question answering. Furthermore, previ-
ous research on conflicts in ODQA has used these
datasets in their experiments (Chen et al., 2022).
The Natural Question dataset was gathered by col-
lecting real-user queries typed into Google Search,
while TriviaQA was collected by scraping question
and answer pairs from trivia websites, and then
matching the answers to Wikipedia passages.

We simulate the data poisoning through the code
available from Longpre et al. (2021), which intro-
duced the problem in ODQA and has been used in
subsequent work (Chen et al., 2022). Their method
uses the answers to the questions to suggest an en-
tity of the same type, using SpaCY NER (Honnibal
and Montani, 2017), which is then used to replace
the correct answer in the text. This allows for en-
tity substitutions that keep the semantic order of the
context, such as replacing dates with dates, people
with people, numbers with numbers, etc.

2.2 Models
We use two SOTA models: Fusion-in-Decoder
(FiD) and ATLAS. FiD is an encoder-decoder ar-
chitecture that generates an answer by first retriev-
ing and encoding N passages and then concate-
nating them and giving them to the decoder (Izac-
ard and Grave, 2021). FiD uses DPR for retrieval
(Karpukhin et al., 2020). ATLAS (Izacard et al.,
2022b) is currently the state-of-the-art model on
Natural Questions and TriviaQA. This model also
uses fusion in the decoder and has a T5 backbone,
but uses Contriever (Izacard et al., 2022a) for re-
trieval and does joint end-to-end training. For in-
formation on hyperparameters see Appendix B.

3 Proposed Method

3.1 Query Augmentation
We hypothesize that in cases of conflicting ev-
idence in large corpora for factoid based ques-
tions, there will generally be more evidence for
the correct answer than for incorrect ones. For ex-
ample, imagine the question “Where was Barack
Obama born?" with a corresponding attack to his
Wikipedia page (see Figure 1). As Wikipedia con-
tains redundant information, alternate questions
that find contexts on other pages (e.g. his mother
Ann Dunham’s page) will still find the right answer.

To create these alternate questions that will still
find the correct answer but with more diverse pas-
sages, we propose a query augmentation scheme
that has similarities to query expansion in informa-
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Figure 2: Number of new passages retrieved per aug-
mented question (e.g., a question in the 100 bin would
have 100 new contexts not retrieved by the original).
Natural Questions is on top and TriviaQA on bottom.

tion retrieval (IR) (Singhal et al., 2001; Carpineto
and Romano, 2012; Wei et al., 2022; Claveau,
2021). We generate these new questions for each
original question by prompting GPT-3. We use
davinci-002 from Brown et al. (2020), but
one can alternatively use open-source language
models for similar results: see Table 2 and Ap-
pendix K for results with Vicuna v1.5 (using Llama
2). These query augmentations are not necessar-
ily paraphrases as they strive to be as different as
possible while still leading to the correct answer.
They are also not identical to classic query expan-
sion from IR either, as they do not intend to solely
broaden the query scope but rather to find diverse
contexts from questions of any scope.

For each query in the dataset, we prompt GPT-3
with the following: "Write 10 new wildly
diverse questions with different
words that have the same answer
as {Original Question}", thus generat-
ing approximately 10 augmented questions per
original question (c.f. Table 1 for three examples
of generations). Finally, we retrieve the 100 most
relevant contexts for those augmented questions.
Note that if searching with the augmented ques-
tions retrieves a passage from a Wikipedia page
that was already poisoned from the initial set of

When was the last time anyone was on the moon?

When was the last time anybody walked on the moon?
When was the last manned mission to the moon?
When was the last time a human was on the moon?

In which year did Picasso die?

When did Picasso die?
How old was Picasso when he died?
What was Picasso’s cause of death?

What is the largest city in Turkey?

What city in Turkey has the most people?
What is the most populous city in Turkey?
What is the most urbanized city in Turkey?

Table 1: Example question augmentations with the
original question on top (see Appendix M for more).

100 (see Section 2) we return the poisoned text
following Du et al. (2022).

When we compare these newly retrieved pas-
sages to the passages retrieved by the original ques-
tion we find that they do provide a more diverse
set of passages. Figure 2 shows the distribution of
new passages retrieved, with almost all retrieving
at least 20 or more new passages and a substantial
amount having an entirely new set of 100 passages.

3.2 Confidence from Answer Redundancy
In order to identify the best augmented queries
with their corresponding new passages, we derive
a novel method, CAR, for measuring ODQA con-
fidence. CAR measures how often the predicted
answer string occurs in the retrieved contexts (usu-
ally 100 contexts). For example, if the predicted
answer appears only once in all 100 contexts, this
may mean that the retriever was not able to find
many documents relevant to the query, especially as
popular entities (those asked about in NQ and Trivi-
aQA) are generally found in many articles. Overall,
the more frequently the predicted answer appears
in the contexts, the more likely that the retrieval
was both successful and plentiful (e.g. redundant).

In practice, given a set of documents D, we set a
hyperparameter k to determine the cutoff for CAR
(in practice we use k = 5, found by tuning on the
dev set). If the model retrieves more than k unique
passages that contain the predicted answer string,
we classify the model as confident and vice versa.
We use this as part of our resolution method below.

3.3 Answer Resolution
We use the following methods to combine (or not
combine) the original question with the augmented
questions, with shortened names in italics. Note
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ATLAS on TriviaQA
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Figure 4: Data poisoning and defense strategies using ATLAS (Lower Figure) and FiD (Upper Figure). See
Appendix N for equivalent table version of these plots. Left shows TriviaQA, right shows Natural Questions. C
stands for context. 100 poisoned articles indicates all contexts are poisoned; performance is non-zero because the
models ignore the contexts or the poisoning failed to recognize all aliases (§G). Note that Redundancy greatly
outperforms the majority vote baseline from Pan et al. (2023). Scores plateau after around 40 poisoned articles as
that is around when all 100 retrieved passages are poisoned (see Appendix G for a discussion of article vs passage).

that methods one through three are baselines for
our newly proposed technique: (1) use the original
question only, e.g. the “do-nothing" baseline (2)
randomly pick one new augmented question (3)
take a majority vote of the augmented question’s
predictions (e.g. the method from Pan et al. (2023))
or (4) use answer redundancy, described in the
following paragraph. We also attempted several
variants of these options that underperformed and
are not included for clarity (Appendix I).

Our proposed method for answer resolution, re-
dundancy, uses CAR to effectively combine both
the original question and the new augmented ques-
tions. We use CAR to decide whether to choose the
original question’s prediction, and if not, use a ma-
jority vote over the predictions from the augmented
questions that are confident (filtered using CAR).
By doing so, we retain performance from the origi-
nal question and passage set when confident, while
otherwise backing off to the augmentation.

All methods except the baseline can use either
the original (Original C) or new (New C) sets of
passages as context and we show both options in

our results. Further, majority vote and redundancy
can choose between either the new or original ques-
tions during inference (we use original, after tuning,
see Appendix B for more details).

4 Results

Figure 4 highlights our key findings using FiD and
ATLAS (for results in table form, see Appendix N).
Following (Longpre et al., 2021; Chen et al., 2022),
all results are filtered by those that the model origi-
nally predicted correctly, thus making the original
method have by definition 100% EM at the 0-article
poisoning level. We show results in EM, as is typ-
ically done in previous work (Izacard and Grave,
2021; Izacard et al., 2022b), however, F1 results are
nearly identical and can be found in Appendix O.

As expected and shown in previous work (Pan
et al., 2023; Chen et al., 2022), we find that as
the amount of poisoned data given to the model
increases, performance decreases. We also find
that resolution methods that use the new contexts
(New C) outperform those that use the original con-
texts, confirming the intuition behind our proposed
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Number of Poisoned Articles
Context Type Resolution 1 2 3 5 10 20 40 50 100

Original C

Majority Vote -0.6 -0.8 1.0 -0.7 -0.4 0.2 0.0 0.0 0.0
Original 1.0 -0.1 1.4 1.8 1.1 1.1 1.0 0.9 0.8
Random -5.6 -5.6 -4.9 -2.7 -1.9 -0.9 -0.3 -0.2 -0.4
Redundancy 0.2 -0.1 0.4 0.4 0.8 0.9 0.7 0.6 0.5

New C
Majority Vote 4.7 3.2 2.8 2.9 2.3 1.9 2.5 2.3 2.3
Random 2.6 1.8 1.2 2.4 1.9 2.4 2.7 2.7 1.8
Redundancy 1.3 -0.4 1.7 3.4 2.7 3.0 3.1 2.9 2.9

Table 2: Difference between GPT-3 and Vicuna v1.5 (using Llama 2) generations as query augmenters for NQ with
FiD (positive scores indicate GPT-3 is better). Results in EM. Results are comparable to GPT-3 DaVinci in Figure 4.

method of finding diverse new contexts (e.g. 55.9
vs 65.1 EM for EM at 1 article poisoned). Fur-
thermore, we see that the redundancy resolution
strategy outperforms all other strategies (includ-
ing the only published baseline, majority voting
from Pan et al. (2023)), by up to 19.4% in the TQA
setting (33.2% at 100 poisoned articles vs 13.8%
baseline). Scores on NQ are lower than TQA, even
with no poisoning, but still improve up to 14% EM
using redundancy.

Overall, we see that our proposed redundancy
method outperforms all other methods on both
datasets, at every level of poisoning and especially
so when using the newly retrieved contexts.

Can we use open-source LLMs as the query aug-
mentation model? We replace GPT-3 with Vi-
cuna v1.5 (using Llama 2) and repeat the experi-
ments with FiD. The results are shown in Table 2
for NQ and in Appendix K in figure form. We see
that Vicuna performs similar to GPT-3, in some
cases even outperforming it. Thus, we see that our
approach works with both open and closed-source
models.

How many augmented questions are needed for
our approach to work well? To answer this,
we show Figure 5 with the overall trend show-
ing that as the number of augmented queries in-
creases, so does the score. Furthermore, it shows
that even one augmented query has gains over the
baseline method, allowing for a more compute effi-
cient method at the expensive of several points of
performance. More computational analysis of our
methods is in Appendix J.

Why is performance not 0% at 100 poisoned
documents? We also explore why performance
is non-zero when the number of poisoned articles is
equal to the number of contexts the model receives.
We manually annotated 20 examples on TriviaQA
that FiD got correct at the 100-article poisoning
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Figure 5: An ablation on the number of augmented
queries (and thus number of times retrieval is used) for
the redundancy resolution method on Natural Questions
1-article FiD poisoning setting. As the number of aug-
mented queries increases, so does the performance.
Baseline performance is 50.1%, indicating that even just
one augmented query provides significant gains.

setting. We found that it is due to the model using
its parametric knowledge to correctly answer (65%
of the time), as the correct answer was not present
in any of the input documents, or due to answer
aliases (35%) that were not part of the answer set.
Examples of cases can be found in Appendix F.

5 Conclusion

Our work defends against data poisoning attacks
in open-domain question answering through two
novel methods: (1) the use of query augmentation
to find diverse passages that still correctly answer
the question and (2) the use of answer redundancy
as a strategy for model confidence in its prediction.
Our proposed methods do not involve any gradi-
ent updates and provide a significant performance
improvement. Thus, our work shows the effect
of data poisoning on state-of-the-art open-domain
question-answering systems and provides a way to
improve poisoned performance by almost 20 points
in exact match. We hope that this work encourages
future work in defending against poisoning attacks.
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6 Limitations

Our work focuses on the TriviaQA and Natural
Questions benchmarks, which include questions
about popular entities in Wikipedia. As discussed
in Appendix A, our approach simulates real-world
common attacks which are the most frequent type
of attacks. However, for entities that appear less
often in the knowledge source (and are less likely to
be attacked), our approach will not be as effective.

We leave attacks on less-popularity entities to
future work, as we focus on the most frequent and
higher impact attacks, while also using datasets
that are standard in existing literature, e.g. Natural
Questions and TriviaQA.

Our work shows the impact that disinformation
attacks could have on Wikipedia and provides an
initial attempt to help remedy those attacks. We
note that our strategy does not have perfect accu-
racy and is still susceptible to attacks, e.g. if there is
no correct information in any context to be found, it
will be very difficult for ODQA systems to give the
correct answer. We welcome additional research
to improve the resistance of ODQA systems to dis-
information attacks and will open-source our code
and data to help others make progress in this area
(including results from GPT-3).
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A Realism of Proposed Setting

We focus on data poisoning attacks to high to
medium popularity entities, as included in Triv-
iaQA and Natural Questions. But are such attacks
realistic, and have they happened before?

Due to the way that search engines work, any
data poisoning done at the time of indexing is able
to effect system performance until the data is re-
indexed. Thus, if one were to change a Wikipedia
page (or a personal website that was included in
an index) and that change was indexed, the data
would be poisoned until re-indexing.

As the people directing disinformation cam-
paigns are likely motivated to attack well-known
entities rather than unknown entities (for po-
litical or economic reasons), our proposed set-
ting of defending against popular entities is well-
motivated and is a serious problem affecting cur-
rent production systems today. (see “Vandalism
on Wikipedia"). There have even been many high
profile attacks on popular entities that have been
reflected in production systems (this is not hypo-
thetical). One such entity who has been frequently
attacked is Donald Trump, whose Wikipedia page
was changed to include critical text and inap-
propriate images, returned by Siri to real user
queries. The Wikipedia page on vandalism in-
cludes many such examples of famous politicians,
musicians, athletes and other popular entities being
subject to attacks on Wikipedia that were propa-
gated to users via Google or via various news out-
lets (e.g. Thomas Edison’s page describing him as
a "douchebag", famed swimmer Chad Le Clos’s
page edited to say he literally "died at the hands of
Michael Phelps" when losing a race, etc.).

These attacks are just the tip of the iceberg for
disinformation, as attacks to Wikipedia are the eas-
iest to trace. Since production search engines index
the web and then answer questions about them, any
personal or company page can be used for attacks
and are much less traceable (see this humorous at-
tack to Bing Chat about Mark Reidl, done in jest
to illustrate the potential for attacks).

B Hyperparameters

For all our experiments we use a cluster of V100
GPUs, with each job running on a 4 to 8 GPU node
and taking approximately 12-24 hours depending
on the model. We use the models as provided by
the original authors with default retriever hyperpa-
rameters. We use ATLAS’s XL version. We use

Vicuna v1.5 on 1 A100 40GB GPU for 3 hours for
the open-source experiment in Appendix K.

Following previous work in question answering,
we report Exact Match (EM) in all of our experi-
ments. We take the data from Longpre et al. (2021)
and split into equal dev and test sets. We use the
dev set to tune the CAR method’s hyperparameters
and use K = 5 for our experiments.

Along with the New C and Original C options,
the redundancy and majority vote methods also
have hyperparameters for using either the aug-
mented questions or the original question for the
final prediction (after generating and searching for
new contexts). Our tuning on the dev set indicated
that using the original question and the new con-
texts from searching with the augmented question
provides slightly higher performance (which makes
sense, since the original question is the most impor-
tant to answer). Thus, the process is first generating
augmented questions, then searching with those,
then doing inference with the original questions
and the newly retrieved contexts (and finally CAR,
if using the redundancy method).

C More Related Work

As a larger section of related work did not have
space in the main paper, we include more related
work here.

Data Poisoning Attacks Data poisoning attacks
in NLP have a long history, with several prominent
works appearing in recent years including (Wallace
et al., 2019a, 2020; Schwarzschild et al., 2021) fo-
cusing on various NLP tasks such as machine trans-
lation, language modeling, etc. However, in the
question answering space most adversarial work is
focused on making harder questions, rather than
simulating a real attack (Wallace et al., 2019b; Lee
et al., 2019). Those that do focus on human attacks
focus on the machine reading setting (Bartolo et al.,
2021).

As mentioned in the main text, a nascent line of
work has focused on knowledge conflicts in open-
domain question answering (Chen et al., 2022;
Longpre et al., 2021). These works’ main moti-
vation is to explore how ODQA models operate un-
der the influence of conflicts, mostly in the context
of non-parametric vs parametric knowledge. We
extend these works by using their methods as simu-
lated attacks on a knowledge source and proposing
efforts to defend against these attacks.

409

https://en.wikipedia.org/wiki/Vandalism_on_Wikipedia
https://en.wikipedia.org/wiki/Vandalism_on_Wikipedia
https://twitter.com/mark_riedl/status/1637986261859442688?s=20


Open-Domain Question Answering Our work
builds off of recent advances in ODQA, such as us-
ing Fusion-in-Decoder (Izacard and Grave, 2021).
Other work such as DPR (Karpukhin et al., 2020)
showed promising results but has been improved
upon by models that encode a large number of con-
texts into a single reader model. We note there
exists an emerging line of work that uses LLMs for
ODQA without using a retriever (Zhou et al., 2023;
Weller et al., 2023c), however, our approach relies
on the redundancy in the retriever to defend against
disinformation attacks; we leave exploring other
settings to future work.

Query Augmentation Query augmentation is a
traditional information retrieval technique to aug-
ment a given query to find a better set of documents
(Singhal et al., 2001; Carpineto and Romano, 2012).
In classical terms, the strategy is usually to expand
the query, spelling out acronyms or adding syn-
onyms. Recently, work has begun to use neural
models to generate these expansions (Wang et al.,
2021; Claveau, 2021; Jagerman et al., 2023; Weller
et al., 2023b), despite retriever’s lack of under-
standing of some terms (Weller et al., 2023a). In
our work, we use a similar strategy to create new
queries that will gather a diverse set of passages.

Confidence and Calibration of QA Many works
have focused on calibrating QA models so that they
correctly reflect probabilities that equal their actual
correct answer rate (Clark and Gardner, 2017; Ka-
math et al., 2020; Si et al., 2022; Jiang et al., 2021).
Our proposed confidence method is similar in that
it measures when the model will be more likely to
be correct, however, it does not do calibration in
the sense of calibrated probabilities, instead giving
a single value of “confident" or “not confident."

Answer redundancy has been studied before in
other NLP contexts, such as Downey et al. (2006)
in the information extraction task. We apply a sim-
ilar intuition of answer redundancy to the novel
context of document inputs for open-domain ques-
tion answering.

D Alternate Poisoning Attacks

In the main section of the paper, we used poison-
ing attacks based on articles. However, one could
attack a system directly by going after its retrieved
results, either randomly poisoning N% or poison-
ing the top N%. We note that we tried both settings
and found similar results, with the main difference
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Figure 6: An ablation on Confidence from Answer Re-
dundancy (CAR) compared to their exact match scores
on the NQ 1-article poisoned setting. Those in the True
bar have greater than 5 unique passages that contain the
predicted answer string.

that model performance declines slower (as ran-
domly picking contexts to poison is less likely to
impact the model until higher levels of poisoning).

E Number of Augmented Queries

In Figure 5 we see the results for how the number
of augmented queries affects performance. Over-
all, one query provides strong performance (above
the baseline original performance at 17.5% EM)
and multiple questions continue to show gains. We
note that this figure uses Natural Questions and
the 5-article poisoning setting with FiD, but other
settings showed roughly the same results. As in-
cluding more queries only seems to increase the
score, it’s possible that generating more than 10
augmented queries would show even better results.

F Why is performance not 0% at 100
poisoned documents?

To explore this question, we conducted a manual
analysis of 20 pairs of question and 100 docu-
ment passages on TriviaQA using FiD. We found
that 65% of cases were due to the model’s para-
metric knowledge, as there was no such answer
string in the input text. However, the answer was
generally very obvious, like “In which country
is Dubrovnik?" which is generally easier for the
model to predict (e.g. “Croatia"). In 35% of cases
there was a missing alias from the answer string
set, such as “What dance craze was named after
a city in South Carolina?" with an answer string
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Figure 7: The number of poisoned passages given the article poisoning level. Notice that TriviaQA (tqa, right) has
more passages to poison and a more gradual slope of poisoning than Natural Questions (nq, left).

set of “Charleston rhythm", “Charleston (dance)",
“Charleston (dance move)", “Charleston dance",
and “The Charleston". FiD predicted “Charleston"
from the text, since “Charleston" was not in the
answer string set so it was not poisoned in the text.
Future work on data poisoning could improve on
this category by developing more robust poisoning
techniques to aliases.

G Number of Poisoned Passages

In our experiments, we poisoned at the article level,
as an attacker might do to a specific entity. How-
ever, each Wikipedia article corresponds to more
than one passage which are what is used for re-
trieval. When we poison at the article level we
poison all passages in the article, so oftentimes
many passages are poisoned even when poisoning
one article. Furthermore, passages can only be poi-
soned if the answer is present in the passage (and
thus available to be replaced).

How many passages are poisoned at each article-
poisoning level? Figure 7 answers this question
and shows the number of poisoned passages vs the
article-poisoning level. We find that the number
of articles poisoned is much higher on TriviaQA,
which means that TriviaQA had a much higher
number of passages with the answer to begin with.

H Confidence from Answer Redundancy

We compare the confidence from answer redun-
dancy (CAR) to the actual exact match score (us-
ing the 1-article poisoning setting on Natural Ques-
tions) to show the effectiveness of this heuristic. In

Figure 6 we see the large gap between queries that
do not meet CAR and those that do (around 65%
absolute exact match). Error bars indicate a 95%
confidence interval.

I Alternate Answer Resolution Strategies

Due to space and clarity for figures, we do not in-
clude all possible answer resolution strategies in
the main figures. Some potential alternate resolu-
tion stratgies we tried included:

• Using the new augmented questions with
CAR alone, without using them as a backup
for the original question. This is equivalent to
the majority vote method but using CAR to fil-
ter the question that get to vote. Although this
method performed well it consistently under-
performed our redundancy method and thus
we do not include it

• Using a majority vote over both the origi-
nal question’s prediction and and augmented
question’s predictions. This performed nearly
identically to the standard majority vote
method, hence we leave it out for clarity.

• Taking the difference between the the CAR
values of the original and augmented ques-
tions. This again greatly underperformed the
redundancy method and is therefore not in-
cluded

We encourage others who have new ideas for
answer resolution strategies to use our code as a
start to develop their method.
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Figure 8: Main results showing the effect of data poisoning and various defense strategies on TriviaQA and Natural
Questions using FiD as the retrieval augmented model and Vicuna v1.5 as the question augmentation model. Q and
C stand for question and context respectively. We see that open-source models can still provide similar gains.

J Compute Cost of our Proposed Method

Our method requires the addition of 1 call to GPT-
3’s API (or the use of Llama 2, see Appendix K)
which generates the N augmented questions with
one call, and N instances of additional search and
inferences of the ODQA model.

Augmented Query Generation As GPT-3 and
other large language models become more avail-
able and cheaper (as they have already started to
be, with many works speeding up inference using
models like Llama) this will become cheaper to
do with time. The cost of one query to ChatGPT
for example (of which our method uses approxi-
mately 100 tokens) is roughly $0.0002 USD, which
is remarkably affordable.

Retrieval The retrieval computation cost is neg-
ligible in comparison, as modern retrieval takes
milliseconds with different indexing and quantita-
tion costs.

Retrieval-Augmented Generation The other
major computational cost of our method is the re-
trieval augmented generation inference. However,
as mentioned Appendix E, this can be reduced to
only one inference and still see large gains.

Overall Our method is bounded by the call to a
language model for generation of the augmented
questions and by 1 or more calls to a retrieval aug-
mented model. However, these costs are still cheap
and used frequently: e.g. one call at inference time
to a model like ChatGPT is relatively minor and is
done by a large number of research and industry
applications. Further, as time progresses these calls
will get cheaper and quicker.

K Open-Source LM Generation

We also show that our method can use an open-
source language model like Llama 2 (Touvron et al.,
2023) and work similarly. In Tables 7 and 8 and
Figure 8 we show results for FiD on TriviaQA and
Natural Questions using Llama 2 generations from
Vicuna v1.5 7B (Zheng et al., 2023).

We find that results are comparable to those with
GPT-3, and in some cases even slightly outper-
forms the comparable GPT-3 version. For example,
in the 1% article poisoning case Vicuna v1.5 scores
91.5% with redundancy while GPT-3 score 90.8%,
Table 7 vs Table 5.

Overall, we see that open-source models can
comparably be used in place of closed models like
GPT-3 for this task.

L Relation to Robustness under Shift

One common type of evaluation in ODQA is its
ability to withstand adversarial attacks that test ro-
bustness (such as paraphrases or distracting sen-
tences that are superfluous), e.g. Yang et al. (2018);
Gan and Ng (2019); Yoran et al. (2023). How-
ever, our work focuses on intentional disinforma-
tion attacks, where the facts in the documents have
been changed. Although these two evaluation set-
tings have surface similarities, the crucial differ-
ence is that when adding distracting sentences or
paraphrases the core facts still exist in the docu-
ments, with no contradictions between documents.
In our experimental setting however, some or all
the needed facts have been deliberately changed.
Thus, techniques for handling distracting sentences
(such as improved filtered) or paraphrases (training
with paraphrases) are not relevant to our setting, as
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Example (1)
Original Question In 2010 British ex-soldier Ed Stafford became the first person (ever known) to walk the

entire length of what river?

Original Doc Rank #1 Ed Stafford Edward James Stafford FRSGS, known as Ed Stafford ... for being the first
human ever to walk the length of the Panthers River ...

Original Prediction Panthers

Augmented Question What river did Ed Stafford cross in 2010?

New Doc Rank #1 ... the two men, Stafford and Sanchez Rivera, walked for a further two years before
reaching the mouth of the Amazon River on 9 August 2010 ...

New Answer (correct) Amazon

Example (2)
Original Question What is the first name of Irish singer Van Morrison?

Original Doc Rank #1 Boutros Ghali Ivan "Van" Morrison was born on 31 August 1945, at 125 Hyndford Street,
Bloomfield, Belfast, Northern Ireland, ...

Original Prediction Boutros

Augmented Question Can you give me any information about the first name of Irish singer Van Morrison?

New Doc Rank #1 ... book also contains a complete discography of Van Morrisonś work. Turner describes
Van Morrisonś early life as George Ivan Morrison on Hyndford Street in Belfast ...

New Answer (correct) George

Figure 9: Case study illustrating differences in QA predictions using original and augmented questions. We
show incorrect answers/predictions in red and correct answers/predictions in blue. These examples show how the
augmentation helps: in (1) the augmented question focuses more on the river than the person (e.g. by removing
personal details) and by re-weighting query terms is able to correctly rank the Wikipedia page for “Walking the
Amazon" higher. In (2) the augmented question is more vague (“information" rather than “first name"), allowing it
to rank the Wikipedia page for his biography higher than his poisoned personal page.

the underlying problem requires new solutions that
can deal with incorrect and/or conflicting facts.

M Case Studies and Examples

We show two case studies here that illustrate how
our method works. We randomly select an instance
where our method outperforms the baseline ap-
proach.

M.1 Case 1
We see that the new query successfully re-weighted
terms such that it was able to rank the new doc-
ument #1 and get the correct answer. Note that
the New Rank 1 document was from the “Walking
the Amazon" page, which was not poisoned, while
the Original Rank 1 document was from the poi-
soned Ed Stafford page. Note that both of these
documents were in the top three for each query, but
the relative position change was able to help the
retrieval-augmented model find the correct answer.

M.2 Case 2
In this example we see that searching for “informa-
tion" allowed the query to find the Wikipedia page
which described Turner’s book about Van Morrison,
which contained the correct answer as opposed to
the poisoned content. Having the correct answer
in the top context allowed the model to correctly
choose it over the disinformation.

M.3 Case Study Conclusion
From a qualitative analysis, we find that our method
predicted correctly on some instances because it
changed the relative position of the retrieved doc-
uments, due to word changes in the query. Others
were correctly predicted by surfacing new informa-
tion that was not in the top ranked contexts before.
Our method thus makes relatively simple changes
that, overall, provides strong gains and is easy to
implement with any retrieval augmented system.
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N Table Versions of Plots

We also show Table versions of the main plots for
ease of viewing: Table 5 for TQA and FID, Table 6
for NQ and FiD, Table 3 for NQ and ATLAS, and
Table 4 for TQA and ATLAS.

O F1 vs EM

It is common in previous work on NQ and TQA to
report only EM. However, we also include tables
with F1 to illustrate that the results are the same,
just slightly higher. As the differences are very
minor and the trends remain the same, we three
examples using TQA: Llama with FiD (Table 11)
and GPT-3 for ATLAS and FiD in Tables 9 and 10.
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EM Scores at # of Poisoned Articles
Context Type Resolution 1 2 3 5 10 20 40 50 100

Original C

Majority Vote 55.9 44.5 38.2 28.4 19.3 10.8 6.7 5.9 5.6
Original 69.4 55.4 47.0 35.9 24.3 14.4 9.7 8.0 7.8
Random 44.1 36.0 31.0 24.0 15.3 9.5 5.9 5.1 4.1
Redundancy 78.5 69.7 62.2 52.3 37.6 22.3 15.0 12.1 11.8

New C
Majority Vote 65.1 52.6 44.8 34.2 22.9 16.5 12.9 12.3 12.2
Random 64.3 51.0 42.7 31.7 21.1 15.9 12.3 11.9 11.1
Redundancy 78.1 67.3 60.2 50.5 37.7 25.5 19.8 17.6 17.5

Table 3: Full results for NQ with ATLAS on varying amounts of article poisoning. Results in EM.

EM Scores at # of Poisoned Articles
Context Type Resolution 1 2 3 5 10 20 40 50 100

Original C
Majority Vote 61.5 55.2 51.9 45.2 38.1 30.5 25.1 25.1 22.2
Original 91.6 81.6 75.3 66.9 53.6 43.9 32.6 32.6 29.3
Random 47.7 43.1 40.6 35.1 28.0 21.8 17.6 16.7 17.6
Redundancy 94.5 88.0 82.9 78.4 66.5 57.6 43.9 43.6 39.9

New C
Majority Vote 86.2 79.1 73.6 65.3 55.2 48.1 43.5 42.7 42.3
Random 85.4 77.8 72.8 64.0 55.2 48.5 44.4 43.9 43.5
Redundancy 95.1 88.5 82.6 77.7 68.5 59.9 51.4 50.3 47.2

Table 4: Full results for TQA with ATLAS on varying amounts of article poisoning. Results in EM.

EM Scores at # of Poisoned Articles
Context Type Resolution 1 2 3 5 10 20 40 50 100

Original C
Majority Vote 66.8 59.7 54.2 46.2 36.8 24.9 15.4 13.0 11.5
Original 87.0 79.4 72.3 61.7 49.4 31.6 20.2 17.4 13.8
Random 53.0 47.8 43.1 38.3 30.8 18.6 13.0 10.7 8.3
Redundancy 89.7 85.0 79.4 70.0 60.6 42.1 26.9 24.0 19.2

New C
Majority Vote 83.8 76.7 70.0 58.9 48.2 35.2 31.6 30.8 28.9
Random 79.4 71.9 63.6 53.0 42.7 34.4 31.2 30.0 28.9
Redundancy 90.8 86.7 81.8 71.1 62.8 47.5 37.5 35.9 33.2

Table 5: Full results for TQA with FiD on varying amounts of article poisoning. Results in EM.

EM Scores at # of Poisoned Articles
Context Type Resolution 1 2 3 5 10 20 40 50 100

Original C
Majority Vote 41.6 28.0 22.0 13.4 6.2 3.2 1.6 1.4 1.4
Original 50.1 33.0 25.7 17.5 9.3 4.8 3.0 2.8 2.6
Random 29.6 19.0 14.1 9.7 4.6 1.9 1.4 1.4 1.2
Redundancy 65.3 50.2 41.6 29.3 16.8 8.7 5.0 4.7 4.4

New C
Majority Vote 49.4 33.2 25.4 18.0 11.1 7.9 7.4 7.2 7.2
Random 46.9 31.4 23.5 16.8 10.8 8.5 7.6 7.6 6.7
Redundancy 63.9 47.0 39.8 29.7 18.5 11.7 9.5 9.2 9.1

Table 6: Full results for NQ with FiD on varying amounts of article poisoning. Results in EM.
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EM Scores at # of Poisoned Articles
Context Type Resolution 1 2 3 5 10 20 40 50 100

Original C

Majority Vote 65.9 60.7 56.2 48.5 37.6 25.2 15.3 13.5 11.2
Original 88.5 81.0 74.8 64.2 51.5 34.6 21.3 19.0 15.1
Random 57.3 51.1 45.8 41.1 30.9 20.5 11.9 11.0 9.4
Redundancy 91.2 87.0 82.7 73.8 62.7 46.6 30.2 27.1 21.8

New C
Majority Vote 79.5 71.4 66.7 57.7 47.4 36.0 31.5 30.9 29.9
Random 76.7 69.9 65.2 56.4 46.0 36.0 31.5 31.3 29.2
Redundancy 91.5 86.3 82.0 73.8 63.8 50.0 36.2 34.6 30.4

Table 7: Full results for TQA with FiD with Llama 2 Vicuna v1.5 generations on varying amounts of article
poisoning. Results in EM. Note that results are comparable to GPT-3 DaVinci used in the main text and in Table 5.

EM Scores at # of Poisoned Articles
Context Type Resolution 1 2 3 5 10 20 40 50 100

Original C

Majority Vote 42.2 28.8 21.0 14.1 6.6 3.0 1.6 1.4 1.4
Original 49.1 33.1 24.3 15.7 8.2 3.7 2.0 1.9 1.8
Random 35.2 24.6 19.0 12.4 6.5 2.8 1.7 1.6 1.6
Redundancy 65.1 50.3 41.2 28.9 16.0 7.8 4.3 4.1 3.9

New C
Majority Vote 44.7 30.0 22.6 15.1 8.8 6.0 4.9 4.9 4.9
Random 44.3 29.6 22.3 14.4 8.9 6.1 4.9 4.9 4.9
Redundancy 62.6 47.4 38.1 26.3 15.8 8.7 6.4 6.3 6.2

Table 8: Full results for NQ with FiD with Llama 2 Vicuna v1.5 generations on varying amounts of article poisoning.
Results in EM. Note that results are comparable to GPT-3 DaVinci used in the main text and in Table 6.

F1 Scores at # of Poisoned Articles
Context Type Resolution 1 2 3 5 10 20 40 50 100

Original C
Majority Vote 64.9 59.2 56.1 49.1 42.0 34.7 29.2 29.0 26.4
Original 92.1 82.6 76.8 68.5 56.9 47.6 36.7 36.7 34.1
Random 52.7 47.7 45.0 39.4 32.2 25.3 21.1 20.5 22.0
Redundancy 94.6 88.4 83.8 79.1 68.4 59.1 46.0 45.7 42.2

New C
Majority Vote 87.9 80.7 75.3 67.2 58.8 51.4 47.3 46.5 46.1
Random 86.9 79.8 74.3 66.0 58.7 51.9 47.8 47.6 47.4
Redundancy 95.4 89.0 83.7 78.5 70.6 62.4 54.2 53.2 50.5

Table 9: Full results (in F1) for TQA with ATLAS on varying amounts of article poisoning. Results in F1.

F1 Scores at # of Poisoned Articles
Context Type Resolution 1 2 3 5 10 20 40 50 100

Original C
Majority Vote 68.7 61.4 55.7 48.0 39.0 27.5 17.7 15.5 13.9
Original 87.2 80.4 73.4 63.4 51.3 34.1 22.8 20.5 17.2
Random 56.0 50.7 45.4 40.2 32.6 20.8 14.9 13.1 11.0
Redundancy 90.0 85.4 79.8 71.0 61.3 43.7 28.5 26.0 21.4

New C
Majority Vote 84.2 77.2 70.5 59.6 49.9 36.8 33.4 32.6 30.7
Random 79.7 72.3 64.0 53.8 43.7 35.5 32.4 31.4 30.2
Redundancy 90.9 87.0 82.1 72.1 64.0 49.0 38.6 37.4 34.8

Table 10: Full results (in F1) for TQA with FiD on varying amounts of article poisoning. Results in F1.
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F1 Scores at # of Poisoned Articles
Context Type Resolution 1 2 3 5 10 20 40 50 100

Original C

Majority Vote 67.7 62.3 57.9 50.5 39.6 27.5 17.3 15.6 13.3
Original 88.6 81.3 75.2 65.2 52.8 37.1 23.7 21.5 17.6
Random 59.2 52.9 47.9 43.3 33.2 23.2 14.2 13.3 11.8
Redundancy 91.3 87.1 82.9 74.5 63.4 47.9 31.1 28.4 23.2

New C
Majority Vote 79.7 71.8 67.3 58.7 48.5 37.5 33.2 32.6 31.7
Random 76.9 70.3 65.8 57.3 47.2 37.4 33.2 33.0 31.3
Redundancy 91.6 86.5 82.3 74.6 64.7 51.8 37.6 36.4 32.3

Table 11: Full results (in F1) for TQA with FiD with Llama 2 Vicuna v1.5 generations on varying amounts of article
poisoning. Results in EM. Note that results are comparable to GPT-3 DaVinci used in the main text and in Table 5.
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