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Abstract

Writing tests for machine learning (ML) code is
a crucial step towards ensuring the correctness
and reliability of ML software. At the same
time, Large Language Models (LLMs) have
been adopted at a rapid pace for various code
generation tasks, making it a natural choice for
many developers who need to write ML tests.
However, the implications of using these mod-
els, and how the LLM-generated tests differ
from human-written ones, are relatively unex-
plored. In this work, we examine the use of
LLMs to extract representations of ML source
code and tests in order to understand the se-
mantic relationships between human-written
test functions and LLM-generated ones, and
annotate a set of LLM-generated tests for sev-
eral important qualities including usefulness,
documentation, and correctness. We find that
programmers prefer LLM-generated tests to
those selected using retrieval-based methods,
and in some cases, to those written by other
humans.

1 Introduction

As AI and ML become more and more integrated
into everyday processes, ensuring the quality and
reliability of these ML models is mandatory, and a
critical part of ensuring ML models’ performance
in production is having good, representative test
cases. Traditionally, these tests have been writ-
ten by engineers and programmers, a process that,
while valuable, can be time-consuming and re-
quires extensive experience and expertise in ML
methodology. Recognizing the challenges posed by
the intricacies of ML code, particularly the distinct
nature of ML testing involving both pre-training
and post-training tests, our research takes a delib-
erate focus on this specific domain. This choice
serves to constrain the scope of our investigation
and allows us to address the unique complexities

associated with ML testing, which often deviates
from conventional software testing.

One possible way to aid programmers is to re-
trieve existing functions that have been previously
implemented, similarly to what has been done for
test case selection within a test suite (Romano et al.,
2018). For the purpose of writing tests, relevant
test cases could be retrieved from other projects
that are written to test functions that are semanti-
cally similar to the programmers’ target functions.
These retrieved functions might serve as references
for programmers to consider when developing their
own tests. However, with the recent advent of pow-
erful code-generating LLMs such as Codex (Chen
et al., 2021) and LLaMA (Touvron et al., 2023),
those seeking to develop ML test cases are now
able to prompt the model given the source function
and instructions required to produce the appropri-
ate test case. This has the potential to revolutionize
the way that ML tests are developed, and it is there-
fore important to analyze how AI-generated tests
compare to those written by humans and how de-
velopers may consider using these methods.

In this work, we make initial steps toward com-
paring the ML test functions that are generated by
LLMs with those generated by human program-
mers to better anticipate the consequences of a
growing number of ML test functions being gen-
erated automatically by LLMs. Using a set of
approximately 10,000 pairs of ML functions and
their tests, we use code embedding methods to ex-
plore the semantic relationships between functions
and their tests. We then experiment with seman-
tic retrieval-based approaches to find relevant ML
tests given an input test function, and finally, we
compare several models’ ability to generate useful
ML test functions and evaluate them using expert
human annotations. An overview of the process
that we used is presented in Figure 1. Focusing
on the specific domain of ML allowed us to make
the focal methods more comparable and facilitated
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Figure 1: Overview of the process followed in this paper.

the recruitment of participants familiar with ML
algorithms. Our core contributions include: (1) ex-
ploration of semantic representations for ML func-
tions and their tests; (2) experiments with retrieval
of ML tests; and (3) a human evaluation of LLM-
generated test cases. We identified that there is
a non-arbitrary relationship between the embed-
dings of ML functions and their test cases, but
neural-network-based retrieval approaches were
not able to leverage these representations effec-
tively. However, our results show that program-
mers prefer LLM-generated tests to those selected
using retrieval-based methods, and in some cases,
to those written by other humans.

2 Related Work

2.1 Code Representation Learning and
Embedding Models

The focus on learning distributed representations
of code forms the groundwork of our research. We
draw from Alon et al. (2019)’s work on code2vec
which demonstrated the potential of learning code
embeddings using neural networks. As transformer-
based approaches become more popular, Code-
BERT (Feng et al., 2020) used bidirectional en-
coder layers and the authors of the model intro-
duced a large-scale dataset and providing insights
about the learning of code semantics. GraphCode-
BERT extended that work via the integration of

graph-based structural and lexical information to
improve the representation of the code (Guo et al.,
2020). Later, the CODET (Chen et al., 2022) model
tackled the challenge of code generation while also
generating unit tests for Java code, demonstrating
the potential of multi-faceted code generation for
test cases.

It’s also important to mention the effort on bench-
marking datasets like CodeSearchNet (Husain et al.,
2019) and CodeXGLUE (Lu et al., 2021), which
offer robust platforms for training and evaluating
numerous models in this area. However, none of
the previous evaluation datasets checked for the
quality of ML function and test matching, that is,
evaluating which approaches are best able to re-
trieve a test case given an input function (rather
than a search query written in natural language).
Also, the aforementioned methods are not full lan-
guage models that can generate code for any lan-
guage. Some only work on one language and are
not necessarily applicable to the ML domain.

2.2 Applications and Evaluation of Large
Language Models on Source Code

Substantial research has been invested in revealing
the power of LLMs in dealing with code-related
tasks, from code summarization to test generation
and beyond. Supported by billions of trainable
parameters and extensive publicly available source
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code, models like StarCoder (Li et al., 2023) and
LLaMA (Touvron et al., 2023) are carving a new
path. These models have shown promising results
in code generation, thanks to the vast resources at
their disposal.

Previous work (Schäfer et al., 2023) shows
how LLMs can be used to generate unit tests for
Javascript code. Integral to the understanding and
broader adoption of these models is the systematic
evaluation of their performance. This aspect has
been explored by Xu et al. (2022), who showed that
Codex displayed superior performance compared
to other models tested on the HumanEval (Chen
et al., 2021) benchmark.

Additionally, a previous study (Liu et al., 2023)
underscores the effectiveness of the HumanEval
benchmark in identifying substantial instances of
incorrect code generated by LLMs that had previ-
ously gone unnoticed.

These works offer valuable insights into the ef-
fectiveness of these emerging models, highlighting
their capabilities in understanding syntax, pattern
recognition, and automation, while also bringing
to light their limitations, such as their lack of true
understanding, difficulty with complex logic, and
challenges with generalizability and interpretability
when interacting with code. However, previous ap-
plications haven’t focused on the unique properties
of ML tests (Riccio et al., 2020), this paper aims
to bridge that gap and delve into these distinctive
features.

3 Data

3.1 Data Collection

We collected a dataset of 56,889 test files extracted
from 986 different GitHub ML projects written in
Python using the GitHub API 1. The projects were
selected if they use at least one of the Python ML li-
braries, such as Scikit-Learn, TensorFlow, Theano,
Caffe, Keras, or PyTorch. All of these projects were
created between January 1, 2007, and September
22, 2022, with three or more contributors. These
projects encompassed a wide range of ML code,
including personal ML projects and well-known
ML libraries or frameworks such as Hummingbird,
fvcore, and Sentence Transformers. The dataset
contains a fair number of ML tests, making it a
valuable resource for analyzing ML test functions,
and exploring their characteristics. However, it

1https://docs.github.com/en/rest

lacked explicit mappings between individual func-
tions and their corresponding tests, which is a re-
quirement if we seek to analyze the relationships
between these types of functions.

3.2 Data Preprocessing
In order to link ML functions and their correspond-
ing tests, we applied several heuristics to automate
the extraction process:

1. Assume that each test function name begins
with ’test’, ’Test’, or ’_test’.

2. Assume that if a test function calls only one
of the functions defined within the project, it
is testing that specific function.

3. Ignore single-character function names to help
remove noisier and less clear examples.

While these rules may filter out some valid test
cases, we selected them in order to aim for a high
precision in terms of returning a quality set of pairs
between focal methods and tests. In this work, we
refer to an ML function undergoing testing as a "fo-
cal method", and its corresponding ML test case a
"test". We also removed some pairs (approximately
150) that contained accents, emojis, or symbols
like progress bars, which made them more difficult
to process. After applying the heuristics defined
above, we were left with 10,324 (focal_method,
test) pairs. Around 5% of the focal methods have
multiple tests, while the tests themselves are unique
to the project and no test is considered to be testing
multiple methods.

Certain types of pairs could not be collected, e.g.,
when a test is testing the behavior of a predefined
model or functions that are not defined within the
project. To evaluate this process, we selected a ran-
dom sample of 100 (focal_method, test) pairings
and manually labeled whether each pairing was
correct, meaning that the test does test the function
it was associated with, and found that the pairing
method was 95% accurate.

4 Building Representations for Test Cases
and Retrieval Task

4.1 Building Embeddings and Investigating
Pairing Relationships

To focus on the relationship between the focal meth-
ods and their associated tests, we created embed-
dings for each focal method using models trained
on both code and natural language data. These
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models included CodeBERT (Feng et al., 2020),
text-embedding-ada-002,2 and LLaMA-1 (Touvron
et al., 2023) with 7 billion parameters.

An essential aspect of our exploration involved
understanding the semantic relationships between
pairs of focal methods’ and associated tests’ vec-
tor representations. Each of the models we used
produced embeddings with different shapes (Code-
BERT: 768, LLaMA-1: 4096, text-embedding-ada-
002: 1536), but for the purpose of visualization,
we used Principal component analysis (PCA) to
reduce their dimensions to (2).

We visualized these pairings using an arrow plot
where each focal method embedding is connected
to its corresponding test embedding to inspect po-
tential relationships between them. Figure 2 shows
the arrow plots of some sampled pairings (in order
to more easily see the results) using all different
models.

Figure 2: Arrow plots using PCA for 2-D projection
of paired focal method embedding and test embedding,
sampled across different models. Arrows of the same
color represent pairings from the same GitHub project.

We observed that, in general, CodeBERT em-
beddings showed no clear pattern, with many of
the arrows seemingly pointing in the same location.
This suggests that CodeBERT assigned the same
embeddings to different tests. This difficulty in pro-
ducing unique and meaningful representations for
test cases may be explained by the fact that when
training the CodeBERT model, “function names

2https://openai.com/blog/
new-and-improved-embedding-model

Model K = 1 K = 5 K = 10
CodeBERT 0.35% 0.54% 0.68%
LLaMA-1 7B 7.31% 14.41% 18.38%
ada-002 31.78% 54.45% 62.53%

Table 1: Proximity-based test embedding retrieval re-
sults (top-K accuracy). Best results in bold.

with substring ‘test’ are removed” (Feng et al.,
2020). On the other hand, pairs of embeddings
generated by LLaMA-1 and text-embedding-ada-
002 appeared to display non-arbitrary directions,
suggesting that there may be informative patterns
to capture that merit further exploration.

To confirm our visual findings, we ran a permu-
tation test with the text-embedding-ada-002 em-
beddings. The test statistic used in our case was
the mean cosine similarity between corresponding
vectors in the set of tests and the set of focal meth-
ods, and the number of permutations was set to
10,000. In each permutation, each test was assigned
a random focal method to be paired with, and the
mean cosine similarity was computed between all
pairs. Our results showed that: p_value ≈ 0.0,
indicating that the mean cosine similarity between
the actual pairs was extremely unlikely to have
occurred by chance, and there is some significant
relationship between the pairs. Therefore, it may
be possible to develop a retrieval model that lever-
ages this relationship in order to find relevant test
cases given an input focal method.

4.2 Retrieval Tasks and Neural Network
Exploration

4.2.1 Retrieval Tasks: Proximity as a
Hypothesis

Based on the results of our permutation test, we
next sought to explore whether the closest test
embedding to a focal method embedding was its
corresponding test embedding. To test this, we
used KNN with cosine as a distance metric, to
find the closest K tests embeddings to each focal
method embedding and see if one of them is in-
deed its corresponding test embedding. We then
performed a comparative analysis using top-K ac-
curacy for K ∈ {1, 5, 10}. Our investigation in-
cluded the evaluation of the performance of Code-
BERT, LLaMA-1 7B, and Text-embedding-ada-
002 models. The results are shown in the table
1.

Results indicated that the OpenAI Text-
embedding-ada-002 model stood out with the high-
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Model K = 1 K = 5 K = 10
CodeBERT 6.26% 7.16% 8.09%
LLaMA-1 7B 15.91% 36.65% 46.25%
Text-embedding-ada-002 20.99% 47.9% 57.88%

Table 2: Results of our NN with the different embedding
models using top-K accuracy. Best results in bold.

est accuracy for each value of K, showcasing its
ability to capture effectively the code semantics. In
contrast, LLaMA-1’s performance was compara-
tively weaker, while CodeBERT yielded the lowest
accuracy.

4.2.2 Neural Network Exploration
The results we obtained motivated us to explore
more and see if we could train an NN to approxi-
mate the test embeddings given the focal method
embeddings. We constructed an NN using Tensor-
Flow’s Keras 3 API. We used a sequential NN archi-
tecture with five fully connected layers and ReLU
activation functions. We used 80% of the data for
training, while the remaining 20% was used for
testing, and Mean Squared Error (MSE) Loss was
used. To evaluate the performance of the NN, we
used KNN with cosine metric to find the N closest
tests embeddings to the predicted vector given the
focal method embedding. We then checked if the
corresponding focal method embedding of the test
embedding is among those K nearest neighbors
and calculated the top-K accuracy scores, and the
results are presented in Table 2.

Comparing the two tables 2 and 1, we observed
that the NN-based approach had lower accuracy
scores than the proximity-based approach for the
text-embedding-ada-002 model. However, for the
LLaMA-1 7B and CodeBERT models, the accu-
racy scores improved with the NN-based approach.
Despite the accuracy improvements for CodeBERT
and LLaMA-1 7B with the NN-based approach, all
three models maintained the same ranking based
on their accuracy rates.

5 Test Cases Generation Task

5.1 Assessing GPT-3.5-Generated Test Cases
in Comparison with Human-Generated
Tests

Given the popularity of LLMs for code generation,
especially GPT-3.5, we chose to investigate how
well these types of models, can generate test cases
for ML code. We generated cases for all of our ML

3https://keras.io/

functions by invoking GPT-3.5 with the prompt:
"Generate the test function in Python for this code:
<focal_method_definition> Give me the code only,
with no explanation, but keep the comments." We
chose a simple prompt because we wanted to avoid
biasing GPT-3.5 too much (Shapira et al., 2023).
However, testing out multiple prompts is a promis-
ing direction for future work. We maintained a
temperature value of 1 during generation, so for
the same function, GPT-3.5 generated different test
cases covering different aspects.

We intentionally did not include any informa-
tion about the project from which we retrieved the
ML function in the prompt. Consequently, GPT-
3.5 may or may not have seen the project before,
as it likely was trained on GitHub projects dating
before September 2021. Nevertheless, we did con-
firm that GPT-3.5 was not exactly reproducing the
human-written test cases. To ensure consistency
across our dataset, we performed preprocessing to
retain only the tests’ definitions, excluding any ex-
planations that came before or after it, just like we
did with the human-generated tests.

Initial analysis measuring the average lines of
code and comments in the test functions, as re-
ported in table 3, unveiled that GPT-3.5 tends to cre-
ate longer (in terms of number of lines) test cases
with fewer comments than humans. Additionally,
both GPT-3.5 and humans occasionally omitted the
function call within their test cases. Notably, 4.6%
of GPT-3.5 tests and 3.28% of human tests lacked
the call for the focal method. This can be explained
by the diverse scenarios of unanticipated GPT-3.5
test case generation outcomes such as when the test
case consisted of a pass statement only, when the
generated code was not a test function, or when
GPT-3.5 replicated the code of the focal method
when tasked with generating a test case.

5.2 Embeddings Comparison and Statistical
Analysis

For further investigation, we used the model text-
embedding-ada-002, since it performed the best
with our retrieval task, to generate embeddings for
the GPT-3.5-generated test cases as well.

Using PCA dimensionality reduction technique,
we performed visualization to detect if there are
some differences between human-generated test
embeddings and GPT-3.5-generated test embed-
dings that are potentially visible. We created scatter
plots of the reduced embeddings, as shown in Fig-
ure 3, that showcased a general overlap of the two
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Average Lines of Code Average Lines of Comment Percentage of Test Cases Calling
(Including Comments) Comments Percentage the Tested Function

Human 10.24 0.15 1.46% 96,72%
GPT-3.5 18.57 0.08 0.43% 95.35%

Table 3: Comparison of test cases characteristics: Human vs. GPT-3.5 generated tests

test groups suggesting that there was not a large
overall difference between them. The same figure
3 revealed two noticeable clusters in the human-
generated tests. Upon examination, we found that
the second cluster of human-generated tests consis-
tently included the presence of @pytest.fixture
decorators before the tests. This condition is suf-
ficient but not necessary to indicate the use of the
Pytest framework. Conversely, GPT-3.5 did not use
these fixtures as much. Therefore, the clusters in
human tests may be attributed to the presence or
absence of these fixtures or the choice of different
testing frameworks in general. Either way, this clar-
ification highlights the need for a more in-depth
investigation.

Figure 3: Scatter Plot of Reduced Embeddings using
PCA.

To quantitatively confirm our findings, we ran
a t-test, to determine if there is a significant dif-
ference between the means of the embeddings of
tests generated by Humans and the tests generated
by GPT-3.5. The computed t-statistic values were
very close to zero, indicating a minimal variance
in means between the Human and GPT-3.5 test em-
beddings. Consequently, the p-values were nearly
1, far exceeding our significance level of α = 0.05.
Consequently, we fail to reject the null hypothesis
(There is no difference between the means of our
two samples). The outcomes of our t-test suggest
that statistically speaking, the means of the Human
and GPT-3 test embeddings do not display a sig-

nificant statistical difference. This outcome does
not imply that they are identical (as there may be
divergences in other parameters like standard devi-
ation, minimum, maximum, etc.). However, it does
signify that, from a statistical perspective, we lack
evidence to affirm their difference. With that being
said, GPT-3.5 tests seem to be very similar to hu-
man tests, according to what can be measured using
embeddings, which might not represent every facet
of the tests. As visualization did not help much
capture the differences between both test groups,
we conducted a survey to understand which test
cases developers and data scientists found more
helpful for ML test case generation.

6 Survey Methodology and Results
Analysis

6.1 Survey Methodology
6.1.1 Survey Setup
We created four different variations of the survey
with the possibility for one person to respond to
more than one. Each variation of the survey had
5 ML functions extracted from 5 different GitHub
projects, each with 5 accompanying test cases. So
overall, there were 20 different ML functions from
20 different GitHub Projects and a total of 100 test
cases.

Upon the emergence of newer LLMs such as
GPT-4 and LLaMA-2, and recognizing their poten-
tial in test case generation for ML code, we aimed
to explore their capabilities as well. To manage
costs associated with API calls, we opted not to
generate test cases for all of our ML functions us-
ing GPT-4. Due to the smaller sample size required
for the survey, we managed to use both GPT-4 and
LLaMA-2 (with 70 billion parameters) in order
to compare these other large models with GPT-
3.5. The 5 accompanying test cases for each ML
function were the human-generated test for that
function, the GPT-3.5-generated test, the retrieved
test, the LLaMA-2-generated test (70B), and the
GPT-4-generated test.

Both GPT-4 and LLaMA-2 (70B) tests were gen-
erated by invoking the same prompt used to gener-
ate tests using GPT-3.5. To provide the retrieved
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test, we followed the method that we described in
section 4.2, only this time, when seeking the clos-
est test embedding to the focal method embedding
from all human-generated test cases, we purposely
excluded the test cases originating from the same
project as the focal method embedding. By do-
ing so, we simulated an environment wherein our
system had not encountered the project before.

The process of selecting the ML functions used
in the survey involved a random selection from
functions that had a comment section that clarified
the function’s objective so that it was easier for sur-
vey takers to understand the code. Furthermore, we
made sure that we were certain that the associated
human test was correctly paired, eliminating cases
that could be considered as noise.

Moreover, participants were not provided with
links to the associated GitHub projects. This deci-
sion was made to ensure fairness, as both the partic-
ipants and AI assistants may or may not have had
prior exposure to these projects. However, since all
functions had comments, participants were able to
read about the intended purpose of the function.

6.1.2 Survey Structure and Instructions
Our survey starts with inquiries about participants’
backgrounds, asking for their experience in ML
and software testing, prior usage of AI tools for
generating test cases, and more. Afterward, par-
ticipants were presented with a hypothetical sce-
nario wherein they were tasked with writing a test
case for an ML function, and five distinct AI as-
sistants provided example test cases to help them
write it. Participants were then requested to evalu-
ate each option based on helpfulness, correctness,
and readability. The test cases were labeled as
test_A, test_B, test_C, test_D, and test_E. For in-
stance, test_A represented the test generated by hu-
mans, while test_B, test_C, test_D, and test_E cor-
responded to GPT-3.5, retrieved, LLaMA-2 (70B),
and GPT-4 generated tests, respectively. Partici-
pants did not know the true identity of any of the
systems. To eliminate any potential biases, we
applied shuffling of system labels across the var-
ious survey versions. At the survey’s conclusion,
participants were asked to indicate their preferred
system.

6.1.3 Survey Participant Groups
Our survey enlisted participants from diverse
groups including researchers, students, ML engi-
neers, and software developers. To prevent any

potential bias, individuals within the same group
responded to distinct survey variations. This ap-
proach ensured that each survey variant collected
responses from a range of groups, avoiding biased
results. The participants completed the survey on
a voluntary basis and were recruited from the so-
cial networks and university groups of the authors’
universities in both the United States and North
Africa.

6.2 Results Analysis

6.2.1 Distribution of Participants
Our survey was completed by 17 participants from
diverse backgrounds. With each survey containing
5 test cases, a cumulative 425 evaluations of test
cases was reported. The results revealed that the
largest group of participants was students at 41.2%,
followed by researchers and software developers at
23.5%, and ML engineers who constituted 11.2%
of the participants. Over 64% of our participants
had at least 1 year of experience in ML, and over
47% of them had at least 1 year of experience in
Software Testing. This overall experience makes
them adequate for the evaluation of ML test cases.
Surprisingly, the majority of the participants have
never used an AI tool to generate test cases before.
The few who did mentioned that they have used
ChatGPT or Testsigma4. The features of a good
machine learning test case, as mentioned by par-
ticipants, are presented in Figure 4 along with the
corresponding number of mentions by participants.

Figure 4: Key Features of a Good Machine Learning
Test Case: Participants’ Answers.

6.2.2 Survey Findings: Participant Evaluation
of Different Test Cases

Throughout our survey, we asked participants to
evaluate each test case individually on a scale of 1

4https://testsigma.com/
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Human Retrieval GPT-3.5 LLaMA-2 GPT-4
Correctness Score 3.62 2.86 3.17 3.87 3.93
Readability Score 3.25 2.88 3.09 4.17 4.12

Documentation: Average Lines of Comments 0 0 0 4.6 5.1
Helpfulness Score 1.84 1.44 1.82 2.39 2.6

System Preference Distribution 11.8% 0% 11.8% 35.3% 41.2%
Rank Chosen by people 3 4 3 2 1

Table 4: Survey Results: Evaluation Scores and Rankings for Different AI Assistants. The best results are in bold.
For correctness, readability, documentation, helpfulness, and preference distribution scores, the highest is best. For
the rank chosen, the lowest is the best.

to 5, considering two criteria: Correctness5 (taking
into consideration the testing logic) and Readabil-
ity. We opted for these two criteria because they
are crucial for assessing test cases, and they can
be assessed by simply reviewing the test case and
relying on participants’ expertise without having to
run the code, which would have been difficult in an
online survey setting; we leave verifying the ability
to execute the code as future work.

Additionally, we asked our participants to imag-
ine that they needed to write a test case for the
target function, and then to rank each 5 test cases
associated with the same ML project based on their
helpfulness as a reference or starting point for writ-
ing a test case for the provided ML function.

The averages of participants’ scores for each cri-
terion were calculated and summarized in Table 4.
We used the Mean Reciprocal Rank (MRR) metric
to calculate the helpfulness score using the differ-
ent ranks associated by people for this criterion.

MRR =
1

n

n∑

i=1

1

ranki

where n is the number of the ranked elements and
ranki is the rank assigned for the element i.

Despite having some criteria that led to strong
correlations, the reported results reveal that GPT-4
achieved the highest scores in Correctness, Doc-
umentation, and Helpfulness. On the other hand,
LLaMA-2 (70B) 6 had the highest score in Read-
ability. These two models exhibited similar scores,
leading to a tight competition for the top-ranking
position. However, LLaMA-2 is an open7 model,
the fact that it performs almost as well as GPT-4 in

5Note that “correctness” in this case measures perceived
correctness based on human observation.

6Recently, Code LLaMA was introduced, but it was after
the conclusion of our survey. Future work could explore this
and determine if it (or other newer models) would be preferred
even above GPT-4 and LLaMA-2.

7Although the pre-training code and data are not fully open,
the parameters of the model are available via a license that is
fairly unrestrictive for research purposes.

this task may have a larger positive impact overall
since anyone can benefit from it.

Also with very closely matched scores, we find
human-generated tests and GPT-3.5-generated tests.
Even though human-generated tests slightly outper-
formed the GPT-3.5 model in terms of Correctness,
Readability, and Helpfulness ratings, their scores
are still very close. This might confirm the idea
first presented in Section 5.2: GPT-3.5 and human
tests are similar, with a small but noticeable differ-
ence (as suggested by their different scores) that is
not captured by embedding similarity.

At last, retrieved tests attained the lowest scores,
resulting in a fifth-place ranking. This suggests that
participants found all generative models to appear
more helpful than the actual test functions that had
been written to test similar ML functions.

6.2.3 Participant Insights: System Preference
As a final question in our survey, we inquired about
participants’ preferred system overall. Our results
revealed that the majority of our participants at
41,2% preferred GPT-4-generated tests, followed
by 35,3% opting for LLaMA-2-generated tests,
while the rest split up between human-generated
and GPT-3.5-generated tests, with no preference
for retrieved tests.

Individuals with over one year of experience in
ML and software testing preferred tests generated
by humans and LLaMA-2 (70B) more often than
others. This suggests that there may be something
lacking in tests generated by GPT-4, which is only
apparent to those with more experience. While
this trend is interesting, it should be taken with
caution due to the limited sample size. To confirm
this pattern, additional data is required, making it a
potential area for future work.

In summary, the GPT-4 and LLaMA-2 (70B)
models excel in generating apparently correct, read-
able, and helpful tests. Given that a majority of par-
ticipants indicated that they haven’t used AI tools
for test generation previously, this suggests they
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might benefit from using them for such tasks.

7 Conclusion

In this work, we employed state-of-the-art NLP
techniques to generate effective representations for
ML source and test code. We developed a heuris-
tic method to build a good-quality dataset of ML
function-to-test mappings, forming the basis for
generating these representations. We have stud-
ied these representations through visualization by
leveraging a couple of dimensionality reduction
methods, and we have successfully captured some
patterns, that we later confirmed. Our findings re-
vealed an interesting insight: the CodeBERT model
struggled to capture test case semantics compared
to other recent GPT embeddings. We also explored
the practicality of these representations for retriev-
ing an ML test case given an ML method. Sur-
prisingly, even state-of-the-art NLP models faced
challenges in this task. We also assessed the per-
formance of LLMs in automatically generating test
cases, which revealed that some of these models
outperformed human-generated tests in terms of
helpfulness.

8 Limitations

It’s important to acknowledge the potential weak-
nesses in our original dataset. Firstly, it is impor-
tant to acknowledge that the quality of the collected
tests may vary, as not all developers write equally
comprehensive or effective tests. This variability
in test quality introduces a degree of uncertainty
in the dataset. Additionally, the dataset consists
of projects of varying sizes. As a result, some
projects are larger than others, providing a bigger
pool of tests for extraction. This discrepancy in
project sizes could potentially impact the represen-
tation and diversity of the dataset. Furthermore, it
is worth noting that a subset of tests in the dataset
may be minimal, such as those with the content def
test(): pass. These minimal tests lack substantial
functionality and may not contribute significantly
to the overall depth of the dataset.

It is also essential to acknowledge the limitations
inherent in our dataset’s size, which does not cover
a variety of languages and was selected to increase
the precision of paired functions and tests rather
than to maximize coverage. Lastly, it is important
to acknowledge that while the dataset primarily
focuses on ML tests, it is challenging to defini-
tively determine if all tests exclusively pertain to

ML functionalities rather than general software test-
ing. Due to the inherent complexity and interplay
between ML and software testing, there may be
instances where tests encompass aspects beyond
pure ML functionalities.

Also, for our retrieval task, and while the
proximity-based approach yielded promising re-
sults, the NN-based approach might still have room
for improvement potentially through refining the
neural network architecture or optimization tech-
niques. Further, a retrieval augmented generation
(RAG) approach might be useful in order to gain
the benefits from both the retrieval and generation-
based approaches.

Recognizing the limitations inherent in our sur-
vey findings is also important. To begin, partici-
pants didn’t have the opportunity to execute the
provided code within the survey and didn’t have
access to the whole repository, compelling them to
rely on their intuition and expertise only for evalu-
ating the various systems.

Moreover, it is crucial to acknowledge that the
survey exclusively measures the perceived correct-
ness of the tests. Actual execution of the tests to
determine their functional accuracy could provide
a more robust evaluation.

Additionally, while the survey’s participant
count is relatively modest, it remains representative.
However, it’s worth noting that outcomes might ex-
hibit variation with a larger sample size. Despite
those limitations, the results remain interesting and
undeniably pave the way for future research per-
spectives.

9 Ethical Considerations

Using LLMs to generate ML test cases presents
some ethical concerns that demand careful consid-
eration. Firstly, there is the risk of unintentional
leakage of sensitive information from the training
data into the generated test cases, potentially com-
promising privacy and confidentiality. Moreover,
the lack of transparency in LLMs makes it chal-
lenging to understand how these test cases are for-
mulated, raising concerns about accountability and
the potential for bias amplification. Over-reliance
on the automation capabilities of LLMs in the test-
ing process may lead to the displacement of human
testers, impacting job security and employment
opportunities. Additionally, there is a risk of in-
tellectual property violation when generated test
cases closely resemble proprietary data or test sce-
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narios. Another concern involves the potential for
erroneous test cases. LLM-generated tests may
contain inaccuracies, ambiguities, or flaws that, if
not rigorously reviewed and validated, could lead
to unreliable ML models that fail to perform as
expected. We urge ML test case developers to use
LLMs with caution and scrutiny, even though the
generated tests appear to be promising. Verifying
the generated tests remains an important step in the
software development process.
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