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Abstract
Integrated Gradients (IG) serve as a potent tool
for explaining the internal structure of a lan-
guage model. The calculation of IG requires
numerical integration, wherein the number of
steps serves as a critical hyperparameter. The
step count can drastically alter the results, in-
ducing considerable errors in interpretability.
To scrutinize the effect of step variation on IG,
we measured the difference between theoretical
and observed IG totals for each step amount.
Our findings indicate that the ideal number of
steps to maintain minimal error varies from in-
stance to instance. Consequently, we advocate
for customizing the step count for each instance.
Our study is the first to quantitatively analyze
the variation of IG values with the number of
steps.

1 Introduction

Researchers have focused on Explainable AI (XAI),
which aims to provide insights into model behav-
ior and predictions. One popular XAI method is
feature attribution (Islam et al., 2021), generally re-
ferring to techniques that clarify why each feature
was influential in determining the model’s predic-
tion.

Integrated gradients (IG) (Sundararajan et al.,
2017) is one of the well-known feature attribu-
tion approaches and has been widely used in im-
age (Adebayo et al., 2020; Kapishnikov et al., 2019)
and language processing (Sanyal and Ren, 2021b;
Sikdar et al., 2021) due to the many desirable ex-
planation axioms and ease of gradient computa-
tion (Sanyal and Ren, 2021b). In recent years,
IG has been applied to analyze language mod-
els (Kobayashi et al., 2023), and efforts have been
made to enhance its performance specifically for
language processing tasks (Sanyal and Ren, 2021b;
Sikdar et al., 2021; Enguehard, 2023).

In IG, a property known as completeness (Sun-
dararajan et al., 2017) posits that the sum of the

contributions of each feature equals the difference
between the output and the sum. This fundamental
property offers a way of interpreting the value of
each contribution as its influence on the output as
follows Eq. 2. It also quantifies each contribution
value relative to the output, enabling comparisons
between contributions.

However, completeness is often violated because
the numerical integration required to compute IG
introduces errors. Completenes violation compro-
mises the interpretability of the contributions and
the results obtained from comparisons among the
contributions. We have also identified instances
where errors adversely affect the interpretation of
the contributions (see Figure 2). Hence, to ensure
the reliability and accuracy of IG, it is vital to deter-
mine the number of steps to minimize such errors
properly.

Given these factors, it is necessary to ensure
an adequate number of steps to reduce errors to
guarantee IG’s reliability. However, as shown in
Table 1, researchers often subjectively set the num-
ber of steps to use IG for each model or dataset.
Several references address this issue (Sundarara-
jan et al., 2017), requiring between 20 and 300
steps for a sentence classification task using a CNN
model (Kim, 2014) and between 100 and 1000
steps for a translation task using LSTM (Wu et al.,
2016). Nevertheless, there has yet to be a quanti-
tative analysis that can be sufficient regarding the
number of steps. In addition, no studies specifi-
cally address the number of steps required for mod-
ern language models (LMs) such as BERT (Devlin
et al., 2019).

Therefore, in this study, we measured the error
between the theoretical and measured values of the
total IG sum at each number of steps to quantita-
tively analyze the change in the contribution value
depending on the number of IG steps in the LM.
The results show that the ideal number of steps that
minimize the error varies from instance to instance,
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Table 1: Number of steps set when using IG in text classification. In previous research, the number of steps is set
for each model and not for each instance.

Step Model Paper
50 CNN (Liu and Avci, 2019) (Dixon et al., 2018)
50, 250 DistilBERT, RoBERTa, BERT (Enguehard, 2023)
10, 30, 100, 300 DistilBERT, RoBERTa, BERT (Sanyal and Ren, 2021a)
1000 Linear / Logistic regression (Han et al., 2022)
100, 1000 BERT, LSTM (Bastings et al., 2022)

even for the same dataset model. This result ar-
gues that the number of steps should be set on an
instance-by-instance basis. Our study is the first
to quantitatively analyze the variation of IG values
with the number of steps.

2 Integrated Gradients

The method of generating post-hoc explanations
for each model output is known as feature attri-
bution (Simonyan et al., 2014). This method al-
lows for the assessment of the contribution of input
features to the prediction results of machine learn-
ing models. It provides insights into how much a
model’s predictions rely on specific features.

Integrated gradients (IG) (Sundararajan et al.,
2017) is a type of feature attribution method. IG
is popular over other feature attribution methods
due to its simplicity, relatively low computational
cost, and adherence to mathematically rigorous
axioms (Lundstrom et al., 2022).

In the field of NLP, IG has proven valuable, with
researchers developing enhanced methods tailored
to language-specific tasks (Sanyal and Ren, 2021b;
Sikdar et al., 2021; Enguehard, 2023) and utilizing
it for LM analysis (Kobayashi et al., 2023).

The IG formula for an input x along the i-th
dimension is as follows:

IGi(x) = (xi−x′i)
∫ 1

α=0

∂F

∂xi
(x′+α(x−x′))dα.

(1)
Here, F is the deep neural network, x′ is a base-

line embedding along the i-th dimension, and α is
the variable of integration.

The IG calculation involves sampling along a
linear path from the baseline vector to the input
vector and computing and integrating the gradient
for each sample. Here, the sampling points are
determined by the numerical integration method
and the number of steps. The number of steps is
a vital hyperparameter that determines the integra-
tion accuracy. However, many steps require much

backpropagation, resulting in high computational
costs.

2.1 Completeness Axiom

The completeness axiom (Sundararajan et al., 2017)
is one of the several mathematical principles IG
satisfies, indicating that the sum of IG in each di-
mension is the model output value for the given
input minus the model output value for the baseline
as follows:

n∑

i=1

IGi(x) = F (x)− F (x′). (2)

2.2 Issues in setting the number of steps

In practical applications, there are cases where this
axiom does not hold due to errors caused by nu-
merical integration. To prevent the effects of errors,
a sufficiently large number of steps must be set in
advance.

For instance, in the sentence classification task
of a CNN model, Sundararajan et al. (2017) argues
that the number of steps should range from 20 to
300, while for LSTM translation tasks, it should
be within 100 to 1000. However, research has not
identified what constitutes sufficient error reduc-
tion for practical application in Table 1. The ideal
number of steps may vary depending on the model
and dataset, and there needs to be a discussion of
the number of steps in LM, like in BERT. There-
fore, we analyze the impact of the number of steps
on IG values in LM.

3 Experimental Settings

3.1 Verification Indicators

Approximation error (AE) measures the deviation
of the actual measured value from the theoretical
value, and we compute the error for each step as
follows:

AE =

∣∣∣∣
∑

i ĨGi(x)− (F (x)− F (x′))
F (x)− F (x′)

∣∣∣∣ (3)
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Figure 1: Boxplot on the left: The red line represents the approximation errors average for each number of steps,
and a single point represents the approximation errors for a single instance. Histogram on the right: The number
of steps ideal for each instance. The vertical axis is the number of instances with the ideal number of steps on the
horizontal axis. It can be seen that the ideal number of steps is different for each number of instances. However,
nearly 60% of the instances had an ideal number of steps within 100 steps.

Here,
∑

i ĨGi is the sum of the measured IG calcu-
lated by numerical integration.

The AE reflects the discrepancy between the
theoretical sum value of IG and the actual measured
value. Also, Sundararajan et al. (2017) argues that
the number of steps should be adjusted based on
the AE.

3.2 Baseline Vector

IG’s baseline vector remains an ongoing discussion
in the field (Sturmfels et al., 2020; Tan, 2023; Bast-
ings et al., 2022). In our experiments, we align with
the notion that the baseline vector should possess
minimal information for the model and use the max-
imum entropy baseline as the baseline vector (Tan,
2023). This vector exhibits the most uniformly
distributed model outputs in the test dataset.

3.3 Dataset & Model

We use AG News (Gulli., 2004), 20 News (Ko,
2012), and SST-2 (Socher et al., 2013) as our
datasets. These datasets are widely used in sen-
tence classification. Details of the datasets are
available in Appendix A.1. BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) serve as the
LMs for the experiment, utilizing both base and
large models. Details of the models are available
in Appendix A.2.

3.4 Other experimental settings

We used Riemann sum and Gauss-Legendre inte-
gration as our numerical integration methods.

In the interest of realistic experimental time-
frames, we randomly sampled 100 instances from
the test data for each dataset.

4 Experimental Results

Since the Riemann sum results were consistently
better than the Gauss-Legendre integration results,
we report the Riemann sum results in the following
experiments. See Appendix A.4 for details. Here,
we show the case of the BERT(large)-AGnews
model, but results for other models are given in
Appendix A.7.

4.1 Quantitative Analysis of Errors

We performed a quantitative analysis to investigate
the potential errors that can arise if IG is calculated
for all instances at a specified fixed number of steps.
We calculated the IG values for all instances at step
numbers 100, 300, 1000, 2000, and 5000 steps. We
then calculated the approximation errors (AE) for
each instance at each step number to review how
the AE would perform if the same number of steps
were applied across each instance.

Error for each step From the results of the box
plot on the left in Figure 1, we observed that even
with a vast number of steps (>1000), the AE are

281



Figure 2: Visualization of IG. Above each line is the visualization using the assumed fixed-step. Below each line
is a visualization of when the ideal step is used. From top to bottom, visualization are RoBERTa(base)_AGnews,
BERT(large)_20news and BERT(large)_AGnews.

Figure 3: Approximation errors per step for an in-
stance. Increasing the number of steps does not lead to
a monotonic decrease in the approximation errors.

instances with significant errors. There are several
samples with AE greater than 100%, and even us-
ing 5000 steps, there are instances with AE more
significant than 700%. These results indicate that
larger steps cannot guarantee fewer errors. The
ideal number of steps may vary from instance to
instance.

Also, in Figure 3, we observed instances where
the AE moved up and down sharply as the steps
increased. This case shows that the AE increases
with an increase in the number of steps. It was con-
firmed that the AE does not decrease monotonically
with the increase in the number of steps.

Ideal step Therefore, we investigated the distri-
bution of the ideal number of steps for each in-
stance. The ideal number of steps here is defined
as the number of steps for which the AE is ini-
tially within 5%. This definition is informed by the
number proposed (Sundararajan et al., 2017).

From the right histogram in Figure 1, we ob-
served 98 out of 100 instances with an ideal num-
ber of steps within the 1000 steps. Of these, more
than 60 instances had the ideal number of steps
within 100 steps. This result indicates that even
for LMs such as BERT, even a small number of
steps, as small as 100, is sufficient for convergence
in more than half of the instances. In contrast, even
1000 steps cannot guarantee convergence for all
instances.

This result suggests that fixing the number of
steps for all instances may not be ideal for error
reduction.

4.2 Qualitative Analysis of Errors

Since the experiments in Section 4.1 revealed that
some instances do not converge in error even with
significant steps, we perform a qualitative analysis
for those instances where the error does not con-
verge. The visualization rules are those outlined in
(Sundararajan et al., 2017). See Appendix A.6 for
details.

Visualization From the visualization results in
Figure 2, it can be confirmed that in instances
where errors occur, the contribution values do not
change in all samples, but rather the values change
significantly, concentrating on certain features. In
addition, errors are caused by the observation of
non-existent contribution values. From this, it can
be inferred that a significant error is caused by erro-
neous numerical integration for contributions that
have an oscillating shape, although the sum is zero
for the entire interval.
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5 Why is the ideal number of steps
different for each instance?

This section explores why is the ideal number of
steps different for each instance. As the basis for
this discussion, we focus on α in the Eq. 1. For each
minuscule change in α, the gradient is calculated,
and ultimately, the gradient is integrated. The larger
the number of steps, the more minute the changes
in α, enabling a more detailed computation and
integration of the gradient.

Each instance has a gradient of zero for most
segments, and only at certain points does the gra-
dient change significantly. The point at which this
gradient changes significantly varies greatly from
instance to instance. This point of pronounced
gradient change fluctuates at a specific α value, a
phenomenon common in the imaging field. If these
crucial points of gradient change are not accurately
captured, it becomes impossible to calculate inte-
gral parts of the IG sum.

To illustrate, consider a 10-step integration
where the gradient is computed for each alpha
of values in 0.1 increments from 0 1.0. If there are
significant changes in the gradient at any of these
α values, the IG error will be small. But, if there
are no substantial changes in the gradient for any
of these α values and a significant shift happens,
say, at 0.15, then the IG error will be considerable
because the exact gradient value at this point can-
not be calculated. From this, it can be inferred
that instances requiring a smaller, ideal number of
steps have a narrower range of α values where a
substantial change in the gradient occurs.

Figure 4 to the left illustrates the gradient per
α for an instance where the error is maximized at
270 steps and minimized at 870 steps. Clearly, the
substantial gradient captured at 870 steps is missed
at 270 steps. Figure 4 to the right, on the other hand,
presents the gradient per α for instances where the
error is relatively small for both 270 steps and 870
steps. In this case, it is evident that the gradient
is adequately captured at both 870 steps and 270
steps.

As these instances suggest, the ideal number of
steps varies per instance because the locations of
large gradients and the size of these locations differ
across instances.

6 Discussion

Our analysis reveals that the number of integration
steps required for each instance is different.

Figure 4: Gradient value per α. The red line is the
gradient value for each α when done in 270 steps. The
blue line is the gradient value for each α when done in
870 steps.

Therefore, we recommend that the number of
steps be increased sequentially until it falls below
a specific error, thereby reducing the error. For
example, we can ensure that the IG satisfies com-
pleteness by initially setting the number of steps
to 2n and running with increasing n until the error
converges to a constant.

Optimizing the number of steps on an instance-
by-instance basis would also make IG more effi-
cient since our analysis has shown that the number
of steps required is negligible for many instances
(Figure 1). However, we keep this part as a fu-
ture study since constructing a methodology to find
better solutions.

7 Conclusion

The researcher subjectively determines the number
of steps in IG for each dataset and model, which
raises questions about the reliability of IG.

In this study, we quantitatively analyzed the error
for each number of steps. As a result, half of the
instances in which the appropriate number of steps
is around 100 steps, but on the other hand, instances
in which the error does not converge even at 1000
steps or more were confirmed.

These results indicate that the current main-
stream method of fixing the number of steps for
each model or data set runs the risk of producing
instances with broken contributions and undermin-
ing the reliability of IG’s analysis results. To solve
this, we also proposed to change the integration
step for each instance.

Our study is the first to quantitatively analyze
the variation of IG values with the number of steps
and to identify problems with existing integration
methods.
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Limitations

In this experiment, 100 instances were randomly
selected for each combination of model and dataset.
This selection was necessary due to the computa-
tional cost factor. Further investigation involving
more instances is needed for more accurate experi-
ments.

The maximum entropy vector was used as the
baseline for this experiment. Future validation us-
ing different baseline vectors is needed for a com-
prehensive model performance evaluation under
various baselines.

In our validation, we used the correct Riemann
sum. Future analysis using multiple Riemann sums,
such as left Riemann sums and midpoint Riemann
sums, is needed.

When ensuring the number of steps for each
instance, the cumulative number of steps and the
computational cost may increase, which is a poten-
tial issue.
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A Appendix

A.1 Datasets
The datasets we used are widely used in NLP clas-
sification problems.

AG News News articles are grouped into four
main categories (“Sports,” “Business,” “Sci-
ence/Technology,” and “Entertainment” ) (Gulli.,
2004).

20 News News articles are grouped into 20 cat-
egories (“Computers,” “Science,” “Sports,” “Poli-
tics,” and more) (Ko, 2012).

SST-2 The Stanford Sentiment Treebank-2 is pro-
vided for sentences with positive or negative emo-
tional polarity (Socher et al., 2013).

Table 2: Datil of datasets

Dataset train / test class label max lengths
AG news 120k / 7.6k 4 classes 50
20 news 11.3k / 7.53k 20 classes 200

SST2 6.92k / 1.82k 2 classes 20

A.2 Models
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) serve as the LMs for the experiment,
utilizing both base and large models. A linear layer
is affixed to these models as the final layer, and a
softmax function is employed to address the sen-
tence classification task.

BERT BERT uses a bidirectional transformer ar-
chitecture. Unlike regular language models, it con-
siders both left and right contexts simultaneously to
understand words in context (Devlin et al., 2019).

RoBERTa RoBERTa is a version that takes the
architecture and basic ideas of BERT and optimizes
the way the model is trained (Liu et al., 2019).

Table 3: Accuracy of test data

Model Accuracy
AG News 20 News SST-2

BERT-base(110M) 0.94 0.64 0.86
BERT-large(340M) 0.93 0.65 0.87

RoBERTa-base(125M) 0.94 0.61 0.88
RoBERTa-large(561M) 0.93 0.64 0.88

A.3 Integration Method
Numerical integrals are pivotal for IG. The library
Captum (FacebookInc., 2023), a comprehensive
Pytorch implementation of XAI methods, employs

Riemann Sum and Gauss-Legendre integrals for
IG’s numerical integration.

Riemann Sum The Riemann Sum is a technique
used to approximate the area under a function.

When applying the Riemann sum to IG or an
input x along the ith dimension, the approximation
can be expressed as follows:

IGapprox
i (x) =

(xi − x′i)
n∑

k=0

∂F

∂xi
(x′ +

k

n
(x− x′))

1

n
, (4)

where F represents the deep neural network, x′

is a baseline embedding, and n is the sampling
size. This equation allows for the estimation of
the contribution of the i-th feature to the prediction
results of the model.

Gauss-Legendre Integral Gauss-Legendre inte-
gral is a method used to approximate definite inte-
grals, typically on the interval [-1, 1]. It involves
finding the roots, denoted as xk, of the nth order
Legendre polynomial, Pn(x). These roots are the
distinct real solutions of the polynomial of degree
n that lie within the interval [-1, 1].

Applying the Gauss-Legendre integral to IG
yields the following equation:

IGapprox
i (x) =

(xi − x′i)
2

n∑

k=1

∂F

∂xi
(x′ + wk(

xk
2

+
1

2
− x′)), (5)

where, the weights, denoted as wk, corresponding
to each root xk are computed.

This method allows us to approximate the in-
tegral of a function using a Legendre polynomial
of the appropriate degree. Because the roots and
weights of the Legendre polynomial satisfy certain
conditions, this method is numerically very stable
and can have high accuracy for integrals of high
dimension and integrals of special functions.

A.4 Riemann sum vs Gauss-Legendre
Since the results for Riemann sum were consis-
tently better than those for Gauss-Legendre integra-
tion, the results for Riemann sum are reported in
Figure 5.

A.5 Ideal step of instances
The ideal step was defined as the number of steps
that the error becomes within 5% for the first time
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Figure 5: Mean of Approximation errors by Riemann sum and Gauss-Legendre.

by increasing the number of steps. Almost all in-
stances had an ideal step within 1000 steps, but
there were a few instances where the error was
never within 5% within 1000 steps. For each model
and data set, we described the number of instances
in which the ideal step was within 1000 steps out
of 100 instances being analyzed in 4.

Table 4: Number of instances having ideal steps within
1000 steps

Model AG News 20 News SST-2
BERT-base 100 100 100
BERT-large 98 99 99

RoBERTa-base 99 100 95
RoBERTa-large 99 100 97

A.6 Visualization rule
The appendices below detail the calculation of the
contribution per word, which is obtained by sum-
ming the contributions calculated for each dimen-
sion corresponding to each word. The visualization
rules align with those used in IG paper (Sundarara-
jan et al., 2017). In these visualizations, green
represents a positive contribution and red repre-
sents a negative contribution. The darkest shade is
assigned to the most considerable absolute value
of the contribution calculated for each word, and
colors lighten as they approach zero.
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A.7 Quantitative Analysis of Errors

Figure 6: BERT. Boxplot on the left: The red line represents the approximation errors average for each number
of steps, and a single point represents the approximation errors for a single instance. Histogram on the right: The
number of steps ideal for each instance. The vertical axis is the number of instances with the ideal number of steps
on the horizontal axis.
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Figure 7: RoBERTa. Boxplot on the left: The red line represents the approximation errors average for each number
of steps, and a single point represents the approximation errors for a single instance. Histogram on the right: The
number of steps ideal for each instance. The vertical axis is the number of instances with the ideal number of steps
on the horizontal axis.
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