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Abstract

This work proposes a challenging yet more re-
alistic setting for zero-shot cross-task general-
ization: zero-shot instruction following, pre-
suming the existence of a paragraph-style task
definition while no demonstrations exist. To
better learn the task supervision from the def-
inition, we propose two strategies: first, to
automatically find out the critical sentences
in the definition; second, a ranking objec-
tive to force the model to generate the gold
outputs with higher probabilities when those
critical parts are highlighted in the definition.
The joint efforts of the two strategies yield
state-of-the-art performance on the SUPER-
NATURALINSTRU (Wang et al., 2022b).1

1 Introduction

With the rapid evolutions of the pre-training tech-
niques, large language models (LLMs), such as
GPT-3 (Brown et al., 2020) and ChatGPT (OpenAI,
2022), are found to be capable of handling various
novel NLP tasks by following in-context instruc-
tions (Radford et al., 2019).2 Typically, a formal
task instruction consists of two components: (1)
a task definition that describes the task intent; (2)
a few labeled examples to demonstrate this intent
(i.e., demonstrations). Then the problem is often
named as “k-shot instruction following”, where
k is the example size. Due to the performance
superiority of the in-context examples (Lampinen
et al., 2022; Gu et al., 2023a), prior research has
predominantly relied on demonstrations, allocating
relatively limited attention toward effectively uti-
lizing task definitions; we refer to this setting as
“demonstration-driven instruction following” (Min
et al., 2022a,b; Hu et al., 2022).

1Code: https://github.com/RenzeLou/Pick-Rank
2Task instructions can be any textual expressions, e.g., task

names, short sentences, or paragraphs, that describe the task
semantics; prompts are the special case of instructions (Lou
et al., 2023).

Notwithstanding the surprising results, this phe-
nomenon could manifest as an instance of overesti-
mated progress. Two reasons: firstly, demonstra-
tions are usually hard to be crafted in real-world
applications. Since LLMs are becoming helpful
daily-task assistants and most end-users are non-
experts (Chiang et al., 2023; Xie et al., 2023, 2024),
it is usually exhausting and unrealistic for users to
design concrete demonstrations for every daily task,
especially for those tasks that require specific do-
main knowledge. Secondly, as Gu et al. (2023a)
concluded, so far, we still lack a method to ef-
fectively learn from instructions to solve tasks
without demonstrations for various reasons. For
example, Khashabi et al. (2022) showed that the
models constantly ignored the crucial information
emphasized in the definition (e.g., an output con-
straint that asks models to “generate no more than
five words”); Webson and Pavlick (2022) found that
the models always struggled to truly understand the
content of the definition.

To more effectively utilize the task definition,
this work studies a more challenging setting: zero-
shot instruction following. Technically, our ap-
proach consists of two strategies.3 (i) Strategy
I: automatically learn the critical task-relevant in-
formation from the lengthy definition to help the
model better grasp the instruction. (ii) Strategy II:
to make the model truly distinguish instructions
that are specified by the critical information or not,
we set a ranking-based training objective. Given
instructions with critical information highlighted,
this ranking strategy forces the model to generate
ground-truth outputs with higher probabilities than
instructions otherwise. Our system, PICK&RANK,
achieves state-of-the-art on the benchmark, SUPER-
NATURALINSTRU (Wang et al., 2022b).

3In the rest of the paper, we use the terms “definition” and
“instruction” alternately, when examples are unavailable.
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Figure 1: The illustration of our PICK&RANK. Two main components: Strategy I (PICK) and Strategy II (RANK).
Strategy I aims to predict a binary value for each sentence in a definition, indicating whether a sentence is crucial.
The outputs of Strategy I are used to construct instructions with different sufficiencies, e.g., “Repeat” represents the
most beneficial instructions where the crucial sentences are repeated. Strategy II then drives the LMs to generate
higher ground-truth probabilities on the more beneficial instructions. The whole system is optimized end-to-end.

2 Related Work

Prompt & In-context Learning. Prompting
techniques usually acquire answers from large lan-
guage models (LLMs) after rewriting the original
task input into a LLM-oriented format. Impressive
progress has been observed in various NLP tasks,
such as question answering (Radford et al., 2019),
text generation (Schick and Schütze, 2021), infor-
mation extraction (Wang et al., 2022a; Sun et al.,
2024), etc. Brown et al. (2020) further developed
in-context learning (ICL): GPT-3 achieved compet-
itive few-shot results without parameter tuning by
prepending a prompt with a few demonstrations to
new inputs. Follow-up work delved into improving
ICL, including how to choose better demonstra-
tions (Rubin et al., 2021; Lu et al., 2022), how to
formulate the tasks (Zhao et al., 2021; Min et al.,
2022a), etc. However, the short and simplistic na-
ture of the prompts makes it difficult to express
NLP tasks of diverse complexities (Chen et al.,
2022). Our work tries to learn from instructions
that describe the task semantics in more detail, such
as Amazon MTurk instructions.

Follow Human-annotation Instructions.
Prompts are more friendly for LLM to emit
outputs. In the real world, humans describe
tasks using paragraph-style instructions, such as
crowd-sourcing guidelines. This type of instruction

has recently attracted much attention, including
increasingly larger datasets (Mishra et al., 2022;
Wang et al., 2022b), new learning problems (Yin
et al., 2022) and applications (Zhang et al., 2023),
etc. To achieve cross-task generalization given
instructions, prior systems trained a text-to-text
model on a long sequence of text, i.e., concate-
nating task definition, demonstrations, and all
other resources (Lou et al., 2023). We ignore
demonstrations and focus on the supervision
extraction from task definitions.

3 Problem Definition & Our Approach

We study zero-shot instruction following in a cross-
task generalization setting, where evaluation tasks
are unseen in training.

Zero-Shot Instruction Following: Three task
sets: TRAINING TASKS, DEV TASKS, and TEST

TASKS. There are no overlapping tasks among
them. Each task T has its instruction I and a collec-
tion of labeled examples D ={(x, y)}. x: input; y:
gold output of x under I . I is a short paragraph con-
sisting of n sentences, i.e., I = {s1, s2, · · · , sn}.
No examples exist in I . D of DEV TASKS and TEST

TASKS are only used for evaluation. As shown in
Figure 1, we adopt two strategies to better leverage
the supervision in I .
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Strategy I: picking critical sentences of instruc-
tions. Given the instruction I = {s1, · · · , sn},
the goal of this phase is to learn a binary value for
each si, indicating that if si is critical for the task
T . We expect to select k most critical sentences.

As shown in Figure 1, we train a Pointer Net-
work (Vinyals et al., 2015) to select critical sen-
tences from the input automatically. First, we
concatenate all {si} in I as the encoder input to
learn a hidden vector hi for each si as: hi =
Encoder(si|I), where hi ∈ Rd, and is average-
pooled from all token-level vectors of si.

Second, we concatenate all sentence-level vec-
tors {hi}. Then a one-hot vector mt of length n,
indicating which sentence is critical, is derived by:

mt ∼ Gumbel(W [h1, h2, . . . , hn]) (1)

where W ∈ Rn×nd, “Gumbel” is Gumbel-Softmax
(Maddison et al., 2016), calculating a Gumbel dis-
tribution over the linear model predictions and sam-
ples categorical one-hot value from it. We use
Gumbel-Softmax because it enables gradient back-
propagation to help train the system end-to-end.

Since mt is n-dimensional one-hot vector; it
only picks a single critical sentence. To aggregate
more potentially useful information from I , we do
the Gumbel sampling procedure k times (where set
k as 2 in our experiments) and take the element-
wise union of {mt}, t = [1, · · · , k]. Accordingly,
the final mask m is a k

′
-hot vector (k

′ ≤ k) with
each mi as:

mi = ∪k
t=1m

t
i (2)

Therefore, m enables the model to pick at most k
critical sentences in I . As shown in Figure 1, I =
{s1, s2, s3, s4}, and {s1, s3} are critical sentences.

Strategy II: ranking-based objective. In a
conventional text-to-text generation, we mainly
optimize the probability, through negative log-
likelihood (Lnll), of generating the gold output.
In zero-shot instruction following, when we are
aware of which sentences in the I are crucial, in
addition to applying the standard loss Lnll, we can
further take a ranking loss to make sure more in-
formative instructions (I+) lead to gold outputs
with higher probabilities than less informative ones
(I−).4 Specifically, we can build (I+, I−) pairs in

4The motivation is that, given the informative I+, the mod-
els can still ignore the beneficial parts selected by Strategy I (cf.
Mishra et al., 2022). Thus, Strategy II further forces the mod-
els to pay attention to those crucial parts (textual differences
between I+ and I−) by producing different probabilities.

three ways:
• Repeat vs. Origin (origin): I+ is [s1, s2, s3,

s4, [REP], s1, s3, [REP]]. This means {s1, s3} will
be repeated in the input instruction, and the special
token [REP] can help tell the model which part is
highlighted. I− is [s1, s2, s3, s4];

• Repeat vs. Delete (delete): I+ is [s1, s2, s3,
s4, [REP], s1, s3, [REP]], I− is I when those criti-
cal sentences are masked, i.e., [s2, s4];

• Repeat vs. Null (null): I+ is [s1, s2, s3, s4,
[REP], s1, s3, [REP]], and I− is an empty string.

Let’s use fI+(y|x) and fI−(y|x) to denote the
probabilities of generating the gold output y given
the input x and the instruction. Then our ranking
loss Lrank is implemented as:

Lrank = max(0, α− fI+(y|x) + fI−(y|x)) (3)

where α controls the probability margin, and
f∗(y|x) is the average of word-level probabilities
on the decoder side. The final loss of our model
PICK&RANK is L = Lnll+β ·Lrank. Different ap-
proaches to generating (I+, I−) pairs can specify
the Lrank as: Lorigin, Ldelete, or Lnull (as shown
in Figure 1). We will study their individual and
joint contributions in experiments. When testing,
we generate the final prediction on “Repeat”.

4 Experiments

Dataset. We work on the benchmark SUPER-
NATURALINSTRU (Wang et al., 2022b), which con-
tains 1,040 diverse English tasks (921 in train and
119 unseen tasks in test). We follow Wang et al.
(2022b) only using 756 tasks in train to train the
final model. Each task is expressed by an instruc-
tion, originally consisting of a paragraph-level task
definition and a couple of positive&negative exam-
ples, and a large set of input-output instances. To
satisfy our setting, we only use definitions as in-
struction I . The average definition length is 65.73
by words (4.09 by sentences). Those classification
and generation tasks are respectively evaluated by
EXACTMATCH and ROUGE-L (Lin, 2004). We
also report ROUGE-L (overall), which calculates
the ROUGE-L on both classification and genera-
tion tasks, to reflect an overall estimation. More
dataset and metric details can be found in Appendix
and Table 5.

Baselines. Since prior systems for few-shot in-
struction following need examples in instructions,
in order to apply them to a zero-shot setting, we
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EXACTMATCH ROUGE-L ROUGE-L(overall)

GPT-4 (OpenAI, 2023) 64.51(±2.56) 59.36(±2.24) 62.96(±2.08)

ChatGPT (OpenAI, 2022) 46.90(±2.23) 56.82(±3.10) 52.41(±2.30)

SeqGAN (Yu et al., 2017) 24.50(±1.13) 31.19(±2.09) 27.55(±1.32)

ReCross (Lin et al., 2022) 28.95(±0.45) 38.81(±0.92) 33.88(±0.58)

MetaICL (SeqGAN) (Min et al., 2022b) 24.28(±0.98) 33.65(±1.87) 28.14(±1.22)

MetaICL (ReCross) (Min et al., 2022b) 14.98(±0.42) 21.63(±0.83) 20.74(±0.40)

TK-INSTRUCT (Wang et al., 2022b) 28.56(±0.39) 39.35(±0.85) 33.64(±0.47)

P
IC

K
&

R
A

N
K Strategy I 29.67(±0.43) 39.54(±0.90) 34.98(±0.57)

w/ Strategy II

ranking ori 29.98(±0.87) 41.79(±1.08) 35.62(±0.76)

ranking del 28.68(±1.04) 41.86(±1.21) 34.46(±0.89)

ranking null 29.34(±0.92) 42.13(±1.13) 35.10(±0.93)

ranking all 30.58(±0.83) 43.55(±1.02) 36.70(±1.14)

Table 1: Main results. Numbers of different methods were calculated from three random runs. We also put LLMs’
performances (GPT-4, etc.) here for reference (i.e., upper bound). Please see the appendix for the baselines’ details.

try to generate silver examples for them. For this
thread, our baselines include (i) SeqGAN (Yu et al.,
2017): Using GAN to generate silver y by utilizing
task definition and x; (ii) ReCross (Lin et al., 2022):
Retrieving similar examples from the training set
using task definition and x; (iii) MetaICL (Min
et al., 2022b): Meta-learning given task definition
and a few examples. Due to the different resources
of examples, MetaICL is specified to MetaICL (Se-
qGAN) and MetaICL (ReCross). Another baseline
concatenates task definition, examples, and x in
the encoder to decode y, namely the prior state-of-
the-art system Tk-INSTRUCT (Wang et al., 2022b).
More details about baselines are in the Appendix.

Our model implementation. We follow Wang
et al. (2022b) using T5-base (Raffel et al., 2020)
for all experiments. Please refer to Appendix and
Table 4 for more experimental settings (e.g., hyper-
parameters and computational cost).

Results. Table 1 summarizes the results on zero-
shot instruction following. Overall, our approach
shows successive performance improvements by
adding the two proposed strategies and gains state-
of-the-art results by adopting them jointly, proving
the effectiveness of our method. Worth noting that
the Tk-INSTRUCT can be regarded as our backbone,
and after adding strategy I, our method has already
improved by 1.34 ROUGE-L (overall) score, indi-
cating the benefits of highlighting crucial sentences.
Moreover, we gain further performance improve-
ments by adding strategy II, because the ranking
objective trains the model to discriminate the differ-
ences in the inputs, thus it drives the model to under-
stand the highlighted information rather than sim-
ply ignoring them (Webson and Pavlick, 2022). As

I: The answer will be “yes” if the provided sentence
contains an explicit mention that answers the given question.
Otherwise, the answer should be “no”. Instances where the
answer is implied from the sentence using “instinct” or
“common sense” [· · · ] should be labeled as “no”.
y: Yes.
TK-INSTRUCT ŷ: March
PICK&RANK ŷ: Yes
I: Given a text passage, come up with an appropriate title for
it. [· · · ] The title should be 1-5 words long.
y: Nobel Peace Prize
TK-INSTRUCT ŷ: The Nobel Peace Prize is one of the five
Nobel Prizes created by the Swedish industrialist, inventor,
and armaments manufacturer Alfred Nobel.
PICK&RANK ŷ: Nobel Peace Prize
I: In this task, you’re given an ambiguous question (which
can be answered in more than one way). Your task is to
write a question that clarifies the given question in such a
way that the generated question has one unique answer.
y: When was the National World War II memorial officially
established?
TK-INSTRUCT ŷ: 1830
PICK&RANK ŷ: When was the memorial built?

Table 2: Effect of Strategy I. ŷ: system output. The
detected crucial sentences are highlighted in blue.

for MetaICL, due to the huge task differences be-
tween train and test (as shown in Table 5), those
silver examples generated or retrieved by using
the train do not provide the in-distribution pat-
terns (Min et al., 2022c),5 leading to sub-optimal
or even worse performances, cf. MetaICL (Re-
Cross) vs. ReCross. Note that, ReCross directly
retrains the model with the retrieved examples and
obtains relatively better results, however, it is still
suffering from the drawbacks of few-shot instruc-
tion following in such a strict cross-task setting, so
as SeqGAN.

Analysis. We try to clear up three concerns.

5We also observed the low instance similarities predicted
by ReCross between train and test.
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I: Generate an overlapping word between the given two
sentences. [· · · ] You must generate significant words which
are not the stop words like “the” or “of", etc.
x: s1: Amphibians have permeable skin that easily absorbs
substances from the environment. s2: Amphibians begin
their lives in the water.
y: Amphibians || ŷ:the
Error type: negation
I: Two analogies that relate items to whether they are trash
or treasure is given in the form “A : B. C : ?" [· · · ] “A : B”
relates item A to whether it is trash or treasure, as specified
by B. [· · · ]
x: baby : treasure. leaf : ?
y: trash || ŷ: relates item A to whether it is trash or treasure
Error type: pattern copy
I: [· · · ] If it is about requesting something, generate
’REQUEST’. [· · · ] If it is about informing something,
generate “INFORM”.
x: Please tell me do you have any particular date for the
event?
y: REQUEST || ŷ: INFORM
Error type: incomplete critical sent. detection

Table 3: The error patterns by our system. We highlight
the crucial sentences in the instructions with blue, and
mark the error type as red.

Q1: Did the detected critical sentences really
contribute to the generation of gold outputs?
To answer Q1, we checked some examples where
our system improves over the strongest baseline
TK-INSTRUCT. As shown in Table 2, our ap-
proach can generally point out those crucial task-
relevant sentences that are hardly encoded by the
TK-INSTRUCT, such as output space (the first ex-
ample), length constraint (the second example),
and types of output (the last example). With the
help of such highlights, our system can produce
outputs that are better aligned with the task def-
initions, while TK-INSTRUCT often violates the
requirements of instructions.
Q2: Could ranking objective really improve

the probability of gold outputs? Regarding Q2,
we test our model on all TEST TASKS with two
versions of task instructions: repeat vs. origin.
For each version, we calculate the corresponding
probability of the ground truth output by averaging
token-level probabilities in the output string. Our
model can produce a higher ground-truth proba-
bility once “repeat” instruction is adopted (score:
0.59) than the “origin” definition (score: 0.11),6

demonstrating the effectiveness of our Strategy II.
Q3: Error patterns of our systems. We ran-

domly pick up 200 instances from the test and sum-
marize three main error patterns of PICK&RANK,
as shown in Table 3. (i) Negation. As the first exam-
ple in Table 3 shows, even though the model is able

6Average from three random seeds experiments.

to detect the sentence that has a specific require-
ment “generate significant words which are not the
stop words · · · ”, the negation “are not” was not
successfully comprehended by the system. Unfor-
tunately, negation understanding has increasingly
been a challenge in NLP (AL-Khawaldeh, 2019;
Yin et al., 2022; Khashabi et al., 2022). (ii) Pattern
copy. The second example shows the system some-
times copies a span from the definition, especially
when the definition string, e.g., “‘A : B’ relates item
A to whether it is trash or treasure, as specified by
B.”, matches the format of x, e.g., “baby : treasure.
leaf: ?”. This resembles demonstration-driven in-
context learning, where researchers found pattern
match is a key factor of success (Min et al., 2022c).
(iii) Incomplete critical sentence detection. It is
possible that our system detects partial sentences
that are critical. As a result, the system is biased
toward the requirement of highlighted sentences.
Rather than using a hard masking scheme, our fu-
ture work will explore a soft-masking technique so
that no instruction parts will be clearly ignored.

5 Conclusion

In this paper, we focused on zero-shot instruction
following, where we only adopted the task defini-
tions as the instructions to help the model perform
cross-task generalization. Expressly, our method
pointed the critical sentences out of the lengthy defi-
nitions and highlighted them explicitly. In addition,
we further designed a ranking objective to improve
the instruction grasp of the LMs. We also con-
ducted thorough analyses to help future research
on zero-shot instruction following.
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Hyper-parameters Range
lr for T5 [5e-6, 1e-5, 5e-5, 1e-4]
lr for Pointer Networks [5e-5, 1e-4, 3e-4, 5e-4]
lr for Encoder [1e-6, 5e-6, 1e-5, 5e-5]
αorigin [0.001, 0.003, 0.01, 0.03, 0.1]
αdelete [0.001, 0.003, 0.01, 0.03, 0.1]
αnull [0.01, 0.03, 0.1, 0.3]
β [0.01, 0.05, 0.1, 0.5, 1]
k [1, 2, 3, 4, 5]
Pooling Function [ average, max ]

Table 4: The hyper-parameters trialed in tuning our mod-
els. The best ones adopted in our final experiments are
highlighted in boldface. Here, “lr” denotes the learning
rate; α is the probability margin in equation 3, there are
three different α according to three ranking losses; β is
a coefficient that controls the influence of the ranking
losses; and k is the sampling times in equation 2.

Appendix A. Expanded Technique Details

Due to the length limitation, we have to elaborate
on some other important details of our approach
in this section, including four different instructions
in Figure 1 and how we enable end-to-end opti-
mization. As we have illustrated in Figure 1, our
approach consists of two parts, corresponding to
Strategy I and Strategy II in Section 3, respec-
tively.

Strategy I (the left dashed box in Figure 1)
first encodes and converts all the sentences in a
definition to sentence-level representations. Then,
we adopt pointer networks followed by a Gumbel-
Softmax layer to predict a binary vector for these
representations, where “1” means the correspond-
ing sentence contains crucial task-relevant infor-
mation and should be attended by the LMs. In
order to pick up more potentially useful informa-
tion, we repeat the Gumbel sampling several times
and take the element-wise union of the sampling
results as the final decision of strategy I. It is worth
noting that the encoder of this phase shares the
same model structure as the encoder of the LMs
to keep similar internal features of the downstream
procedure (Lin et al., 2022). However, they are
optimized individually.

Strategy II (the right solid box in Figure 1) re-
gards the output binary vector of strategy I as a
sentence-level mask matrix and constructs four dif-
ferent instructions accordingly: (1). Repeat indi-
cates the definition in which the critical parts are
repeated and highlighted. Practically, we repeat
the whole definition once (surrounded by a spe-
cial token “[REP]”) and use the binary vector from

the strategy I as the attention mask matrix in the
Transformers (Vaswani et al., 2017); (2). Origin is
the original definition without any modifications;
(3). Delete denotes the definition where the critical
parts are masked. Similar to Repeat, we actually en-
code the whole definition and use the invert of the
binary vector to mask the critical information; (4).
Null means that there are no instructions provided.
Intuitively, if the model can truly understand the
prefixed instructions, it shall discriminate these text
differences and produce better results on the inputs
with informative instructions (i.e., Repeat) than the
others (i.e., Origin, Delete, and Null).7 Therefore,
besides the standard negative log-likelihood Lnll,
there are three additional ranking losses in total,
namely Lorigin, Ldelete, and Lnull.

Notably, our system can be optimized end-to-
end because we incorporate the decision of strategy
I by utilizing the attention mask mechanism in the
LMs of strategy II.

Appendix B. Experimental Details

For hyper-parameters, we use segmented learning
rate (5e-5 for T5, 3e-4 and 5e-6 for the pointer net-
works and encoder, respectively) optimized with
Adam (Kingma and Ba, 2014). As for the mar-
gins of ranking losses, we follow previous works
employing structured margins to obtain a better rep-
resentation space in LMs (Wang et al., 2019, 2021).
Following Wang et al. (2022b), after two epochs
training on train, we evaluate our model on test
with the beam size equal to 1 (greedy decoding).
We present our hyper-parameters selection in Ta-
ble 4. All the ranges of these hyper-parameters
are decided empirically, and we search for the best
combination greedily by observing the ROUGE-
L score on the development set. We use Hugging
Face T5-base for all the experiments 8 and utilize
Spacy for sentence segmentation.9 It is notable
that the definition length can be diverse, and it will
extremely increase the computational burden if we
let the pointer networks consider all the sentences
in a definition. According to Table 5, we randomly
select 5 sentences from the definition of each task
as the candidates.

All of our code is implemented by using Python

7Unlike the Repeat, we do not use any special tokens in
the other instructions (“[DEL]”, “[NULL]”, etc.) to avoid
introducing shortcuts to the model (Du et al., 2021).

8https://huggingface.co/t5-base
9https://github.com/explosion/spacy-models/

releases/tag/en_core_web_sm-3.4.1
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Train Dev Test
# of tasks 756 100 119
# of instances 75,317 9,958 11,810
# of task types 60 23 12
# of domain types 101 24 35
# of sources 243 46 75
sources overlap with test set 0.0% 80.4% /
avg def. length (words per task) 66.41 65.58 61.55
avg def. length (sentences per task) 4.11 4.12 3.92

Table 5: The dataset statistics.

3.8.0 and PyTorch 1.12.1 10 with CUDA 11.6, and
we utilize Hugging Face Transformers 4.18.0 11

to train and evaluate our models. We conduct all
our experiments on Ubuntu 18.04 LTS using In-
tel(R) Core(TM) i9-10900KF CPU with 32 GB
of memory, and employing NVIDIA RTX A5000
GPU with 24 GB of memory. On the whole, there
are about 332 million parameters in our models.
It takes about 12 hours to train and evaluate our
models (2 epochs with batch size equal to 1). At
the same time, the peak of GPU usage is 23GB.

Appendix C. Dataset and Metrics

We show the statistics of the benchmark dataset in
Table 5. We only focus on the English tasks and use
the same data split policy as previous work (Wang
et al., 2022b), where all those tasks coming from
the same sources as the test set are excluded from
the training set (as shown in Table 5). However,
because no official development set is provided,
we randomly select 100 tasks from those excluded
tasks with a maximum of 100 instances per task,
as the development set used in our experiments.
Similarly, we follow Wang et al. (2022b) to use the
first 100 instances per testing task and randomly
choose 100 instances per training task.

As for the evaluation metrics, we follow Wang
et al. (2022b) utilizing ROUGE-L (Lin, 2004) and
EXACTMATCH (Rajpurkar et al., 2016) to evaluate
the cross-task generalization performance of the
text-to-text LMs. To be specific, the ROUGE-L re-
flects the string overlap between the answers and
the predictions, while EXACTMATCH measures the
ratio of the number of correctly predicted examples.
Both of these metrics are widely adopted by previ-
ous works (Rajpurkar et al., 2016; Poria et al., 2021;
Gu et al., 2023b). Since the EXACTMATCH cal-
culates the ratio of how many ground truth labels

10https://pypi.org/project/torch/
11https://github.com/huggingface/transformers/

releases

I: You are given two sentences and have to find if there is
entailment or agreement of the Hypothesis by the Premise.
[· · · ] Your task is to return “entails” if the premise supports
hypothesis else return “neutral”.
y: entails
TK-INSTRUCT ŷ: calorie
PICK&RANK ŷ: entails
I: Generate an appropriate title for the given text. The
generated title must be short and include the main topic of
the text. The preferred titles are under fifteen words.
y: Case Logic Laptop roller bag
TK-INSTRUCT ŷ: This bag is great for carrying laptop, HP
Printer, portable scanner, cables and supplies
PICK&RANK ŷ: bag for laptop
I: In this task, you are given two questions about a
domain. Your task is to combine the main subjects of the
questions to write a new, natural-sounding question. For
example, [· · · ].
y: Did this president go to college in the state he was born
in?
TK-INSTRUCT ŷ: this president
PICK&RANK ŷ: this president was born on the east coast?
I: Given a document, generate a short title of the
document. The title should convey the main idea/event/topic
about which the document is being written. Note that URLs
in the text have been replaced with [Link].
y: Dutch politician on trial on hate speech charges
TK-INSTRUCT ŷ: Geert Wilders
PICK&RANK ŷ: Geert Wilders is on trial for hate speech

Table 6: More cases. The crucial sentences are in blue.

are generated, it is similar to the accuracy score.
Thus, we report the EXACTMATCH score for those
classification tasks in Table 1. What’s more, we use
the same evaluation script as Wang et al. (2022b)
to compute these metrics.12

Appendix D. Baselines

As mentioned in Section 4, we implement four
baselines for a comprehensive comparison. As
follows, we provide detailed implementation infor-
mation. Worth noting that we tune all the hyper-
parameters of the baselines on the development set
or use the default settings reported by the original
paper.

SeqGAN It regards the generation as a sequen-
tial decision procedure and uses the Reinforcement
Learning (RL) rewards of an additional classifier
to optimize the generator. The original SeqGAN
is based on LSTM (Hochreiter and Schmidhuber,
1997). In order to fair compare with the other mod-
els, we change the backbone to T5-base. For train-
ing the SeqGAN, including the generator and clas-
sifier, we use the following steps: (1). Pre-training:
we first pre-train the T5-base on the benchmark
dataset as the generator, that is, we concatenate

12https://github.com/yizhongw/Tk-Instruct/blob/
main/src/compute_metrics.py
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the original definition with the task input (i.e., x)
and drive the model to predict the output (i.e., y).
As for the classifier, we use Hugging Face bert-
large-cased 13 to perform a sequence classification,
namely predicting the binary label (i.e., “0” or “1”)
by encoding the task definition and the (x, y) pair
produced by the generator; (2). Adversarial train-
ing: We follow Yu et al. (2017) training the gener-
ator and classifier alternately. Specifically, when
generating each token, we employ Monte Carlo
(MC) search to complete the whole sequence and
use policy gradient (Sutton et al., 1999) to optimize
the generator. After 20 steps of training on the
generator (batch size equals 4), we use the silver
answers predicted by the generator as the negative
examples to train the classifier. After adversarial
training the generator with 5 epochs, we then use it
to predict the instances of the unseen tasks in the
test set (i.e., ŷ). Meanwhile, these (x, ŷ) pairs can
also serve as examples for in-context learning (see
MetaICL for more details).

ReCross This is a retrieve-based method that uti-
lizes the unlabeled examples of an unseen task to
retrieve similar labeled examples from the train-
ing set. These retrieved examples can be further
used for retraining the model. Similarly, they can
also be used for in-context learning (i.e., MetaICL).
We follow the official implementation of Lin et al.
(2022).14 However, there are several differences
between the original algorithm and our usage: (1).
We use the concatenation of definition and task
input as the query and index for a fair compari-
son. We also believe the task definition can provide
valuable semantics for the retrieval procedure; (2).
Instead of using RoBERTa (Liu et al., 2019), we
train a Hugging Face bert-base-cased model as the
Reranker,15 which has relatively better results in
our experiments; (3). We use T5-base as the back-
end of ReCross.

MetaICL Following Min et al. (2022b) and
Wang et al. (2022b), we use task definition and
two positive examples as instructions to train and
test the T5-base model. While the test set exam-
ples are those silver examples produced by Seq-
GAN and ReCross, namely MetaICL (SeqGAN)
and MetaICL (ReCross). All the other hyper-
parameters are the same as what we use in the
TK-INSTRUCT.

13https://huggingface.co/bert-large-cased
14https://inklab.usc.edu/ReCross/
15https://huggingface.co/bert-base-cased

TK-INSTRUCT We use the official code and
hyper-parameters of Wang et al. (2022b).16 The
only difference is that we use T5-base instead of
T5-3B reported in their paper, due to the limited
computational resources. It is also worth noting
that the original Tk-INSTRUCT is trained with pos-
itive demonstrations as additional instructions; in
this paper, we solely use the task definition as the
instruction of Tk-INSTRUCT to ensure a fair com-
parison.

ChatGPT & GPT-4 For LLMs’ performances,
we use the scores reported by Lou et al. (2024) in
Table 1, where they concatenate the task instruction
with input as a whole query of APIs. Please refer
to Lou et al. (2024) for more details.

Appendix E. More Cases

We display more intuitive cases in Table 6.

Appendix F. Limitations

In this section, we summarize several limitations
and broader impacts of this paper. (1) As men-
tioned in Section 4, one limitation of this paper is
that our approach is still difficult to fully encode
the crucial information in the definitions, even if
they are well highlighted, such as the negation ex-
presses. Potential solutions include adopting an ad-
ditional weighting strategy on the decisions of the
pointer networks (See et al., 2017), adding a soft
fusion mechanism in the LMs (Gao et al., 2021;
Tian et al., 2022), or proposing an automatic in-
struction reframing technology (Khashabi et al.,
2022). (2) Meanwhile, since the task definition
is usually a paragraph consisting of several sen-
tences, this paper mainly focuses on detecting cru-
cial sentence-level information. However, in some
cases, task-relevant information should be better
represented in a word-level or span-level format,
such as the output space. Therefore, our strategy
can be further improved by using a hybrid-level
pointer to satisfy the diverse real-world scenarios.
(3) Another potential future investigation is to ana-
lyze how LMs utilize the highlighted information
in the instructions through human intuition, such
as visualizing the multi-head attention score distri-
bution of the transformers (Ma et al., 2021b,a), or
probing the conflict between the in-context instruc-
tion and model’s parametric knowledge (Xie et al.,
2023). We leave them as our future work.

16https://github.com/yizhongw/Tk-Instruct
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