Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts

Mohsen Mesgar, Sharid Loáiciga (Editors)


Anthology ID:
2024.eacl-tutorials
Month:
March
Year:
2024
Address:
St. Julian’s, Malta
Venue:
EACL
SIG:
Publisher:
Association for Computational Linguistics
URL:
https://aclanthology.org/2024.eacl-tutorials/
DOI:
Bib Export formats:
BibTeX MODS XML EndNote
PDF:
https://aclanthology.org/2024.eacl-tutorials.pdf

pdf bib
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts
Mohsen Mesgar | Sharid Loáiciga

pdf bib
Computational modeling of semantic change
Pierluigi Cassotti | Francesco Periti | Stefano De Pascale | Haim Dubossarsky | Nina Tahmasebi

Languages change constantly over time, influenced by social, technological, cultural and political factors that affect how people express themselves. In particular, words can undergo the process of semantic change, which can be subtle and significantly impact the interpretation of texts. For example, the word terrific used to mean ‘causing terror’ and was as such synonymous to terrifying. Nowadays, speakers use the word in the sense of ‘excessive’ and even ‘amazing’. In Historical Linguistics, tools and methods have been developed to analyse this phenomenon, including systematic categorisations of the types of change, the causes and the mechanisms underlying the different types of change. However, traditional linguistic methods, while informative, are often based on small, carefully curated samples. Thanks to the availability of both large diachronic corpora, the computational means to model word meaning unsupervised, and evaluation benchmarks, we are seeing an increasing interest in the computational modelling of semantic change. This is evidenced by the increasing number of publications in this new domain as well as the organisation of initiatives and events related to this topic, such as four editions of the International Workshop on Computational Approaches to Historical Language Change LChange1, and several evaluation campaigns (Schlechtweg et al., 2020a; Basile et al., 2020b; Kutuzov et al.; Zamora-Reina et al., 2022).

pdf bib
Item Response Theory for Natural Language Processing
John P. Lalor | Pedro Rodriguez | João Sedoc | Jose Hernandez-Orallo

This tutorial will introduce the NLP community to Item Response Theory (IRT; Baker 2001). IRT is a method from the field of psychometrics for model and dataset assessment. IRT has been used for decades to build test sets for human subjects and estimate latent characteristics of dataset examples. Recently, there has been an uptick in work applying IRT to tasks in NLP. It is our goal to introduce the wider NLP community to IRT and show its benefits for a number of NLP tasks. From this tutorial, we hope to encourage wider adoption of IRT among NLP researchers.

pdf bib
Language + Molecules
Carl Edwards | Qingyun Wang | Heng Ji

Climate change, access to food and water, pandemics–the world faces an enormous number of problems in the coming decades on scales of complexity never-before-seen. To address these issues, development of scientific solutions which are scalable, flexible, and inexpensive are critical. Over the last couple years, considerable interest has arisen for applying natural language-driven solutions to these problems. Particularly, the chemistry field is posed to be substantially accelerated by language+molecule models. This tutorial is designed to provide an introduction to this area of research. It requires no knowledge outside mainstream NLP, and it will enable participants to begin exploring relevant research. By discussing cutting-edge work, we will highlight the key roles language can fill for 1) abstract, compositional control of generative models, 2) bridging different biochemical modalities, 3) planning experimental procedures, and 4) broadening access to computational approaches. Beyond this, language models have also seen considerable success when applied to proteins or molecule structures, which can be considered as ‘exotic’ languages, and computational linguistics researchers’ expertise can be highly valuable for these impactful, possibly life-saving tasks.

pdf bib
Transformer-specific Interpretability
Hosein Mohebbi | Jaap Jumelet | Michael Hanna | Afra Alishahi | Willem Zuidema

Transformers have emerged as dominant play- ers in various scientific fields, especially NLP. However, their inner workings, like many other neural networks, remain opaque. In spite of the widespread use of model-agnostic interpretability techniques, including gradient-based and occlusion-based, their shortcomings are becoming increasingly apparent for Transformer interpretation, making the field of interpretability more demanding today. In this tutorial, we will present Transformer-specific interpretability methods, a new trending approach, that make use of specific features of the Transformer architecture and are deemed more promising for understanding Transformer-based models. We start by discussing the potential pitfalls and misleading results model-agnostic approaches may produce when interpreting Transformers. Next, we discuss Transformer-specific methods, including those designed to quantify context- mixing interactions among all input pairs (as the fundamental property of the Transformer architecture) and those that combine causal methods with low-level Transformer analysis to identify particular subnetworks within a model that are responsible for specific tasks. By the end of the tutorial, we hope participants will understand the advantages (as well as current limitations) of Transformer-specific interpretability methods, along with how these can be applied to their own research.

pdf bib
LLMs for Low Resource Languages in Multilingual, Multimodal and Dialectal Settings
Firoj Alam | Shammur Absar Chowdhury | Sabri Boughorbel | Maram Hasanain

The recent breakthroughs in Artificial Intelligence (AI) can be attributed to the remarkable performance of Large Language Models (LLMs) across a spectrum of research areas (e.g., machine translation, question-answering, automatic speech recognition, text-to-speech generation) and application domains (e.g., business, law, healthcare, education, and psychology). The success of these LLMs largely de- pends on specific training techniques, most notably instruction tuning, RLHF, and subsequent prompting to achieve the desired output. As the development of such LLMs continues to increase in both closed and open settings, evaluation has become crucial for understanding their generalization capabilities across different tasks, modalities, languages, and dialects. This evaluation process is tightly coupled with prompting, which plays a key role in obtain- ing better outputs. There has been attempts to evaluate such models focusing on diverse tasks, languages, and dialects, which suggests that the capabilities of LLMs are still limited to medium-to-low-resource languages due to the lack of representative datasets. The tutorial offers an overview of this emerging research area. We explore the capabilities of LLMs in terms of their performance, zero- and few-shot settings, fine-tuning, instructions tuning, and close vs. open models with a special emphasis on low-resource settings. In addition to LLMs for standard NLP tasks, we will focus on speech and multimodality.