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Abstract

Transformers have emerged as dominant play-
ers in various scientific fields, especially NLP.
However, their inner workings, like many other
neural networks, remain opaque. In spite of the
widespread use of model-agnostic interpretabil-
ity techniques, including gradient-based and
occlusion-based, their shortcomings are becom-
ing increasingly apparent for Transformer in-
terpretation, making the field of interpretability
more demanding today. In this tutorial, we will
present Transformer-specific interpretability
methods, a new trending approach, that make
use of specific features of the Transformer ar-
chitecture and are deemed more promising for
understanding Transformer-based models. We
start by discussing the potential pitfalls and
misleading results model-agnostic approaches
may produce when interpreting Transformers.
Next, we discuss Transformer-specific methods,
including those designed to quantify context-
mixing interactions among all input pairs (as
the fundamental property of the Transformer
architecture) and those that combine causal
methods with low-level Transformer analysis to
identify particular subnetworks within a model
that are responsible for specific tasks. By the
end of the tutorial, we hope participants will un-
derstand the advantages (as well as current limi-
tations) of Transformer-specific interpretability
methods, along with how these can be applied
to their own research.

1 Tutorial Description

With Transformers (Vaswani et al., 2017) demon-
strating exceptional performance across every do-
main they venture into such as language, speech,
vision, and music, the necessity to understand
their underlying mechanisms has become more cru-
cial than ever before. Many model-agnostic inter-
pretability techniques that were commonly used for
earlier generations of deep learning architectures,
such as probing, occlusion-based, and feature attri-
bution methods, were swiftly adapted for use with

the Transformer architecture. However, these ap-
proaches demonstrate notable disagreement with
each other and a lack of stability when moving
from one domain to another (Neely et al., 2022;
Pruthi et al., 2020; Krishna et al., 2022). Their
effectiveness in drawing reliable conclusions has
therefore been an ongoing matter of debate (Bibal
et al., 2022).

Recently, a game-changing trend has emerged:
the development of analysis methods that are pre-
cisely tailored to the model architecture of Trans-
formers, built upon their underlying mathematical
foundations. These methods make use of specific
features of Transformers, including their layered
structure (layers, heads, tokens), the division of la-
bor between the attention mechanism, feed-forward
layers, and residual streams. These techniques span
from those aimed at measuring token-to-token in-
teractions (known as context mixing, Brunner et al.,
2020; Kobayashi et al., 2020, 2021; Ferrando et al.,
2022b; Mohebbi et al., 2023b,a), to others striving
to reverse engineer the model decision and decom-
pose it into understandable pieces (known as mech-
anistic interpretability, Wang et al., 2023; Elhage
et al., 2021).

This tutorial focuses on Transformer-specific in-
terpretability methods. We will first briefly review
the internal structure of the Transformer architec-
ture to establish our notations. Next, we will ex-
plain why it is necessary to design methods tai-
lored to the model architecture, exposing the lim-
itations of model-agnostic approaches when ap-
plied to Transformer analysis using practical exam-
ples. Subsequently, we will introduce Transformer-
specific techniques, delving into their mathematics,
and categorizing them according to their purposes,
using experimental results across a number of do-
mains, such as text, speech, and music, as well
as across several languages. Our tutorial will con-
clude with a discussion on current limitations in
interpretability and promising future directions.
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2 Tutorial Type

The tutorial will be cutting-edge, covering the lat-
est research advancements in the interpretability of
Transformers, which serve as the backbone archi-
tecture of modern NLP systems.

The only ACL tutorials similar to ours are "Inter-
pretability and Analysis in Neural NLP" (Belinkov
et al., 2020) and "Fine-grained Interpretation and
Causation Analysis in Deep NLP Models" (Saj-
jad et al., 2021), held at ACL 2020 and NAACL
2021, respectively. Both focused on general model-
agnostic interpretability techniques. Our tutorial,
however, will question the effectiveness of those
general-purpose analysis methods and mark the
next chapter: a transition from model-agnostic ap-
proaches to Transformer-specific methods.

3 Target Audience

Given the widespread use of Transformers across
various applications in both text and speech, we
expect that our audience will be not only folks en-
gaged in interpretability but also those from various
tracks within the Computational Linguistics com-
munity who have not kept up with the recent ad-
vancements within interpretability research. In fact,
we have been frequently asked at *ACL confer-
ences and our industry meetings, particularly by in-
dividuals outside of the interpretability track, seek-
ing guidance on the most effective interpretabil-
ity techniques to employ in their projects for non-
interpretability purposes, such as training monitor-
ing, model compression, or model tuning.

In terms of expected prerequisite background,
we expect audience members to be familiar with
the basic concepts of Transformer models. For the
Jupyter notebooks that will be covered, we expect
experience with PyTorch and the Transformers
library.

4 Outline of Tutorial Structure

The tutorial will consist of 30 minute slots of lec-
tures and interactive seminars for which we will
provide Jupyter notebooks. A small part of the tu-
torial will be focused on interpretability techniques
from the organisers (e.g. Abnar and Zuidema, 2020
and Mohebbi et al., 2023b), but the majority of the
work discussed will be work from other labs to pro-
vide an honest and broad overview of the current
state of interpretability research in NLP.

1. 30 minute lecture on model-agnostic inter-
pretability:

• Introduction
• Model-agnostic approaches: probing,

feature attributions, behavioral studies
• How are model-agnostic approaches

adapted to Transformers? What are their
limitations?

2. 30 minute lecture on interpretation of atten-
tion and context mixing:

• Attention analysis (Clark et al., 2019) as
a straightforward starting point for mea-
suring context mixing.

• Limitations of interpreting raw attention
scores (Bibal et al., 2022; Hassid et al.,
2022)

• Effective attention scores: rollout (Ab-
nar and Zuidema, 2020), HTA (Brun-
ner et al., 2020), LRP-based attention
(Chefer et al., 2020).

• Expanding the scope of context mix-
ing analysis by incorporating other
model components: Attention-Norm
(Kobayashi et al., 2020, 2021, 2023),
GlobEnc (Modarressi et al., 2022), ALTI
(Ferrando et al., 2022b,a), Value Zero-
ing (Mohebbi et al., 2023b), DecompX
(Modarressi et al., 2023).

3. 30 minute interactive tutorial on interpreting
context mixing: Jupyter notebooks will be
provided (via Google Colab) and can be run
interactively while the presenters go through
it.

4. Coffee break

5. 30 minute lecture on mechanistic and
causality-based interpretability:

• Basics of mechanistic interpretability:
the residual stream and computational
graph views of models, and the circuits
framework (Olah et al., 2020; Elhage
et al., 2021; Hanna et al., 2023).

• Finding circuit structure using causal in-
terventions (Vig et al., 2020; Geiger et al.,
2021; Wang et al., 2023; Goldowsky-Dill
et al., 2023; Conmy et al., 2023; Nanda,
2023; Syed et al., 2023).
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• Assigning semantics to circuit compo-
nents: the logit lens (Nostalgebrist, 2020;
Geva et al., 2021), concept erasure (Bel-
rose et al., 2023), and (potentially) pol-
ysemanticity and superposition (Elhage
et al., 2022).

6. 30 minute interactive tutorial mechanistic in-
terpretability in NLP, notebooks will again be
provided.

7. 30 minute slot for discussion, reflection and
future outlook: what are open questions in
interpretability, what’s next, and what’s lack-
ing?

5 Reading List

In addition to the key papers mentioned in Sec-
tion 4, we would recommend attendees that are in-
terested in gaining a broader understanding of gen-
eral interpretability techniques to explore the fol-
lowing survey papers: (Belinkov and Glass, 2019;
Madsen et al., 2021; Raukur et al., 2022; Lyu et al.,
2022)

6 Special Requirements

There are no special technical requirements, other
than standard conference equipment (computer,
screen, and projector). If participants wish to par-
ticipate in the interactive parts, they should bring
their laptops.

7 Diversity

Our tutorial focuses on Transformer-specific in-
terpretability across several domains, including
text, speech, music, (and vision, to some extent).
As Transformers have gained widespread adoption
within the CL community, we anticipate engaging a
diverse and extensive audience. To ensure diversity,
we have both professors and PhD students on our
instructor team.

8 Tutorial Instructors

Hosein Mohebbi is a PhD candidate at Tilburg
University. He is part of the InDeep consortium
project, doing research on the interpretability of
deep neural models for both text and speech. Dur-
ing his Master’s, his research revolved around the
interpretation of pre-trained language models and
the utilization of interpretability techniques to ac-
celerate their inference time. His research has been

published in leading NLP venues such as ACL,
EACL, EMNLP, and BlackboxNLP, where he also
regularly serves as a reviewer. He is also one of the
organizers of BlackboxNLP 2023-2024, a work-
shop focusing on analyzing and interpreting neural
networks for NLP.

Jaap Jumelet is a PhD candidate at the Insti-
tute for Logic, Language and Computation at the
University of Amsterdam. His research focuses
on gaining an understanding of how neural mod-
els are able to build up hierarchical representa-
tions of their input, by leveraging hypotheses from
(psycho-)linguistics. His research has been pub-
lished at leading NLP venues, including TACL,
ACL, and CoNLL. He is a co-organiser for Black-
boxNLP in 2023-2024. He has been involved in
numerous courses in the AI Master of the Univer-
sity of Amsterdam, all with a focus on NLP and
interpretability.

Michael Hanna is a PhD candidate at the Univer-
sity of Amsterdam, as part of the Institute for Logic,
Language and Computation. His research focuses
on understanding the abilities of pre-trained lan-
guage models, and linking these behaviors to low-
level mechanisms using causal methods. His work
has been published in leading interpretability and
NLP venues such as NeurIPS, EMNLP, and EACL.
He previously designed and led a workshop on
mechanistic interpretability as part of the Univer-
sity of Amsterdam’s artificial intelligence masters
program.

Afra Alishahi is an Associate Professor at the
Department of Cognitive Science and Artificial In-
telligence at Tilburg University, Netherlands. Her
main research interests are developing computa-
tional models of human language, studying the
emergence of linguistic structure in grounded mod-
els of language learning, and developing tools and
techniques for analyzing linguistic representations
in neural models of language. She has served as
program chair for CoNLL and as AC and SAC
for many recent CL conferences, and is one of the
founders of the BlackboxNLP workshops. She has
acted as ACL tutorial co-chair and taught tutorials
at ACL and ESSLII; most recently she offered a
tutorial on Interpretability of linguistic knowledge
in neural language models as part of Lectures on
Computational Linguistics in Pisa, Italy.
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Willem Zuidema is Associate Professor of NLP,
Explainable AI and Cognitive Modelling at the Uni-
versity of Amsterdam. He has published widely in
NLP, AI and Cognitive Science venues, including
TACL, JAIR, ACL, EMNLP and NeurIPS. Since
2016, many of his publications have focused on in-
terpretability in AI. He has taught many undergrad-
uate and graduate courses (including Interpretabil-
ity and Explainability in AI in Amsterdams’s MSc
AI, 2022, 2023), and two courses at graduate sum-
merschools (ESSLLI 2008, 2015). He leads a
project on interpretability that involves 5 universi-
ties (‘InDeep’, 2021-2026). He has served on many
program committees, including ACL, NAACL,
EMNLP, BlackboxNLP, and helped organize work-
shops and conferences; in 2016, he was tutorial
co-chair for ACL.
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