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Abstract

The recent breakthroughs in Artificial Intel-
ligence (AI) can be attributed to the remark-
able performance of Large Language Models
(LLMs) across a spectrum of research areas
(e.g., machine translation, question-answering,
automatic speech recognition, text-to-speech
generation) and application domains (e.g., busi-
ness, law, healthcare, education, and psychol-
ogy). The success of these LLMs largely de-
pends on specific training techniques, most no-
tably instruction tuning, RLHF, and subsequent
prompting to achieve the desired output. As
the development of such LLMs continues to
increase in both closed and open settings, eval-
uation has become crucial for understanding
their generalization capabilities across differ-
ent tasks, modalities, languages, and dialects.
This evaluation process is tightly coupled with
prompting, which plays a key role in obtain-
ing better outputs. There has been attempts
to evaluate such models focusing on diverse
tasks, languages, and dialects, which suggests
that the capabilities of LLMs are still limited
to medium-to-low-resource languages due to
the lack of representative datasets. The tutorial
offers an overview of this emerging research
area. We explore the capabilities of LLMs in
terms of their performance, zero- and few-shot
settings, fine-tuning, instructions tuning, and
close vs. open models with a special emphasis
on low-resource settings. In addition to LLMs
for standard NLP tasks, we will focus on speech
and multimodality.1

1 Tutorial Content Description

Large Language Models (LLMs) are prominent ex-
amples of Foundation Models (FMs), based on the
Transformer network architecture (Vaswani et al.,
2017). Trained to predict the subsequent token in
a sequence, LLMs capture implicit and intricate

1The content of the tutorial will be available at the follow-
ing website: https://llm-low-resource-lang.github.
io/.

information contained in the data. Moreover, when
created using multilingual training data, the mod-
els capture linguistic nuances, phonological pat-
terns, and semantic relationships across languages,
strengthening its multilingual capabilities. How-
ever, understanding how their capabilities general-
ize across tasks and languages requires a systematic
evaluation approach.

1.1 Benchmarking LLMs for different tasks
and languages

The HELM project (Liang et al., 2022) assessed
English LLMs across various metrics and scenar-
ios. BIG-Bench (Srivastava et al., 2022) introduced
a large-scale evaluation with 214 tasks, consid-
ering low-resource languages as well. Other ef-
forts included evaluations of ChatGPT, GPT2.5,
BLOOMZ, and OpenAI GPT as in Bang et al.
(2023); Ahuja et al. (2023); Hendy et al. (2023);
Abdelali et al. (2023); Scao et al. (2022).

For speech, OpenAI’s Whisper (Radford et al.,
2022), Google’s USM (Zhang et al., 2023), and
other speech models are explored by the speech
community. They are general-purpose speech mod-
els with multilingual capabilities, designed for
speech recognition (ASR) and other tasks. The
benchmarking efforts include Speech Processing
Universal PERformance Benchmark (SUPERB)
initiative (Yang et al., 2021) which includes a col-
lection of benchmarking tools, resources, and a
leader board for 10 tasks from six domains.

1.2 LLMs and lower-resources languages

These LLMs have been trained on datasets from
the internet, ingesting many resources in different
languages. For close models (e.g., ChatGPT) the
coverage and the distribution of the content for
medium-to-low-resource languages are unknown.
Most of the open-sourced models uses common-
crawl dataset, which is skewed for many languages.
For example, Bloom, that is trained on 46 natural
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languages and 13 programming languages 2, has
only 4.6%, 0.02% and 0.70% language coverage
for Arabic, Swahili and Hindi respectively (Scao
et al., 2022).

With models trained on such distribution of
data, this raises questions on their capabilities on
medium-to-low-resource languages in a variety of
language processing tasks. To understand the capa-
bilities of LLMs, there has been several research
efforts. Bang et al. (2023) reports that ChatGPT
fails to generalize to low and extremely low re-
sources languages (e.g., Marathi, Sundanese, and
Buginese). Lai et al. (2023) reports that ChatGPT
generally performs better for English than other
languages. Ahuja et al. (2023) evaluate 8 differ-
ent tasks with 33 languages and report that LLMs
perform better on high-resource languages and lan-
guages that are in Latin scripts. In our work for Ara-
bic, we evaluate ChatGPT on 33 tasks, 59 datasets
with 96 test setups using zero-shot setting. Perfor-
mances are significantly lower on 88 test setups
(Abdelali et al., 2023). This study also focused on
tasks covering different Arabic dialects and reports
that models perform comparably for MSA than
other dialects such as Egyptian, Gulf, Levantine,
and Maghrebi.

In the realm of speech technology, OpenAI’s
recent Whisper model has demonstrated that the
performance in low-resource languages is still rel-
atively poor, a trend that correlates with the size
of the pre-training dataset. Subsequently, Google’s
USM models have shown further improvements in
performance, achieving an average word error rate
(WER) of less than 30% across 73 languages.

1.3 Multimodality

Along side with NLP, speech, and multimodal gen-
erative models have also emerged (Liu et al., 2023a;
Zhu et al., 2023a; OpenAI, 2023a). ChatGPT has
demonstrated multi-modal abilities on variety of
tasks. Following that, Zhu et al. (2023a) developed
MiniGPT-4, which is trained by combining Vicuna
(Chiang et al., 2023) and Blip-2 (Li et al., 2023).
Recently, OpenAI, Google, and Meta released GPT-
4 Vision (OpenAI, 2023b), Gemini (Team et al.,
2023), and AnyMAL (Moon et al., 2023), respec-
tively, each focusing on multimodal aspects. The
idea of the these attempts was to train a model
by aligning visual information from a pre-trained
vision encoder with an LLM. Though their capa-

2https://huggingface.co/bigscience/bloom

bilities have not been widely studied across tasks
and languages, it is important to explore and un-
derstand their capabilities that can enhance future
studies.

1.4 Dialects
In our study for Arabic (Abdelali et al., 2023), we
observed that the gaps in LLMs’ performance be-
tween MSA and dialectal datasets (e.g., for ma-
chine translation (MT) and speech recognition task)
are more pronounced, indicating ineffectiveness of
LLMs for under-represented dialects. For example,
in both the GPT-models, we noticed a large discrep-
ancy in the POS accuracy of 0.810 versus 0.379
on MSA and dialects respectively. Similarly, for
Arabic dialect identification tasks (ADI) we notice
a significant difference between the SOTA acoustic
and lexical model with respect to LLMs results.

1.5 Prompting for LLMs
Prompt design plays a critical role in influenc-
ing the performance of Large Language Models
(LLMs), as evidenced in (Reynolds and McDonell,
2021; Dong et al., 2022). These models are highly
sensitive to minor variations in the prompts, such
as word choice and the order of examples in few-
shot settings. Ahuja et al. (2023) have investigated
various monolingual and multilingual prompts, dis-
covering that English-language templates gener-
ally outperform those in native languages. The
performance of a task also depends on native and
non-native language prompts. In our study focus-
ing on Arabic (Abdelali et al., 2023) and Bangla
(Hasan et al., 2023), we have found that perfor-
mance can vary considerably depending on whether
the prompts are in a native or non-native language.
This variability is observed in both zero-shot and
few-shot settings. Another point of interest in few-
shot settings is the method used for selecting shots
and arranging them in a reasonable order. Various
approaches have been reported, such as random
selection (Khondaker et al., 2023), class-based se-
lection (e.g., Liang et al. (2022) selected examples
to ensure class coverage in classification tasks),
and Maximal Marginal Relevance-based (MMR)
selection (Carbonell and Goldstein, 1998).

1.6 What this tutorial offers
Here, we provide an overview of the capabilities
of LLMs for diverse tasks, languages, dialects, and
modalities, including text, speech, and multimodal-
ity. We start with an introduction to LLMs, includ-
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ing a brief history and their significant capabilities
in downstream tasks. This is followed by an in-
depth examination of various LLMs developed for
NLP, speech, and multimodal applications, empha-
sizing their utility across different tasks.

In the third part of the tutorial, we delve into the
intricacies of prompting, which serves as a foun-
dational element for obtaining output from these
LLMs. In this part, we will also include a hands-on
demonstration of tools that have been developed
to further facilitate research on LLMs. The fourth
part of the tutorial will focus on a more compre-
hensive discussion about low-resource languages,
addressing both the challenges they present and fu-
ture directions for research. Finally, we will discuss
hallucination, bias, toxicity, and computational re-
sources needed for model training and inference.
An outline of the tutorial is reported in Section 3.

2 Type of the Tutorial

The tutorial is both introductory, covering a num-
ber of topics related to the capabilities of LLMs,
but it is also cutting-edge, covering some latest de-
velopments in these areas. Attendees will have an
overview of tasks, languages, dialects and modal-
ities related to LLMs, which will put them up
to speed to do research in the area. The tutorial
targets anyone interested in employing LLMs for
NLP, speech and multimodal tasks. We believe
researchers working on lower-resource languages
will be especially interested. We expect the audi-
ence to have intermediate machine learning knowl-
edge.

3 Outline of the Tutorial

Below, we offer an outline of the tutorial. More
information and materials will is available online
on the tutorial website upon the tutorial acceptance.

3.1 Introduction [30 min]

(i) LLMs

(a) A brief history of LLMs
(b) Capabilities in downstream NLP, speech,

and multimodal tasks

References: (Mielke et al., 2021; Sennrich et al.,
2016; Wu et al., 2016; Kudo and Richardson, 2018;
Radford et al., 2019; Devlin et al., 2019; Liu et al.,
2019; Lewis et al., 2020)

3.2 Models and their capabilities for
low-resource languages [30 min]

The following are just a few examples of models.
They will not be the only ones covered in the tuto-
rial.

(i) Models for NLP tasks

(a) GPT 3.5 (ChatGPT), GPT-4
(b) Bloom, LLaMA, mT5, Flan, PaLM

(ii) Models for Speech tasks

(a) USM
(b) Whisper

(iii) Models for Multimodality

(a) Closed models: GPT-4 Vision, Gemini
(b) Open Models: MiniGPT, LLaVA

References: (Brown et al., 2020; Liu et al., 2023a;
Xue et al., 2020; Scao et al., 2022; Touvron et al.,
2023; Zhu et al., 2023a)

3.3 Prompt Engineering [50 min]
(i) Zero-shot

(ii) Few-shots and selection methods

(iii) Prompt templates

(iv) Mono/Cross lingual prompting

(v) Prompt programming

(vi) Tools and resources (e.g., LLMeBench (Dalvi
et al., 2023), OpenICL (Wu et al., 2023),
PromptBench (Zhu et al., 2023b)) and lm-
evaluation-harness (Gao et al., 2023).

References: (Wei et al., 2021; Zhang et al., 2022;
Reynolds and McDonell, 2021)

3.4 Limitations and Challenges for
low-resource settings [50 min]

(i) Multitask, multilingual, multimodal evalua-
tion for low-resource languages

(ii) Multi-dialects challenges

(iii) Summary of recent benchmarking efforts
References: (Ahuja et al., 2023; Liang et al., 2022;
Srivastava et al., 2022; Bang et al., 2023; Ahuja
et al., 2023; Hendy et al., 2023; Yang et al., 2021;
Radford et al., 2022; Zhang et al., 2023; Abdelali
et al., 2023; Bang et al., 2023; Bubeck et al., 2023)

3.5 Other Related Aspects [30 min]
(i) Hallucination

(ii) Bias, Toxicity and Misinformation in LLMs

(iii) Computational Resources, Carbon footprint
References: (Bang et al., 2023)

29



4 Prerequisites

We expect attendees to be equipped with basic
knowledge of machine learning, including familiar-
ity with recent neural network architectures, partic-
ularly Transformers, and an understanding of pre-
trained language models. Additionally, attendees
should be familiar with standard NLP tasks such
as text classification, natural language generation,
and question answering.

5 Reading List

In addition to the references cited in Section 3, we
recommend several surveys: an overview of LLMs
(Zhao et al., 2023), prompt engineering (Liu et al.,
2023b; Gu et al., 2023), in-context learning (Dong
et al., 2022), and evaluation of LLMs (Liang et al.,
2022).

6 Tutorial Instructors

Firoj Alam is a Scientist at the Qatar Comput-
ing Research Institute (QCRI), HBKU. He re-
ceived his PhD from the University of Trento, Italy,
and has been working for more than ten years
in Artificial Intelligence, Deep/machine learning,
Natural Language Processing, Social media con-
tent, Image Processing, and Conversation Analysis.
His current research interest includes LLMs, fact-
checking, multimodal propaganda detection in mul-
tiple languages. He previously presented tutorials
at WWW-2022 and WSDM-2022 on the topic of
“Fact-Checking, Fake News, Propaganda, And Me-
dia Bias”. He was a co-organizer of different shared
tasks CheckThat! 2020-2024 at CLEF, SemEval-
2021 task 6 (propaganda detection in memes),
SemEval-2024 task (multilingual detection of per-
suasion techniques in memes), WANLP (Arabic-
NLP) shared task (2022-2023) and the NLP4IF-
2021 shared task. He is also a co-organizer of
the BLP-2023 workshop (collocated with EMNLP-
2023).
Shammur Absar Chowdhury is a Scientist at
QCRI, HBKU. Her research interest includes de-
signing speech models, and interpretability for
atypical phenomena in conversation. Dr. Chowd-
hury authored more than 60 peer-reviewed publi-
cations in tier-top conferences and journals; and
actively contributed to the research community
by organizing shared tasks, challenges, and work-
shops like SemEval-2022 (Task 3), QASR-TTS-
v1.0 (ASRU2023), SLT2023 (Local Chair), sum-
mer workshop JSALT2022 (as a senior mentor)

along with serving in the program-committee of
top-tier conferences and special interest groups
(SIGs).
Sabri Boughorbel is a Scientist at QCRI, HBKU.
He received his PhD in Machine Learning from
the university of Paris Sud. He has an extensive
experience in Machine Learning for industrial and
academic research. He authored more than 70 peer-
reviewed papers and 7 patents. He was awarded
several grants in the intersection of machine learn-
ing and health. His current research is on lever-
aging open-sourced LLMs for low-resource lan-
guages and developing multi-modal language mod-
els. He serves as PC member of top-tier machine
learning conferences. In 2023, he co-organized a
workshop on AI for Medicine.
Maram Hasanain is a PostDoctoral researcher
at QCRI, HBKU. She received her PhD in Com-
puter Science from Qatar University. Her current
research interests are Arabic NLP, applied machine
learning, and LLMs. Maram co-authored over 25
peer-reviewed publications in top-tier conferences
and journals. She has been a co-organizer in the
CheckThat! lab at CLEF 2019-2021, 2023 and
2024. She was also a co-organizer of the Bro-
Dyn’18 workshop on analysis of broad dynamic
topics over social media co-located with ECIR’18.

7 Ethics Statement

Our tutorial is based on our own work in the area,
related studies and public sources. Credit will be
given wherever needed. Any biases are unintended.
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