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Abstract

Terminologically constrained machine
translation is a hot topic in the field of
neural machine translation. One major
way to categorize constrained translation
methods is to divide them into “hard”
constraints that are forced into the target
language sentence using a special decoding
algorithm, and “soft” constraints that are
included in the input given to the model.

We present a constrained translation
pipeline that combines soft and hard con-
straints while being completely model-
agnostic, i.e. our method can be used with
any NMT or LLM model. In the “soft” part,
we substitute the source language terms in
the input sentence for the backtranslations
of their target language equivalents. This
causes the source sentence to be more simi-
lar to the intended translation, thus making
it easier to translate for the model. In the
“hard” part, we use a novel nondeterminis-
tic finite state transducer-based (NDFST)
constraint recognition algorithm utilizing
flag diacritics to force the model to use the
desired target language terms.

We test our model with both Finnish–
English and English–Finnish real-world vo-
cabularies. We find that our methods consis-
tently improve the translation quality when
compared to previous constrained decod-
ing algorithms, while the improvement over
unconstrained translations depends on the
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familiarity of the model over the subject vo-
cabulary and the quality of the vocabulary.

1 Introduction

In this paper, we present Mitra, an end-to-end
pipeline for terminology-constrained translation
that combines a novel constrained beam search al-
gorithm with backtranslation substitution.

Terminology-constrained machine translation is
a popular topic in the field of machine translation,
and has been a focus of several shared tasks in the
WMT conference (Alam et al. 2021b; Semenov
et al. 2023). In constrained translation, the sys-
tem is given a lexicon, or a terminology, and it
must use the words given in this terminology when
translating sentences. While this was a trivial task
in phrase-based statistical (cf. Koehn et al. 2003)
and rule-based machine translation systems (cf.
Arnola 1996), implementing it for neural systems
has proved to be much more difficult due to their
black-box nature.

The existing methods can be divided into the
so called “hard” and “soft” constraints. Hard con-
straints use constrained decoding algorithms such
as constrained beam-search (Hokamp and Liu 2017;
Anderson et al. 2017), which first decides on the ac-
ceptable forms of constraints at the token level and
then forces the decoder of an NMT system to abide
by them. Soft methods, on the other hand, use a
neural network specifically trained for the purpose
of constrained translation, and the constraints can
be given to the encoder of the network as input (cf.
Bergmanis and Pinnis 2021). Both of these meth-
ods have their own advantages: hard constraints can
be enforced on any neural network without the need
to train or fine-tune anything, while soft constraints
are generally faster. Typically, hard constraints only
mandate that terms occur somewhere in the trans-
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lated sentence, while soft constraint approaches
allow an explicit coupling of the source and target
terms.

Implementing hard constraints for agglutinative
languages has several difficulties. Foremost, if a
term has multiple possible inflected forms, and the
correct form is not known beforehand, the con-
strained decoding algorithm must be given mul-
tiple alternative forms (Anderson et al. 2017), a fea-
ture not widely supported by many algorithms such
as Post and Vilar (2018); Hu et al. (2019). More-
over, the system must be able to generate these
alternative forms, requiring the use of language-
specific morphological generators, which might not
be available for all languages.

Another problem of hard constraints is that the
translation quality might be very poor if the ma-
chine translation model does not recognize the
constrained words, a situation which in our ex-
perience is very common as terminologies often
contain uncommon technical jargon, brand names,
and other terms not appearing in the training data.
In our specific case, we tested our method with
a vocabulary provided by the Finnish Forest Cen-
tre containing names of insects in Finnish and En-
glish (Metsäkeskus 2023). Many of the names have
surprising translations: for example, a “violet tan-
bark beetle” is called “papintappaja” in Finnish,
which means “priest-slayer” if translated literally. If
the translation model has not seen this term before,
it cannot correctly translate it without terminology
constraints. Even then, the model has a hard time
determining the correct location for the constraint
in the output sentence (cf. Hasler et al. 2018). See
Section 2.3 for more details of this problem.

We propose a combined method that tackles
both of the aforementioned problems. To support
heavily-inflected languages such as Finnish, we in-
troduce a “hard” finite-state automaton-based con-
straint recognition algorithm that can recognize
arbitrarily large disjunctive constraints. For the
problem of expressions that were not encountered
at training time, we propose a “soft” backtrans-
lation substitution algorithm that makes it possi-
ble to use terminology constraints even when the
neural network sees no connection between the
source-language term and the target-language term.
Both of these methods are integrated into an end-to-
end pipeline that takes source-language sentences
and lexicons as input and produces lexically con-
strained translations. We argue that the “hard” and

“soft” constraint methods complement each other
and work together as a whole greater than the sum
of its parts.

In this paper, we first describe existing con-
strained beam search algorithms (Section 2). We
then give an overview of our pipeline, including
detailed descriptions of the backtranslation and the
constraint recognition algorithms (Section 3). Fi-
nally, we evaluate these algorithms against the ex-
isting algorithms (Section 4).

2 Constrained Beam Search

“Hard” terminology constraints refer to phrases (i.e.
sequences of tokens) that are forced to appear in
an output sequence during beam search. While a
regular beam search compiles the list of new hy-
potheses by finding the most probable continua-
tions for the current hypotheses (Koehn 2009), a
constrained beam search algorithm additionally pro-
poses tokens in the constraints as possible continu-
ations (Hokamp and Liu 2017). Several algorithms
exist, differing mainly in beam allocation (i.e. how
much of the beam is reserved for hypotheses con-
taining constraints), and constraint recognition (i.e.
how they determine which constraints are fulfilled
and propose constraint tokens as continuations).

2.1 Existing Algorithms

Hokamp and Liu (2017) present an algorithm called
Grid Beam Search (GBS), which allocates C + 1
hypothesis banks in the beam, where C is the num-
ber of constraint tokens. Each hypothesis in bank
i ∈ [0, C] must have exactly i fulfilled constraint
tokens. Unlike all other algorithms inspected, they
do not allow backtracking, i.e. constraints that were
previously considered fulfilled can not become un-
fulfilled again: if a model begins generating a prefix
of a multi-token constraint, the hypothesis can only
be continued by generating the rest of the constraint.
In other words, hypotheses can only move upwards
in the banks or stay at the same level. This also
means that GBS does not require a constraint recog-
nition algorithm for detecting which constraints are
currently fulfilled in a hypothesis – it only needs to
remember which constraint tokens it has previously
generated, since those tokens will stay fulfilled.

Post and Vilar (2018) criticize GBS for its beam
allocation, as the number of hypotheses grows lin-
early with the number of constraints. They propose
a method called Dynamic Beam Allocation (DBA),
in which the beam size is constant, and the hypothe-
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Original sentence Metsäpaloregiimi summaa yhteen lähes kaikki metsäpaloihin vaikuttavat tekijät.
Greedy tracking The forest fire† forest fire regime brings together almost all the factors that

affect forest fires.
Exact tracking The forest fire regime brings together almost all the factors affecting forest fires.

Table 1: Having reached the point marked with †, greedy tracking accepts the constraint metsäpalo →forest fire and
discards the start of the constraint metsäpaloregiimi →forest fire regime. See also Appendix D.1.1.

Original sentence [. . . ] rajoittamaan ja supistamaan paloa rajoituslinjojen avulla.
Natural translation [. . . ] limit and reduce the fire by means of firebreaks.

Machine translation [. . . ] limit and reduce the firebreak by means limiting lines
Original sentence Raivaamalla tehtyjä rajoituslinjoja1 ovat palokuja2 ja palokäytävä3.

Natural translation Fire lines2 and fire alleys3 are firebreaks1 made by clearing.
Machine translation The firebreaks1 and fire alley3 are fire lines2 made by clearing.

Table 2: Examples of leaks and misplacements. In the first sentence, the model leaks the structure of “rajoituslinja” (lit. limiting
line). In the second sentence, the model exchanges the constraints, changing the meaning of the sentence.

ses are assigned to different numbers of fulfilled
constraints dynamically, making GPU memory opti-
mization easier. In addition, to enable backtracking,
they give a detailed description of a table-based
data structure used for constraint recognition. The
table contains information on which tokens are part
of multi-token constraints and which of them are
fulfilled. If the algorithm generates a token that is
not a continuation of the current constraint being
generated, it backtracks by marking the previously
generated tokens unfulfilled.

This algorithm is further improved by Hu et al.
(2019) who note that the constraint recognition al-
gorithm proposed by Post and Vilar is flawed, as it
cannot properly recognize overlapping constraints.
They propose a trie-based algorithm claimed to re-
solve these issues. They also detail a method that
allows sorting and selecting hypotheses completely
in the GPU memory, further decreasing the over-
head of the algorithm. Neither Post and Vilar (2018)
nor Hu et al. (2019) support disjunctive constraints
required by heavily-inflected languages, although
we note that either of the algorithms can be rela-
tively easily expanded to support them.

In addition to tables and tries, finite-state au-
tomata can be used to recognize fulfilled constraints
in a hypothesis (Anderson et al. 2017; Hasler et al.
2018). This approach also supports disjunctive con-
straints and multi-token constraints.

2.2 The Problem of Greediness
The constraint recognition algorithms proposed by
Post and Vilar (2018) and Hu et al. (2019) are
greedy, which allows them to operate in O(n) time.
While this is good for time complexity, it also

makes the algorithms incorrect: they cannot de-
tect some valid sequences that contain overlapping
constraints (see Table 1 for an example).

We assert that no greedy algorithm can detect all
valid sequences. Consider the following sequences:
abcde∗abcd and abcde∗cdeab, with the constraints
ab, cde, and abcd. ∗ represents a sequence of arbi-
trary tokens. Consider a greedy algorithm that has
processed the first five tokens (abcde), as shown
below:

abcde*
Interpretation 1: ab

cde
Interpretation 2: abcd

Due to greediness, the algorithm must pick one
of the two interpretations: the beginning of the
string contains the constraints ab and cde, or it con-
tains the constraint abcd. As the greedy algorithm
does not backtrack, the end of the string cannot be
taken into account. However, the correct interpreta-
tion depends on how the string ends. If the ending
is abcd, the first interpretation was correct. On the
other hand, if it is cdeab, the second interpretation
was. Thus, all greedy algorithms fail to detect at
least one of abcde ∗ abcd and abcde ∗ cdeab.

The finite-state automaton-based approach sug-
gested by Anderson et al. (2017) does not suffer
from greediness, but is, as presented, infeasible in
our use case: the number of hypotheses is 2C , grow-
ing exponentially as the number of constraints C is
increased.
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2.3 Rare and Obscure Terms

Our method tackles what we have termed obscure
terms. These are terms that are completely unpre-
dictable to the model being decoded, as they are lex-
ically surprising and have not been seen at training
time. We argue that the challenge posed by obscure
terms is fundamentally different from synonym se-
lection in constrained decoding: not only are we
willingly sampling along suboptimal paths, but we
also sometimes have to choose tokens that directly
contradict the analysis of the language model.

The nature-related lexica (Metsäkeskus 2022,
2023) we used during development and evaluation
were full of these obscure terms. The Forest Centre
terminologies contained such terms as “papintap-
paja” (violet tanbark beetle, lit. “priest-slayer”) and
“tukkimiehentäi” (large pine weevil, lit. “log-man’s
louse”). These target terms are very unexpected and
clearly unfamiliar to the model, as seen from the
low term accuracy of the unconstrained translation
model in our evaluation (see Section 4).

Obscure terms produced characteristic failures.
As the model evaluates all positions for a constraint
to be unlikely, it will often result in misplacements
as well as leaks where a part of the structure of a
source language constraint still made its way to the
translation. See Table 2 for an example of both.

3 The Mitra Pipeline

We designed our constrained translation pipeline
with three goals: 1) allowing a high number of dis-
junctive constraint alternatives to support highly
agglutinative languages such as Finnish, 2) fix the
problems caused by greediness in the previous con-
straint recognition algorithms, and 3) make con-
strained decoding a viable alternative even for rare
terms not present in the training data of the neural
network. The goals 1 and 2 are fulfilled by using
a custom finite-state automaton-based constraint
recognition algorithm, while goal 3 is fulfilled by a
backtranslation substitution algorithm.

The full end-to-end pipeline contains the follow-
ing components:

1. Term Recognition and Constraint Genera-
tion. A dependency parser is used to extract
the noun, verb, and adjectival phrases con-
tained in the input sentence. If any of the
phrases is found in the lexicon, all supported
inflected forms of the target-language term are
generated and added as a constraint.

2. Backtranslation Substitution. Each of the
target-language terms added as constraints is
translated back to the source language using
an NMT model trained on the same data as
the model used to perform the actual transla-
tion. The input sentence is modified so that the
recognized terms are replaced with the back-
translations, inflected and capitalized similarly
to the original terms.

3. Constrained Beam Search. A constrained
beam search is performed to translate the input
sentence to the target language.

We implement the pipeline for Finnish, Swedish,
and English in all language directions. As our
pipeline is agnostic to the NMT model itself, it can
be used with any model as long as the appropriate
language-specific modules have been implemented.

3.1 Term Recognition and Constraint
Generation

Term recognition refers to scanning the input sen-
tence and detecting all the phrases in the sentence
that also appear in the terminology. We provide a
phrase detection module for each of the supported
languages. Each of the modules first performs the
following high-level steps, although the specific
methods are highly language-dependent and not
within the scope of this paper.

1. Dependency parsing. We use the Stanford
Stanza Python package (Qi et al. 2020) for
English and Swedish, and the TranSmart de-
pendency parser (Nykänen 1996) for Finnish.

2. Phrase detection. We iterate the dependency
tree recursively and for each noun, adjective,
and verb, we construct a list of noun phrases,
adjectival phrases and verb phrases, respec-
tively, as explained in the next step.

3. Dependent selection. For each noun, we it-
erate all combinations of its adjectival depen-
dents (with the limit up to 6 adjectival depen-
dents). We assemble a list of these combina-
tions. For example, if the phrase is “young,
strong cat”, we would generate the combina-
tions “cat”, “young cat”, “strong cat”, and
“young, strong cat”. For Finnish, we also re-
turn parts of compound nouns. For adjectives
and verbs, we do not include any dependents,
and simply return a one-item list with the ad-
jective or verb itself.
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Recognized terms
and backtranslations

Original sentence Hosat ovat käteviä työkaluja. {hosa→ fire swatter}
Backtranslation Paloswatterit ovat käteviä työkaluja. {paloswatteri← fire swatter}
Translation Fire swatters are handy tools.
Original sentence The characteristics of the live fuel type are

defined mainly on the basis of the tree stand
and ground vegetation.

{live fuel type →
palokasvustotyyppi}

Backtranslation The characteristics of the type of fire growth
are defined mainly on the basis of the tree
stand and ground vegetation.

{type of fire growth ←
palokasvustotyyppi}

Translation Palokasvustotyypin ominaisuudet määritel-
lään pääasiassa puuston ja maakasvillisuuden
perusteella.

Table 3: Example of phrase detection and backtranslation substitution.

4. Lemmatization. We lemmatize each phrase
returned by the previous step. For Finnish
and Swedish, this includes taking into account
adjective-noun agreement: Finnish nouns
agree in case and number, Swedish nouns in
determinateness, gender and number.

After phrase detection, we compare the list of
phrases to the terminology and generate a list of
constraints. For each term, the disjunctive con-
straint has multiple alternatives corresponding to
the different inflectional forms of the term. Sim-
ilarly to above, we perform dependency parsing
for the target-language terms, and then inflect them
taking into account adjective-noun agreement. For
Finnish, we do not generate all the possible forms
due to their high number, instead we have a list of
the most common forms.

We use several open-source1 and proprietary2

language modules. Details of this step are not
within the scope of this paper.

3.2 Backtranslation Substitution

After phrase detection, we perform backtranslation
for all target language terms that have been added
as constraints by using a reverse-language NMT
model trained with the same dataset as the model
used for translation proper. In our experiments, we

1We use the Python packages stanza, pyvoikko (for
lemmatization of Finnish compound words), pyomorfi (for
inflecting Finnish verbs), taivutin (for inflecting Finnish
nominals), inflex (for inflecting English). For Swedish, we
use a proprietary statistical guesser based on the Saldo inflecto
(https://github.com/kielikone/saldo-infle
ctor).
2Mostly TranSmart pipeline components (Nykänen 1996)

use the Opus-MT Tatoeba Challenge models (Tiede-
mann 2020) which include models for both lan-
guage directions for most language pairs.

After producing the backtranslations, we ver-
ify that they improve the translation quality
by using the NMT model to calculate scores
for both (original term → target term) and
(backtranslation → target term) pairs. If the pair
with the backtranslation yields a better score, we
replace the original term in the source language sen-
tence with the backtranslation. We use dependency
parsing and the language-specific modules detailed
in the previous section to inflect the backtransla-
tion in the same form as the original term. We also
match the initial letter case.

An example of the backtranslation substitution
process is given in Table 3.

3.3 Constrained Beam Search
We use a constrained beam search algorithm very
similar to the one described by Post and Vilar
(2018). The details of our algorithm are presented
in Appendix A. The main differences to the pre-
vious algorithms are in our constraint recognition
algorithm, detailed in the following section.

3.4 Constraint Recognition during Beam
Search

For constraint recognition, we adapt a finite-state
automata (FSA)-based approach similar to Ander-
son et al. (2017). We note that while the method
used by Anderson et al. requires 2C hypotheses, a
different beam allocation strategy such as the one
used in Grid Beam Search (Hokamp and Liu 2017)
or Dynamic Beam Allocation (Post and Vilar 2018)
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q0 Constraint 1

Constraint 2

Constraint 3

*

@D.C1@:[C1]

@P.C1.1@:[/C1]

@D.C2@:[C2]

@P.C2.1@:[/C2]

@D.C3@:[C3]

@P.C3.1@:[/C3]

@R.C1.1@

@R.C2.1@

@R.C3.1@

Figure 1: The structure of the finite state transducer that can
recognize three constraints in any order. To reduce the size of
the transducer, we use flag diacritics (Beesley and Karttunen
2003, chapter 8). @D.f@ is a flag diacritic that succeeds
if f is undefined. @P.f.1@ is a flag diacritic that always
succeeds and sets f = 1. @R.f.1@ is a flag diacritic that
succeeds if f = 1. The nodes inside the constraints are not
included; they would form a trie matching to all alternatives
of that disjunctive constraint. The output of the transducer is
the input, with symbols added for marking starts ([C1]) and
ends ([/C1]) of constraints.

may also be used, which drops the beam size to
either O(C) or O(1), respectively. In these scenar-
ios, not every possible combination of constraints
is stored in the beam: only the ones with the high-
est scores. We use a non-deterministic FSA that
can track all possible interpretations at the same
time: the two interpretations that would have been
tracked in entirely different hypotheses in their so-
lution can be tracked with a single hypothesis in
our solution.

While the beam size can be limited to be lin-
ear with regard to the number of constraints, the
memory constraints of the finite-state automaton
cannot be. If the automaton is deterministic, its
size is O(2C) in the worst-case scenario3. If the au-
tomaton is non-deterministic, its size will be O(C),
but the number of simultaneous states might be
O(2Cmax |Ci,j |), i.e. in the worst case the number
of states grows exponentially with regard to the
number of constraints and their lengths. To miti-
gate this issue, we implement an optimization that
removes most of the simultaneous states when we
can safely determine that they recognize the same
set of strings. This optimization is detailed below,
after we have detailed the structure of the FSA.

3Since all possible combinations of recognized constraints
(2C ) must be represented.

Figure 1 has a graph of a finite-state transducer
that recognizes three constraints in any order. Since
the number of orderings the constraints can be in
is C!, we employ flag-diacritics (Beesley and Kart-
tunen 2003, chapter 8) to reduce the number of
nodes in the transducer. Flag diacritics behave like
epsilon edges, but can only be followed if a vari-
able, called a flag, is set to a specific value. In our
transducer, each constraint has its own flag. The
parts of the transducer matching to constraints are
fenced with the @D.f@ diacritics that succeed only
if the flag f is undefined, thus preventing the trans-
ducer recognizing any constraints more than one
time. After a constraint is fully recognized, the
@P.f.1@ diacritic is used to set the flag value to
1. The accepting node of the transducer is fenced
with diacritics of type @R.f.1@ that require that
the flag must be set to value 1.

The specific type of finite-state automata we use
is the finite-state transducer, in which each edge
can both consume an input symbol and output a
symbol (Beesley and Karttunen 2003). By using
a finite-state transducer instead of a regular finite-
state machine, we detect the beginnings and ends
of the constraints. The transducer outputs each in-
put symbol, and additionally provides a start token
(such as [C1]) and an end token (such as [/C1])
for each constraint. When we discuss “states” be-
low, we refer to (q,m) pairs, in which q is a node
in the finite-state machine, and m is the sequence
of output symbols produced.

Since the transducer is non-deterministic, the
number of parallel states can grow exponentially.
For example, if there are C constraints and all of
them are present in the input string, in the end there
will be at least 2C simultaneous states: one in which
none of the constraints matched, one in which all
of them matched, and all the possible combinations
in between. To prevent this, we remove some of
the states between each iteration based on the fol-
lowing condition: if two states S1 and S2 are both
in q0 (the initial state as in Figure 1), and the set of
fulfilled constraints in the output of S1 is a proper
subset of fulfilled constraints in S2, the state S1

is removed. The proof that this does not change
the set of strings that are accepted by the FSA is
included in Appendix B. This optimization makes
the finite-state automaton computationally feasible
on the real-world data we used.

The finite-state machines were implemented us-
ing the kfst Python package.
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Configuration Name Decoding Algorithm Constraint Recognition Backtranslations
Mitra-FB CBS NDFST Yes
Mitra-TB CBS Trie Yes
Mitra-F CBS NDFST No
Mitra-T CBS Trie No
Mixtral Sampling (T = 0.2) N/A No

Poro Sampling (T = 0.2) N/A No
Unconstrained Greedy N/A No

Table 4: Evaluated configurations of the pipeline. CBS refers to our Constrained Beam Search algorithm as described in this
paper. NDFST is our non-deterministic finite-state transducer. Trie refers to the constraint recognition algorithm inspired by Post
and Vilar (2018); Hu et al. (2019) modified to support disjunctive constraints. In addition to our pipeline, we use Mixtral (Jiang
et al. 2024) and Poro (SiloAI 2023), both large language models, and unconstrained machine translations. All methods apart
from Mixtral and Poro use Opus-MT Tatoeba Challenge models for Finnish and English (Tiedemann 2020).

4 Evaluation

We use both automatic evaluation and human eval-
uation to measure the quality of the translations
produced by our pipeline. The automatic methods
include BLEU, chrF, TER, and COMET scores,
as well as measuring the number of fulfilled con-
straints. In human evaluation, we asked a profes-
sional translator to evaluate all translated sentences
and mark them either as OK, erroneous due to in-
correctly applied constraints, or erroneous due to
other cause.

Due to time constraints, we did not evaluate the
Swedish translation even though we implemented
it.

4.1 Evaluated Pipeline Configurations

For evaluation, we prepared four configurations of
the Mitra pipelines: half of them use the NDFST-
based constraint recognizer, and half of them a trie-
based recognizer inspired by (Post and Vilar 2018;
Hu et al. 2019) modified to support disjunctive con-
straints. Both of the two algorithms are evaluated
with and without backtranslation substitution, with
parameters B = 1, k = 5, S = M = ∞ and a
120 s timeout. In addition, we translated the sen-
tences without constraints or backtranslations. In
each case, we use the Opus-MT Tatoeba Challenge
models for Finnish and English4 (Tiedemann 2020).

We also compare our methods to general-purpose
language models Poro5 (SiloAI 2023) and Mix-
tral6 (Jiang et al. 2024) by embedding the con-

4https://huggingface.co/Helsinki-NLP/opu
s-mt-tc-big-fi-en and https://huggingface.
co/Helsinki-NLP/opus-mt-tc-big-en-fi
5https://huggingface.co/LumiOpen/Poro-3
4B, 700B variant
6https://huggingface.co/mistralai/Mixtral
-8x7B-Instruct-v0.1

straint words into the prompt (cf. Ghazvininejad
et al. 2023). For these models, we use the term
recognition and constraint generation components
of our pipeline, but do not apply backtranslations
or enforce hard constraints. The prompts used are
listed in Appendix C. We tried both zero-shot and
2-shot prompting and found that to achieve best
results BLEU-wise, Mixtral needed to be prompted
in a zero-shot manner and Poro in a 2-shot manner.

We ran the Opus-MT models on a Tesla T4 GPU,
and the Poro and Mixtral models on an A100 80GB
GPU.

We used greedy decoding with the unconstrained
translation and temperature sampling with the
LLMs, since these are the sampling methods most
often used with these models. While beam search
could have been used for both of these, and could
have improved their performance, deciding the fair
beam size would not have been trivial: the con-
strained translation has beam size C + 1, where C
is the number of constraint tokens. If no constraints
are used, this results in the beam size of 1, which
corresponds to greedy decoding. Therefore, to sim-
plify our experiment, we decided to not increase
the beam size over this default unconstrained size
of 1.

To save human evaluation resources, we per-
formed the human evaluation for the model that
received better BLEU scores, which is Mixtral for
the Finnish–English translation direction, and Poro
for the English–Finnish translation direction.

4.2 Evaluation Corpus
We conducted the evaluation on two vocabularies
listed below. For both of them, we used the head
words of the entries to construct the translation
terminology and the definitions of the entries as the
test sentences.
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Forest Fires (EN–FI) Finnish Parliament (FI–EN)
Configuration BLEU chrF TER COMET Acc. BLEU chrF TER COMET Acc.

Mitra-FB 20.96 62.31 69.62 0.90 100.00 35.50 63.77 53.57 0.85 98.34
Mitra-TB 19.70 59.35 72.10 0.89 94.83 35.70 64.33 53.48 0.84 100.00
Mitra-F 19.48 61.87 70.09 0.89 100.00 35.21 63.67 54.45 0.85 98.34
Mitra-T 19.13 59.19 75.06 0.89 94.83 35.40 64.12 54.61 0.84 100.00
Mixtral 7.71 46.49 92.43 0.79 84.48 32.99 62.85 55.71 0.84 82.82

Poro 16.01 55.95 79.20 0.88 83.62 21.13 55.38 70.71 0.84 50.27
Unconstrained 16.45 54.55 76.95 0.86 22.41 34.48 62.08 53.52 0.86 49.46

Table 5: The results for automatic evaluation of the configurations described in Table 4. “Acc.” refers to the number of fulfilled
constraints.

Forest Fires (EN–FI) Finnish Parliament (FI–EN)
Configuration OK % Constr. error % Other error % OK % Constr. error % Other error %

Mitra-FB 60.00 2.35 37.65 60.56 10.83 28.61
Mitra-TB 55.29 4.70 40.00 57.78 13.61 28.61
Mitra-F 55.29 9.41 35.29 56.39 15.00 28.61
Mitra-T 52.94 9.41 37.65 54.17 17.78 28.06
Mixtral 66.11 0.56 33.33

Poro 52.94 2.35 44.71
Unconstrained 32.94 0.00 67.06 67.78 0.83 31.39

Table 6: The results for human evaluation of the configurations described in Table 4. All of the sentences were categorized to
the three categories “OK”, “Erronous due to incorrectly applied constraints” (Constr. err), and “Erronous due to other error”.
The timed out sentences are counted towards other errors.

1. Forest Fire Vocabulary by the Finnish For-
est Centre (Metsäkeskus 2022), consisting of
85 Finnish/English word pairs and definitions.
For this vocabulary, we translated the defini-
tions in the English–Finnish direction.

2. Finnish Parliament Vocabulary by the
Finnish Parliament (Eduskunta 2008), consist-
ing of 360 Finnish/English word pairs and def-
initions. We used only 358 of these since two
contained special characters for which the pre-
processing pipeline failed. For this vocabulary,
we translated the definitions in the opposite
direction: Finnish–English.

We release all term pairs and test sentences
openly7.

4.3 Evaluation Methods
We performed both automatic and human evalu-
ation. For automatic evaluation, we calculated
BLEU, chrF, and TER scores for the sentences us-
ing the sacrebleu Python library (Post 2018),
and the COMET score8 (Rei et al. 2022) using the
7https://github.com/kielikone/mitra-eva
l-results
8The wmt22-comet-da model

evaluate Python library. Furthermore, we used
the term recognition component of our pipeline to
analyze the number of constraints fulfilled in the
output sentences. This is similar to the lemmatized
term exact match accuracy (Bergmanis and Pin-
nis 2021) and exact match accuracy (Alam et al.
2021a), although we do not need to specifically
lemmatize the words as our disjunctive constraints
include the inflected forms.

For manual evaluation, we generated a spread-
sheet that contained one input sentence on each
row, the reference translation, and the outputs of
each of our tested configurations in random order.
We asked a professional translator to evaluate each
configuration and mark it either as correct, erro-
neous due to incorrectly applied constraints (while
still present), or erroneous due to other cause (incl.
missing constraint) (cf. Bergmanis and Pinnis 2021,
9). We then calculate percentages of these three
categories for each of the evaluated configurations.

9Our evaluation differs from that of Bergmanis and Pinnis
(2021): They had categories “wrong lexeme” and “wrong
inflectional form”. We measure the presence of the constraint
lexeme automatically, and are more interested in errors caused
by incorrect placement of the constraint than those of wrong
inflectional form, since the former errors are common in our
tests and much more critical.

107

https://github.com/kielikone/mitra-eval-results
https://github.com/kielikone/mitra-eval-results


For the Parliament dataset, the NDFST-based
methods (Mitra-FB and Mitra-F) timed out for three
sentences, i.e. the beam search never reached the
end condition. Similarly, for the Forest Fire Dataset,
the trie-based method timed out for one sentence.
Those sentences are evaluated as empty strings in
the automatic evaluation and left out of the manual
evaluation. See Appendix D for an analysis of them.

4.4 Results

The results of the automatic evaluation are pre-
sented in Table 5 and the human evaluation in Ta-
ble 6.

For both datasets, the usage of constraints im-
proved the BLEU, chrF, and TER scores when
compared to the unconstrained translations and the
general-purpose language model outputs. For the
Forest Fire dataset, the BLEU of the unconstrained
translations was 16.45, while the BLEU of Mitra-
FB was 20.96. For the Parliament dataset, the un-
constrained BLEU improved from 34.48 to 35.50
respectively. The COMET score improved from
0.86 to 0.90 with the Forest Fire dataset, while it
decreased insignificantly from 0.86 to 0.85 with the
Parliament dataset. All automatic evaluation scores
for the different Mitra configurations were too near
each other to be significant.

Similarly, Mitra-F and Mitra-FB raised the num-
ber of fulfilled constraints to 100% from 22.41%
for the Forest Fire dataset, with the trie-based
methods Mitra-T and Mitra-TB timeouting with
one sentence, causing the percentage to drop to
94.83%. For the Parliament dataset, the NDFST-
based methods timed out for three sentences, caus-
ing the fulfilled constraint percentage to reach
only 98.32%, while the unconstrained translations
reached 49.46%.

The general-purpose language models achieved
BLEU scores comparable to the unconstrained
translation with the exception of Mixtral in the
English–Finnish direction that produced transla-
tions of unusably low quality. Similarly, both Poro
and Mixtral fulfilled ca. 82–84% of the constraints
with the exception of Poro in the Finnish–English
direction. Since Mixtral is arguably better when En-
glish is the target language, and Poro when Finnish
is the target language, we did not conduct human
evaluation for both models, choosing instead the
model that performed better for the evaluated lan-
guage direction.

Mean time
Configuration Failed excl. Failed = 120 s
Mitra-FB 2.11 s 2.11 s
Mitra-TB 1.68 s 3.07 s
Mitra-F 2.36 s 2.36 s
Mitra-T 1.44 s 2.83 s
Unconstrained 0.16 s 0.16 s

Table 7: Mean translation times for the Forest Fire datasets.
Mixtral and Poro times are not included since they were ran
on a different hardware. There was one sentence that timed
out with the trie-based configurations. In the first column, that
sentence was removed. In the second column, that sentence
was given the value equal to the timeout we used, 120 s.

In human evaluation, the NDFST-based approach
and backtranslations achieve significantly better re-
sults than the Trie and non-backtranslated config-
urations. For the Forest Fire dataset, they together
raise the number of “OK” translations from 52.94%
to 60.00%. Similarly, for the Parliament dataset,
the number rose from 54.17% to 60.56%. At the
same time the number of errors caused by incor-
rectly applied constraints decreased from 9.41%
to 2.35%, and from 17.78% to 10.83%, respec-
tively. For the Forest Fire dataset, the usage of
constraints increased the quality when compared to
unconstrained translations, while for the Parliament
dataset, the unconstrained sentences were evaluated
to have higher quality.

For both datasets, the number of “other errors”
was considerable. For the Forest Fire dataset, our
evaluator noted that the Forest Fire vocabulary did
not contain all of the special jargon used in the
sentences. Thus, had the vocabulary been more
comprehensive, the translation quality could have
been better.

4.5 Time performance

The mean translation times for the Forest Fire
dataset sentences are presented in Table 7. For con-
strained translations, the time was measured for the
full pipeline, including preprocessing and depen-
dency parsing. The unconstrained translation times
are significantly lower than the constrained times,
but the time does not include any preprocessing.

Of the sentences which both algorithms were
able to translate, the NDFST-based configurations
were slower than the trie-based configurations.
However, as the trie-based algorithm failed to trans-
late one of the sentences (due to its greediness, it
was unable to place the constraints to the sentence
correctly, which led to the NMT model considering
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all hypotheses improbable and never finishing10).
As the translation timed out, one might argue that
the algorithm should be penalized for this by count-
ing the sentence using the timeout as the time it
took to “produce” the empty translation. We have
reported both numbers in different columns.

We ran Mixtral, Poro, and the Parliament dataset
evaluations on different hardware and software en-
vironments, so we cannot present comparable num-
bers for them. We used no batching of multiple
sentences.

5 Discussion and Conclusions

In this paper, we have presented Mitra, a pipeline
for terminologically-constrained machine transla-
tion that improves on the previous “hard” constraint
methods with a finite state automaton-based con-
straint recognition algorithm and a backtranslation
substitution step. When compared to the trie-based
method based on the previously suggested algo-
rithms (Post and Vilar 2018; Hu et al. 2019) without
backtranslations, our method significantly increases
the quality in human evaluation.

We argue that our method fulfills the three goals
we began with: allowing disjunctive constraints,
solving the problems of greedy constraint recogni-
tion algorithms, and improving quality on “rare and
obscure” terms. The finite state automata-based
algorithm allows any number of alternatives in the
disjunctive constraints, and does not suffer from
the greediness of previous algorithms. Further-
more, when combined with backtranslations, the
number of errors caused by incorrectly applied con-
straints drops significantly on both of the evaluation
datasets.

While constrained translation significantly im-
proved quality on the Forest Fire dataset, it un-
expectedly decreased quality on the Parliament
dataset in human evaluation. We believe this dis-
crepancy is due to two main factors. Firstly, the Par-
liament dataset’s vocabulary is not well-suited for
constrained generation (see Appendix D for exam-
ples), and secondly, the Opus-MT models we used
are more familiar with the subject matter, using
49.46% of the constraint terms even when uncon-
strained, leaving less room for improvement. The
Forest Fire dataset, on the contrary, is very unfamil-
iar to the model, as only 32.94% of the sentences
were translated acceptably, and only 22.41% of the

10See Table 1 for a simplified version of the sentence and
Appendix D for a full analysis of the failed sentences

desired target terms were used when unconstrained.
The effectiveness of constrained translation thus
depends on the quality of the constraint vocabulary
and the topic of the texts translated.

The major downside of “hard” constraints is their
increased time requirement: the translation times
were more than ten times larger on three of the four
configurations evaluated (see Table 7). Although
we did not optimize the evaluation by using batch-
ing or other methods such as those recommended
by Hu et al. (2019), it is clear that constrained trans-
lation is slower in any case. Of our configurations,
those that use the NDFST algorithm are slower than
those that use tries. However, this is not as major
a problem as one might initially think, as in most
cases the trie-based solution yields the same result
as the NDFST solution. The problem of greediness
is only present when two constraints share tokens
– if no constraints overlap in this way, there is no
ambiguity. Thus, when translating a longer text,
the trie-based approach can be used instead of the
NDFST solution for most input sentences, making
the translation of the whole text nearly as fast as
when translated completely with the trie method.

Of the general-purpose large language models
evaluated, Mixtral performed very well on the Par-
liament dataset, producing higher-quality results
than constrained decoding methods. Similarly, Poro
provides results comparable to the Mitra-T configu-
ration in the human evaluation. Although the per-
centage of fulfilled constraints is lower than that of
constrained translation, ca. 82–84%, the number of
“constraint errors” is also low, implying that at least
some of the missing constraints can be explained by
the models providing a satisfying translation using
a synonym or other acceptable construct that does
not match the constraint when they have trouble
fitting the constraint word into the sentence. Thus,
the error mode of LLMs might be considered better
than that of constrained decoding-based translation.

Since our pipeline is model-agnostic, it can be
used with any NMT model or even with a general-
purpose language model. Similarly, many of the
“soft” constraint methods can also be combined with
our method. We believe that our future research
should focus on evaluating these combinations. As
even a considerably basic soft method such as back-
translations can improve the translation quality sig-
nificantly, our hypothesis is that more complex soft
methods (such as Bergmanis and Pinnis 2021) can
improve it even further.
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A Algorithms

We have described our beam search algorithm in de-
tail here for increased reproducibility. Algorithm 1
contains the main loop of the beam search. Algo-
rithm 2 contains the candidate selection algorithm.
Finally, Algorithm 3 details the beam allocation
algorithm.

Since our algorithm is model-agnostic, we have
abstracted the calls to the NMT model by referring
to the probability function P and “top-k sampling”.
In real implementations, these probabilities would
come from the decoder of the NMT model or an
LLM model.

input :M maximum length of the output in tokens
C number of constraint tokens
B hypothesis bank size
S beam size
V the vocabulary

output :best hypothesis

hypotheses← [[start token]]
cutoff← 0
best hypothesis←null
for M times do

/* Calculating the new hypotheses */
candidates←GetCandidates(hypotheses, V , k)
hypotheses←Allocate(candidates, C, B, S)
/* Updating cutoff */
foreach finished hypothesis h in hypotheses do

if P (h) > cutoff then
cutoff← P (h)
best hypothesis← h

end
end
/* Pruning hypotheses */
foreach hypothesis h in hypotheses do

if P (h) ≤ cutoff then
remove h from hypotheses

end
end
/* Early stopping */
if |hypotheses| = 0 then

return best hypothesis
end

end
Algorithm 1: The main loop of the beam
search.

B Proofs

The “NDFST” in these proofs refers to a non-
deterministic finite-state transducer that has the
structure described in this paper (see Figure 1). q0
is the initial state of the NDFST and qa is the sole
accepting state.

Definition. C(m) is the set of constraint end tokens
in the output symbol list m. Since the flag for a
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Function GetCandidates(hypotheses, V , k) is
input :hypotheses from the previous iteration

V the vocabulary
k the parameter for top-k sampling

output :set of candidate hypotheses

candidates← ∅
/* Constraint continuations from the NDFST

*/
foreach h in hypotheses do

if h is not finished then
foreach token t that would advance the current

NDFST state do
append h + t to candidates

end
end

end
/* Unconstrained candidates */
foreach h in hypotheses do

append top-k continuations of h to candidates
end
return candidates

end
Algorithm 2: The candidate selection algo-
rithm. This is a simplified version of the algo-
rithm described in (Post and Vilar 2018, section
3.1), combining their steps 1 and 3.

Function Allocate(candidates, C, B, S) is
input : the list of candidates

C number of constraint tokens
B target hypothesis bank size
S maximum beam size

output :a new list of hypotheses

if B · (C + 1) > S then
return Allocate2(candidates, C, ⌊S−1

C ⌋+ 1, S)
else

return Allocate2(candidates, C, B, B · (C +1))
end

end
Function Allocate2(candidates, C, B′, S′) is

input : the list of candidates
C number of constraint tokens
B′ actual hypothesis bank size
S′ actual beam size

output :a new list of hypotheses

/* Allocate hypotheses to banks they
belong based on their number of
fulfilled constraint tokens */

hypotheses← []
foreach i in C, . . . , 0 do

bank size← 0
foreach candidate c from most probable to least probable

do
if bank size < B′ then

if number of constraint tokens in c ≥ i then
append c to hypotheses
remove c from candidates
bank size← bank size + 1

end
end

end
end
/* Fill underfilled banks with most

probable candidates */
foreach i in C, . . . , 0 do

foreach candidate c from most probable to least probable
do

if |hypotheses| = S′ then
return hypotheses

end
if number of constraint tokens in c ≥ i then

append c to hypotheses
remove c from candidates

end
end

end
return hypotheses

end
Algorithm 3: The beam allocation algorithm.

constraint is set in the same transition that generates
the constraint end token, C(m) also corresponds to
the set of constraints that have their flag set. C is
the set of all constraint end tokens possible.

Definition. S(q,m) is the set of strings that the
NDFST accepts from the initial state q and the ini-
tial output symbol list m.

Theorem. Given a string s partitioned into two
parts s1s2, so that the NDFST has consumed s1 but
not s2, and NDFST states (q0,m1) and (q0,m2),
so that C(m1) ⊊ C(m2) and s2 ∈ S(q0,m1), then
s2 ∈ S(q0,m2).
Proof. The only accepting node in the NDFST is
fenced with flag diacritic symbols, each correspond-
ing to a different constraint. Thus, the accepting
state can only be reached if all the flags are set, that
is, C(m) = C.

Since s2 ∈ S(q0,m1), there must be a path q0 →
qi1 → · · · → qin → qa accepted by the NDFST if
(q0,m1) is used as an initial state.

As C(m1) ⊊ C(m2), the same path cannot be
accepted when (q0,m2) is used as the initial state,
as for each c ∈ C(m2) \ C(m1), the path contains
a negative flag diacritic check that prevents the path
from being accepted, as the flag for c is already set
since c ∈ C(m2).

We construct a new path that is accepted when
(q0,m2) is used as the initial state. For each
c ∈ C(m2)\C(m1), we modify the path by replac-
ing each transition beginning from @D.Cc@:[Cc]
and ending to @P.Cc.1@:[/Cc] with q0 → q0.
As all of these c were already present in C(m2),
this modification only removes duplicate positive
flag diacritic sets. Since all the flags are set in the
modified path, it is accepted by the NDFST. QED.

C LLM Prompts

C.1 Finnish–English

Please translate the following sentence
using this vocabulary. Respond using
JSON output such as {"translation": "
This is the translation"}.
Vocabulary: joki = river; virtaava vesi
= flowing water; valuma-alue = catchment
area

Sentence: Vesilaissa joella tarkoitetaan
virtaavan veden vesistöä, jonka valuma-

alue on vähintään sata neliökilometriä.

C.2 English–Finnish
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Käännä lause suomeksi annetulla
sanastolla. Vastaa JSON-muodossa, esim.
{"käännös": "Tämä on käännös"}.
Sanasto: octopodes = mustekalat; extant
= elävä; subclass = alaluokka;
cephalopod = pääjalkainen; nautilus =
helmivene
Lause: Octopodes are one of the two
extant subclasses of the cephalopods. It
is also called two-gilled cephalopods.

The other subclass is the nautiluses or
four-gilled cephalopods.

D Failed Translations

Several test sentences timed out during the evalua-
tion. This section contains these sentences a well
as an analysis of the cause of the error.

To save space, when we list the constraints, we
only list the target lemmas, although in reality we
give all inflections generated by our phrase inflector
module as a disjunctive constraint. The disjunctive
constraint also includes differently capitalized ver-
sions of the target term, although we list all target
terms in lower case here.

D.1 Forest Fires

This evaluation corpus had only one failed sentence,
which failed for both trie-based configurations, but
not for the NDFST-based configurations.

D.1.1 Sentence 46
Constraints are underlined.

Source sentence: Forest fire regime describes the
role of fire in a given area over a given time pe-
riod and sums up almost all variables related to
forest fires: forest fire effects and their influencing
factors, forest fire frequency, forest fire severity,
forest fire intensity, the size of fire, the time of and
reason for ignition, regularity, variation, etc.

Reference translation: Metsäpaloregiimi kuvaa
tulen roolia tiettynä aikana tietyllä alueella ja sum-
maa yhteen lähes kaikki metsäpaloihin liittyvät su-
ureet: metsäpalojen vaikutukset ja niihin vaikut-
tavat tekijät, metsäpalojen toistuvuus, metsäpalon
vaikuttavuus, metsäpalon voimakkuus, koko, syt-
tymisajankohta, syttymissyy, säännöllisyys, vai-
htelu, jne.

Constraints: {forest fire regime →
metsäpaloregiimi}, {forest fire → metsäpalo},
{forest fire → metsäpalo}, {forest fire frequency
→ metsäpalojen toistuvuus}, {forest fire severity

→ metsäpalon vaikuttavuus}, {forest fire itensity
→ metsäpalon voimakkuus}

The timeout of this sentence is caused by two fac-
tors: the greediness of the constraint recognition
algorithms and the large number of constraints it
has. See Table 1 for an example of a simplified
version of this sentence that does not timeout since
it has less constraints.

The core issue is that after the tokens encod-
ing “Metsäpalo” have been generated, the trie-
based algorithm marks the constraint {forest fire→
metsäpalo} fulfilled. After this, the beam search
generates the tokens encoding “regiimi”, but they
are not recognized to be a part of the con-
straint, since the progress of all other constraints
was reset when one of the possible constraints
tracked simultaneously was marked fulfilled. This
means that the constraint {forest fire regime →
metsäpaloregiimi} is yet unfulfilled, and the algo-
rithm tries to place it later in the sentence. However,
the decoder language model (correctly) considers
all those other places to be improbable, and thus the
end condition of the beam search is never reached
within the time limit.

D.2 Finnish Parliament

This evaluation corpus had two sentences for which
the preprocessing pipeline (i.e. morphological anal-
ysis and generation) failed due to a bug that we
had not time to correct. We left these sentences
out of the evaluation. Of the remaining sentences,
the NDFST-based configurations failed for three
sentences.

These sentences fail due to two main reasons:
they contain too many constraints, and the target
terms included in the vocabulary are poorly suited
to be used as constraints resulting in unnatural trans-
lations considered improbable by the decoder lan-
guage model. Note that while this section only
analyses the timed out sentences, the poor suitabil-
ity of the vocabulary applies also to those sentences
that did not time out and is one cause to the poor
scores received by the system in human evaluation.

D.2.1 Sentence 150
Constraints are underlined. This sentence was actu-
ally a text with two sentences, the second of which
was more problematic.

Source sentence: Valtiopäiväasiakirjat julkaistaan
painettuina Valtiopäiväasiakirjat-sarjassa sekä
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nykyään myös eduskunnan sivustolla Internetissä.
Valtiopäiväasiakirjat-sarjassa julkaistaan mm.
eduskunta-aloitteet, eduskunnan täysistuntojen
pöytäkirjat ja niiden ruotsinkieliset lyhennelmät,
hallituksen esitykset, valtioneuvoston kirjelmät,
tiedonannot ja selonteot, valiokuntien mietinnöt
ja lausunnot, eduskunnan vastaukset ja kirjelmät,
välikysymykset sekä kirjalliset kysymykset
vastauksineen.

Reference translation: Parliamentary documents
are published in print form in the series ‘Val-
tiopäiväasiakirjat’ and in recent years have been
published on Parliament’s web pages as well. The
series contains, among other documents, parliamen-
tary motions; records of plenary sessions of Par-
liament and their Swedish summaries; government
proposals, communications, statements and reports;
committee reports and statements; parliamentary
replies and communications; interpellations; and
written questions and the replies to them.

Constraints for the first sentence:
{valtiopäiväasiakirja→ parliamentary document},
{eduskunta → parliament, finnish parliament,
eduskunta}
Constraints for the second sentence: {eduskunta-
aloite → parliamentary motion, member of par-
liament’s motion, member’s motion}, {eduskunta
→ parliament, finnish parliament, eduskunta},
{täysistunto→ plenary session}, {hallituksen esi-
tys→ government proposal}, {valtioneuvoston kir-
jelmä→ government communication}, {valiokunta
→ committee}, {mietintö → report of the com-
mittee, committee report}, {lausunto → state-
ment of the committee, committee statement},
{eduskunnan vastaus → parliamentary reply},
{välikysymys→motion of censure, interpellation},
{kirjallinen kysymys→ written question}

The primary reason for the timeout of this text on
the NDFST-based configurations is the large num-
ber of constraints. The NDFST-based algorithm
has exponential time complexity in the worst-case
scenario.

This text is also problematic due to the poor
suitability of the vocabulary for constrained trans-
lation. For example, the phrase “valiokuntien
mietinnöt ja lausunnot” (“the reports and state-
ments of the committees”) generates the con-
straints {valiokunta→ committee}, {mietintö→
report of the committee, committee report}, and

{lausunto → statement of the committee, com-
mittee statement}, all of which include the word
“committee” (valiokunta). Thus the constraints
force the beam search hypotheses to contain trans-
lations like “the reports of the committee and the
statements of the committee of the committees”,
which the decoder language model obviously con-
siders improbable. In some hypotheses the extrane-
ous “committee” words also appear in completely
different (and wrong) places in the translation, caus-
ing hallucinations.

D.2.2 Sentence 232

Constraints are underlined.

Source sentence: Eduskunnan tilin-
tarkastajat antavat eduskunnalle kaksi
tilintarkastuskertomusta: 1) eduskunnan tilin-
tarkastajien tilintarkastuskertomuksen eduskunnan
tilinpäätöksestä, toimintakertomuksesta ja kir-
janpidosta sekä hallinnosta ja 2) eduskunnan
tilintarkastajien tilintarkastuskertomuksen
Valtiontalouden tarkastusviraston tilinpäätöksestä,
toimintakertomuksesta ja kirjanpidosta sekä
hallinnosta.

Reference translation: The parliamentary auditors
submit two reports to Parliament: 1) a report on the
financial statements, annual report and accounting,
and administration of Parliament; and 2) a report
on the financial statements, annual report and ac-
counting, and administration of the National Audit
Office of Finland.

Constraints: {eduskunta → parliament,
finnish parliament, eduskunta}, {eduskunta
→ parliament, finnish parliament, eduskunta},
{tilintarkastuskertomus→ parliamentary auditors’
report, report of the auditors of parliament},
{eduskunta → parliament, finnish parliament,
eduskunta}, {tilintarkastuskertomus → parlia-
mentary auditors’ report, report of the auditors
of parliament}, {eduskunta → parliament,
finnish parliament, eduskunta}, {eduskunta
→ parliament, finnish parliament, eduskunta},
{tilintarkastuskertomus→ parliamentary auditors’
report, report of the auditors of parliament},
{valtiontalouden tarkastusvirasto→ national audit
office of finland}

As with the previous sentence, this sentence con-
tains a large number of constraints. However, un-
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like in the previous case, here most of the con-
straints are identical. In fact, it only contains three
unique constraints. However, all constraints, even
if duplicate, will get separate paths in the finite state
machine. The algorithm could be easily optimized
by adding counters instead of binary flags (cf. Hu
et al. 2019). However, the FST library we used
did not support them and we did not have time to
implement them.

Further issues are caused by the fact that the cor-
rect translation of “eduskunnan tilintarkastaja” is
“parliamentary auditor”. However, since it is not in-
cluded in the vocabulary, the only constraint added
is {eduskunta → parliament, finnish parliament,
eduskunta}. The “parliament” added as a constraint
clashes with the correct word “parliamentary” (in
our case, both are single tokens, so they don’t share
subword tokens), causing hallucinations in some
hypotheses as “parliament” is inserted into a wrong
place in the sentence, although the best hypothesis
in this case includes arguably passable “the auditors
of Parliament”.

Again, as in the previous case, the translations
given in the vocabulary are unsuitable for con-
strained translation. The phrase “eduskunnan tilin-
tarkastajien tilintarkastuskertomuksen” generates
the constraints {eduskunta→ parliament, finnish
parliament, eduskunta} and {tilintarkastuskertomus
→ parliamentary auditors’ report, report of the au-
ditors of parliament}, leading to unnatural trans-
lations such as “the parliamentary auditors’ report
of the Parliament”. In fact, the literal translation
of “eduskunnan tilintarkastajien tilintarkastuskerto-
mus” is “parliamentary auditors’ report”, i.e. the
translation given to the last word in the phrase is
the translation of the whole phrase. To be suitable
for constrained generation, the vocabulary should
contain only one-to-one equivalent translations.

D.2.3 Sentence 321
Constraints are underlined.

Source sentence: Jos kansanedustaja kesken
vaalikauden kuolee, hänelle myönnetään vapautus
tai hänet erotetaan kokonaan edustajantoimestaan
tai hän siirtyy Euroopan parlamentin jäseneksi,
hänen tilalleen eduskuntaan tulee varaedustaja joko
vaalikauden loppuun saakka tai määräajaksi.

Reference translation: If a Member of Parliament
dies during the electoral term, is granted a release
from office, is dismissed from office, or is elected

to the European Parliament, he or she is replaced in
Parliament for the remainder of the electoral term
or for a specific period of time by a replacement
Member.

Constraints: {kansanedustaja → member of
parliament, representative, mp}, {vaalikausi
→ term of parliament, parliamentary term,
electoral term}, {edustajantoimi → office of
representative, mp’s responsibilities, member’s
responsibilities}, {parlamentti → parliament,
legislature}, {eduskunta→ parliament, finnish par-
liament, eduskunta}, {varaedustaja→ replacement
member of parliament, alternate member of parlia-
ment, deputy member of parliament}, {vaalikausi
→ term of parliament, parliamentary term, electoral
term},

Again, this sentence has many constraints. Also,
like with the previous two cases in the Finnish Par-
liament dataset, the vocabulary used to generate
the constraints is unsuitable for constrained trans-
lation. Since the translation of “edustajantoimi”
must be either ”office of representative”, “mp’s re-
sponsibilities” or “member’s responsibilities”, the
phrase “Jos kansanedustaja [. . . ] erotetaan kokon-
aan edustajantoimestaan” (“If a Member of Parlia-
ment [. . . ] is dismissed from office”) must be trans-
lated cumbersomely as “If a Member of Parliament
[. . . ] is removed from the office of Representative”,
where the word “office of Representative” is unnec-
essarily used instead of just “office”.

Similarly, the translations of the term “varae-
dustaja” (lit. “replacement representative”) are
“replacement member of parliament”, “alternate
member of parliament”, or “deputy member of
parliament”, all of which contain unnecessar-
ily the word “parliament”. Thus, the phrase
“hänen tilalleen eduskuntaan tulee varaedustaja”
(“he or she is replaced in Parliament [. . . ] by
a replacement Member”) must be translated
with “he or she is replaced in Parliament by
a replacement Member of Parliament”, duplicating
the word “Parliament”.

If the constraints force the translator to gener-
ate unnatural text, the decoder will again give low
scores to all hypotheses, thus making it difficult to
reach the end condition in time.
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