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Abstract

Providing quality scores along with Ma-
chine Translation (MT) output, so-called
reference-free Quality Estimation (QE),
is crucial to inform users about the re-
liability of the translation. We propose
a model-specific, unsupervised QE ap-
proach, termed kNN-QE, that extracts in-
formation from the MT model’s training
data using k-nearest neighbors. Mea-
suring the performance of model-specific
QE is not straightforward, since they pro-
vide quality scores on their own MT out-
put, thus cannot be evaluated using bench-
mark QE test sets containing human qual-
ity scores on premade MT output. There-
fore, we propose an automatic evalua-
tion method that uses quality scores from
reference-based metrics as gold standard
instead of human-generated ones. We are
the first to conduct detailed analyses and
conclude that this automatic method is suf-
ficient, and the reference-based MetricX-
23 is best for the task.

1 Introduction

Machine Translation (MT), due to its currently ad-
vanced stage in research, has been widely adopted
in real-life use cases (Vieira et al., 2021). In many
application domains such as health care or law-
suits, errors in translation could be tremendously
harmful to the users. Therefore, it is important to
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inform the user whether to rely on a certain transla-
tion, by providing some kind of quality assessment
along with each translation output. This task is re-
ferred to as Quality Estimation (QE).

More specifically, Quality Estimation is assign-
ing quality scores to MT output, without using
gold-standard human translation. Common QE ap-
proaches train a standalone QE module that takes
in the source sentences and the MT outputs to pro-
duce quality scores. These QE modules are usually
model-agnostic, i.e., they can work with the out-
put of any MT model. However, they often require
training on human-labeled quality data, which can
be costly to obtain. Another line of research is on
model-specific QE, where they exploit or modify
the MT model for self-quality assessment, thus not
requiring training a separate QE module. Follow-
ing this line of work, we propose kNN-QE - an un-
supervised QE approach that exploits the informa-
tion of inference-time output’s k-nearest neighbors
found in the MT model’s training data. We hy-
pothesize that the closer the inference-time sample
output is to the training data, the better the qual-
ity of the translation, since it is an indication that
the model has learnt about such samples. The QE
scores obtained using our method can also be inter-
preted as the confidence scores of the MT model.

Unlike model-agnostic QE approaches which
can take any MT translation as input, evaluating
model-specific QE approaches like kNN-QE is not
as straightforward. Public QE test sets are gen-
erated using human quality scores on pre-made
MT output, thus not always suitable for QE ap-
proaches that perform self-evaluation on their own
MT output by design. Many previous works on
model-specific QE perform human evaluation on
their own MT output to be used as gold standard
to evaluate QE metrics (Rikters and Fishel, 2017;
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Niehues and Pham, 2019; Fomicheva et al., 2020;
Zhang et al., 2022). However, for faster develop-
ment, it would be useful to automatically evalu-
ate QE metrics and not relying on human resource.
Therefore, we propose using quality scores gener-
ated by reference-based metrics as the gold stan-
dard to automatically evaluate reference-free QE
metrics. Our motivation is that reference-based
metrics, by making use of reference translation,
tend to be better than reference-free QE metrics
(Freitag et al., 2023), thus can be used as gold
standard. To the best of our knowledge, we are
the first to perform a detailed analysis on whether
reference-based metrics are sufficient to evalu-
ate QE, and which reference-based metric is best
suited. For this analysis, we make use of different
QE submissions to public shared tasks: WMT22
Metrics (Freitag et al., 2022) and WMT22 Qual-
ity Estimation (Zerva et al., 2022). We investigate
whether our automatic QE evaluation method can
produce similar QE rankings compared to using
human-labeled quality data in these shared tasks.

In summary, our contribution is in two folds:

1. A model-specific, unsupervised QE ap-
proach, termed kNN-QE*, which exploits the
similarity of MT generated output and MT
models’ training data. Our main findings
are: (1) kNN-QE outperforms an unsuper-
vised baseline using MT output probabilities,
but falls behind supervised QE; and (2) kNN-
QE works with a small number of neighbors
and partial access to the MT training data.

2. An automatic QE evaluation method† using
a reference-based metric’s quality scores as
gold-standard instead of human-labeled qual-
ity scores. Our main findings are: (1) QE
ranking made by reference-based metrics cor-
relate well with ones made by human quality
scores; (2) Segment-level evaluation perfor-
mance does not strictly correlate to QE rank-
ing performance for reference-based metrics;
and (3) MetricX 23 (Juraska et al., 2023) is
the most robust for ranking QE metrics.

2 Related Work

Quality Estimation Quality Estimation (QE)
aims to measure the quality of MT output without
using human references. Common QE approaches

*https://github.com/TuAnh23/auto-meta-eval-qe
†https://github.com/TuAnh23/knn-box

are model-agnostic, where a QE module takes in
a source sentence, an MT translation and outputs
a quality score (Blain et al., 2023). This approach
has 2 drawbacks: (1) it requires a stand-alone mod-
ule for QE, and (2) it requires human quality data
to train the QE module, which can be costly.

Model-specific QE Researchers have also been
looking into integrating Quality Estimation into
MT models. These approaches exploit information
or modify white-box MT model to measure the
translation quality, rather than training a separate
QE module relying completely on human quality
data. (Rikters and Fishel, 2017) uses the attention
distributions from the MT model as a QE metric.
(Fomicheva et al., 2020) uses the attention distri-
bution and the output probabilities from the MT
model for QE. (Lu et al., 2022) propose QE learnt
jointly with the training of the MT model. In their
approach, the MT model can ask for hints to im-
prove its translation, and the more hints it asks for,
the lower the confidence. (Zhang et al., 2022) ex-
tends the MT model with a self-estimator module
for QE, which examines whether it can reconstruct
the source sentence’ semantics using the informa-
tion from the decoding procedure. The work by
(Niehues and Pham, 2019) is the closest to our
kNN-QE, where they measure the similarity of the
test sentence with sentences from the training data
to estimate translation quality. The difference be-
tween this work and ours is that they focus on eval-
uating source side rather than target side; they use
encoder output similarity rather than decoder out-
put similarity; and they do not analyze different
metrics derived from the nearest neighbors. Eval-
uating these model-specific QE approaches is not
straightforward, as will be discussed below.

Automatic QE evaluation The standard way
to evaluate QE is to use some benchmark test
sets, containing human quality scores on the out-
put of some MT models. The QE scores are
then compared against the human scores on these
pre-made translations. This works mostly for
model-agnostic QE, since they can evaluate any
MT output. However, for the model-specific QE
approaches like kNN-QE, which provide quality
scores on their own MT output, there are no longer
readily available human quality scores for QE eval-
uation. Previous works on model-specific QE ad-
dress this issue differently. Some works use MT
glass-box features for QE without changing the
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MT model, thus they can still produce the same
MT translation that is used in the QE benchmarks
(Yankovskaya et al., 2018; Wang et al., 2021). (Lu
et al., 2022) train their MT model on the same
data as the model used in the QE benchmarks and
perform force decoding to get the exact same MT
output. These approaches are then limited to the
MT model used in the QE benchmarks. On the
other hand, some works perform human evaluation
on their own MT output for QE evaluation (Rik-
ters and Fishel, 2017; Niehues and Pham, 2019;
Fomicheva et al., 2020; Zhang et al., 2022). This
requires human resource, which is costly and not
always available. Overall, it is not yet clear what is
the go-to method to perform automatic evaluation
for model-specific QE. To the best of our knowl-
edge, we are the first to perform detailed analysis
on whether it is possible to automate evaluation for
QE by making use of reference-based metrics.

kNN for generation tasks Previous works have
applied k-nearest neighbors in text generation.
kNN-LMs (Khandelwal et al., 2019) enable lan-
guage models to interpolate their token prediction
output with a k-nearest neighbors model, where
nearest neighbors are retrieved from a datastore of
sample representations. kNN-MT (Khandelwal et
al., 2020) also enables the MT model to predict
tokens using a nearest neighbor classifier over a
datastore of representations. kNN-LMs and kNN-
MT are particularly useful for adapting models to
diverse domains by using domain-specific datas-
tores. Our kNN-QE approach is similar to these
works in two aspects. First, in the datastore gen-
eration process, it also generates token representa-
tions by performing one forward pass of the model
through the training data. Second, during infer-
ence, it also retrieves similar tokens in the data-
store based on the token representation distance.
The difference is that our kNN-QE approach uses
the retrieved neighbors to assess the quality of the
generated token, rather than modifying the model
output like kNN-LMs and kNN-MT.

3 Quality Estimation with kNN

Motivation We propose kNN-QE - a model-
specific Quality Estimation method that exploits
information from the MT model’s training data us-
ing k-nearest neighbors. Our method is unsuper-
vised, thus does not require human quality scores
for training. Generally, if the hidden representa-
tion of a translation sample generated during in-

ference is similar to ones generated on the training
data, then it is an indication that this sample is in-
domain, thus more likely to have higher quality.

Generating the datastore We generate a data-
store on the MT training data as follows. We
first use the MT model to perform translation on
its training set with force decoding on the refer-
ence. That is, we give the model human reference
translation prefixes as input at every time step to
generate the next translation token. We save the
last-layer decoder hidden representation of every
output token to the datastore. We do forced de-
coding on the reference for datastore generation
since it provides an indication of confidence: if
during inference, the self-generated prefix trans-
lation is high-quality, it would better match the
forced decoding condition where prefixes are gold
translation, thus making the representation of the
inference-time generated token closer to the ones
in the datastore.

Formally, let the mth training source sen-
tence be Xm = (xm1 , xm2 , .., xm|Xm|) and the

mth training reference target sentence be Ŷ m =
(ŷm1 , ŷm2 , .., ŷm|Ŷ m|), where the element tokens are
subwords. The last-layer decoder hidden represen-
tation of the output token at time step i with forced
decoding on the reference is:

d̂mi = Dec(Em, (ŷm1 , ŷm2 , .., ŷmi−1)) (1)

where Em = Enc(Xm), Dec and Enc are the
decoder and encoder functions respectively. We
save to the datastore the d̂mi representation for each
output token ŷmi in the training data.

Retrieving neighbors during inference During
inference, for each generated token, we use its last-
layer decoder hidden representation and find the
k-nearest neighbors from the datastore. The neigh-
bor retrieval can be highly optimized using toolkits
like Faiss (Johnson et al., 2019), thus does not cost
too much inference speed.

Formally, let the output sentence be Y =
(y1, y2, .., y|Y |). The last-layer decoder hidden
representation of the output token yj at time step
j is (no forced decoding at inference time):

dj = Dec(E, y1, y2, .., yj−1)) (2)

where E = Enc(X). We find the set Nj of k-
nearest neighbors of yj by:

Nj = argmink

m∈train,i∈1..|Ŷ m|
(L2(dj , d̂

m
i )) (3)
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Figure 1: Illustration of our automatic QE evaluation approach.

where argmink returns the indices of k smallest
elements and L2 is the Euclidean distance.

Derive QE metrics Given the retrieved k-
nearest neighbors, we derive QE metric sj for each
inference-time generated token yj :

• kNN token distance: We calculate the aver-
age distance from yj to its k-nearest tokens in
the datastore:

sj = avg
(m,i)∈Nj

(L2(dj , d̂
m
i )) (4)

We assume the lower the distance, the better
the translation quality, since the generated to-
ken is familiar to the MT model.

• kNN sentence similarity: We calculate the
average cosine similarity between the whole
inference-time generated sentence and the K
sentences in the training data to which the
kNN tokens belong:

sj = avg
(m,i)∈Nj

(cos sim(emb(Y ), emb(Ŷ m)))

(5)
where cos sim is the cosine similarity func-
tion, emb is the sentence embedding function.
For sentence embedding, we use an external
model instead of the MT model itself, since
the external model won’t be affected by arti-
facts in the MT training data.
We assume the higher the similarity, the bet-
ter the translation quality, since the generated
sentence is familiar to the MT model.

• Number of different kNN tokens: We count
the number of distinct tokens amongst the re-
trieved kNN tokens:

sj = |{ŷmi |(m, i) ∈ Nj}| (6)

We assume the higher the number, the lower
the translation quality, since it means the
neighbor cluster is not representative of any
specific token, indicating that the model is un-
certain about the generated representation.

• Model prediction equals retrieved kNN to-
kens: We count the number of retrieved kNN
tokens that are the same as the model output
token yj :

sj = |[ŷmi |(m, i) ∈ Nj ∧ ŷmi = yj ]| (7)

We assume the higher the number, the better
the translation, since it is easy for the model
to map the representation to one single token.

Using these metrics, we can get quality scores on
the token level. To get scores on the segment level,
we take the average of the scores of tokens:

sY = avg
j∈1..|Y |

(sj) (8)

4 Automatic evaluation for Quality
Estimation

Motivation Normally, to evaluate QE metrics,
people calculate the correlation between QE-
generated quality scores and human-generated
quality scores on some MT output (Zerva et al.,
2022). However, as discussed above, model-
specific QE approaches such as kNN-QE provide
quality scores on their own MT output, thus we
cannot evaluate them using the available human
quality scores on different MT outputs in the pub-
lic benchmarks. Collecting human-generated qual-
ity scores again on this specific MT output would
be costly in terms of time and human resources.
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Therefore, we propose an automatic approach us-
ing reference-based metrics as gold standard to
evaluate QE metrics.

Reference-based metrics as gold Recall that
Quality Estimation takes only the source sentence
and the MT translation for outputting a quality
score, while reference-based metrics also make use
of human gold-standard translation. As a result,
reference-based metrics are usually more robust
than QE metrics (Freitag et al., 2023). There-
fore, we attempt to perform automatic evaluation
for QE by calculating the correlation between the
QE scores and the ref-based metrics scores. In
other words, we are using the ref-based metrics
scores in place of human-provided scores as the
gold standard. We investigate scores at the seg-
ment level. Using this approach, we can flexibly
generate gold-standard quality scores for any MT
output, rather than relying on fixed human quality
scores on some pre-made MT output.

Boosting reference-based metrics’ reliability
Intuitively, it is important to have a robust
reference-based metric since we are using it as
gold standard for reference-free QE. One potential
way to have more robust reference-based metrics
is to increase the number of references. Therefore,
we propose to use test datasets with multiple ref-
erences, and additionally use a paraphraser tool to
generate synthetic references.

Choosing reference-based metric We investi-
gate whether reference-based metrics are good
enough for evaluating QE metrics, and which
reference-based metric is best suited. We gather
different QE metric submissions on public shared
tasks, and measure the correlation between the QE
ranking created by human annotations and the QE
ranking created by reference-based metrics. An il-
lustration of the process is shown in Figure 1.

Specifically, assume we have n MT output seg-
ments, m QE metrics and p reference-based met-
rics. Let QEi, RBj , H ∈ Rn×1 be the quality
scores assigned to the MT translations by the ith

QE metric, the jth reference-based metric and the
human annotator respectively. The gold evaluation
for the QE metrics is then:

MG = (c(QE1, H), c(QE2, H), ..., c(QEm, H))
(9)

where c is a correlation function such as Spearman.
The automatic evaluation for the QE metrics using

the jth reference-based metric is:

MRj =

(c(QE1,RBj), c(QE2,RBj), ..., c(QEm,RBj))

(10)

The performance of the jth reference-based metric
on ranking QE metrics is then:

c(MRj,MG) (11)

Note that this is not the same as the performance of
the jth reference-based metric on scoring segment-
level MT, which is defined as:

c(RBj ,H) (12)

5 Experimental Setup

5.1 Automatic evaluation for Quality
Estimation

Dataset In our experiments, we uses the En-
glish – German data from two shared tasks:
WMT22 Quality Estimation (Zerva et al., 2022)
and WMT22 QE as a Metrics (Freitag et al.,
2022). The WMT22 Quality Estimation shared
task, which we refer to as QE Task, is specialized
in evaluating Quality Estimation. The WMT22 QE
as a Metrics shared task, which we refer to as QE-
M Task, is meant for comparing QE metrics to
reference-based metrics. Both shared tasks contain
submissions from different QE systems. which is
useful for us to investigate whether we can auto-
matically rank these QE systems. Specifically, the
QE-M Task data includes source sentences, ref-
erence sentences and translation sentences from
multiple different MT systems from the WMT22
General MT task (Kocmi et al., 2022), along with
human-labeled MQM quality score (Lommel et al.,
2014) and QE submission scores on each trans-
lation sentence. The data from the QE Task is
similar, except that (1) they only use data from
the News domain rather than the full test set from
the WMT22 General MT task (including the Con-
versation, Ecommerce, News and Social domains)
and (2) the MT output is from a single MT system.
More details can be found in Table 1.

Models and Tools We use Spearman’s rank cor-
relation coefficient ρ for the calculation of auto-
matic QE evaluation, i.e., the correlation function
used in Equations 9, 10, 11 and 12. For creat-
ing synthetic references, we use a German para-
phraser available on Huggingface‡. We consider

‡https://huggingface.co/Lelon/
t5-german-paraphraser-large
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QE Task QE-M Task
Domain News Multiple *
# sentence pairs 511 2,037
# references 2 2
# MT systems 1 14
# QE metrics 10 10
* Conversation, Ecommerce, News, Social

Table 1: Statistics of WMT22 Tasks on English–Geman.

different reference-based metrics to see which one
is suitable for automatic QE evaluation, which in-
cludes: (1) lexical-based metrics: BLEU (Papineni
et al., 2002), TER (Snover et al., 2006) and chrF
(Popović, 2015); (2) embedding-based metrics:
BERTScore (Zhang et al., 2019) and (3) neural-
based metrics: BLEURT (Sellam et al., 2020),
UniTE-MUP (Wan et al., 2022), COMET 22 (Rei
et al., 2022a), xCOMET XL (Guerreiro et al.,
2023) and MetricX-23 XL (Juraska et al., 2023).

5.2 Quality Estimation with kNN
Dataset We use the TED talks English–German
bitext data from the evaluation campaign IWSLT
2014 (Cettolo et al., 2014) for training/fine-tuning
MT models. The dataset includes 174,443 training
sentences, 2,052 validation sentences and 4,698
testing sentences. For evaluation, we use TED test
split, and additionally an out-of-domain test set
from the WMT22 General task, i.e., the same data
as for the automatic QE evaluation experiments.

For generating the train datastore, we use the
train split of TED, i.e., the training data of the MT
models. Additionally, we try to use an external,
non-train datastore generated using the Europarl
dataset (Koehn, 2005). From Europarl, we se-
lected a subset with similar size as the TED train-
ing set to rule out the data size factor when com-
paring the external datastore to the TED datastore.
We generate this external datastore similarly to the
train datastore, where we perform inference with
reference-forced decoding on Europarl using the
TED-trained MT models.

MT models We consider two MT models: a
model trained from scratch on TED, and a pre-
trained DeltaLM model (Ma et al., 2021) fine-
tuned on TED. The model trained from scratch
uses the transformer base architecture from the
Fairseq library (Ott et al., 2019), with 6 encoder
layers, 6 decoder layers and embedding size of
512. Its vocabulary size is 10,112. The fine-

tuned DeltaLM model uses the DeltaLM base ar-
chitecture with 12 encoder layers, 6 decoder layers
and embedding size of 768. Its vocabulary size is
250,001. For the fine-tuned DeltaLM model, we
build the datastore using only the fine-tuning data
(TED), not the whole pretraining data of DeltaLM.

Automatic QE evaluation We focus on evalu-
ating kNN-QE on the segment level. We use our
automatic evaluation method described in Section
4. We calculate the Spearman correlation between
segment-level scores generated by the QE metrics
and gold scores generated by the reference-based
MetricX-23 (Juraska et al., 2023), since we find
MetricX-23 to be the most robust in QE ranking.
Information about the token-level experiments on
kNN-QE can be found in Appendix A.

Baselines We use the probability output from the
MT model as an unsupervised QE baseline. We
take the average of the probability for each token to
get the segment-level score. The higher the prob-
ability, the better the quality, as it is an indication
that the MT model is confident. Since our kNN-
QE approach is unsupervised, we choose the su-
pervised WMT22 COMET-Kiwi model (Rei et al.,
2022b) as an upper-bound for the performance.

Tools For training/fine-tuning MT models, we
use the Fairseq library (Ott et al., 2019). For gen-
erating the datastore and retrieving kNN samples,
we use the kNN-box toolkit (Zhu et al., 2023),
which makes use of Faiss (Johnson et al., 2019)
for efficient similarity search. For embedding sen-
tences, we use an external model from Hugging-
face§. Experiments were conducted on an Nvidia
TITAN RTX GPU with 25 GB of memory.

6 Results and Discussion

6.1 Automatic QE evaluation

Overall performance The performance of dif-
ference reference-based metrics on ranking QE
submissions on the two WMT22 shared tasks is
shown in Table 2. MetricX-23 XL performs the
best on the QE-M Task with 0.939 Spearman cor-
relation to human-based ranking. BLEU performs
the best on ranking QE metrics on the QE Task
with 0.721 Spearman correlation to human-based
ranking. Given these high correlations, we con-

§https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2
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clude that using reference-based metrics is suffi-
cient for automatically evaluating QE metrics.

QE Task QE-M Task
BLEU 0.721 0.333
TER 0.685 0.782
chrF 0.564 0.745
BERTScore 0.636 0.576
BLEURT 0.442 0.927
UniTE-MUP 0.321 0.867
COMET 22 0.273 0.903
xCOMET XL * 0.358 -
MetricX-23 XL 0.261 0.939
*: xCOMET models are trained on WMT22
data except for the News domain, thus only
valid to be tested on the QE Task data.

Table 2: Overall performance of different reference-based
metrics on ranking QE on two public shared tasks.

We take a closer look at the correlations on the
QE Task. It is quite surprising that BLEU has
the highest correlation in QE ranking, since BLEU
has recently been shown to have worse evalua-
tion performance than other neural-based metrics
(Freitag et al., 2022). However, BLEU’s ranking
correlation is quite low on the QE-M Task data
as expected. A similar pattern can be observed
where MetricX-23 XL has unexpectedly low per-
formance on the QE Task, but good performance
on the QE-M task. We assume that the unexpected
ranking performance of the metrics on the QE Task
data is due to the narrow scope of QE Task: it con-
siders the output of a single MT model on a single
domain. On the other hand, the QE-M Task data
is on multiple MT systems output on multiple do-
mains. Therefore, we suspect that the results on
the QE-M Task are potentially more generalizable,
and that MetricX-23 XL is the best metric for rank-
ing QE metrics. Our following experiment results
show evidence that supports this assumption.

MetricX-23 XL robustness We collect the per-
formance of reference-based metrics on QE rank-
ing across different domains and different MT sys-
tems’ output, as can be seen in Figure 2a and Fig-
ure 2b, respectively. Generally, the neural-based
metrics have better performance than the lexical-
based and embedding-based metrics. Their scores
are higher and more consistent across different do-
mains and MT systems’ output. Among the neural-
based metrics, MetricX-23 XL has the best perfor-
mance in terms of score and consistency.
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(a) Group by domains in WMT 22 General.
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General.

Figure 2: QE ranking performance across different factors.

Evaluating segments versus evaluating QE met-
rics We investigate whether better performance
on evaluating MT segments (Equation 12) means
better performance on evaluating QE metrics
(Equation 11) for reference-based metrics. Figure
3 shows that this is not always the case. For ex-
ample, in Figure 3a on the QE-M Task data, TER
and chrF have low performance on segment-level
evaluation, but have decent performance on rank-
ing QEs. However, both of them are still worse
than MetricX-23 XL. In Figure 3b on the QE Task
data, the pattern is even more unexpected, where
the lexical-based metrics have significantly better
performance in QE ranking than the neural-based
metrics, while being worse at evaluating segment-
level MT output. However, we suspect that this is
due to the QE Task data being specific on a single
domain and a single MT system’s output, thus the
result is not representative. The following experi-
ment result supports this assumption.

Importance of a broad-ranged test set We per-
form the same experiment on segment-level evalu-
ation performance versus QE ranking performance
on the QE-M Task, but limit it to a single domain
and a single MT system. In Figure 4a, on a sin-
gle MT system output on all domains, the neural-
based metrics perform well on both segment-level
evaluation and QE ranking as expected. However,
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Figure 3: Correlation between the performance on evaluating
translation segments and the performance on QE ranking.

on a single MT system output on a single domain
(Figure 4b), neural-based metrics have worse QE
ranking performance than some lexical-based met-
rics, while still doing well on segment-level eval-
uation. It can be concluded that reference-based
metrics can have unexpected performance when
the testing condition is too narrow. Therefore, it is
important to perform evaluation on a broad-ranged
test set with multiple domains so that we can rely
on neural reference-based metrics for QE ranking.

Importance of references: quantity and qual-
ity Figure 5 shows the effect of references on
reference-based metrics’ performance on QE rank-
ing. Having two human-created references is bet-
ter than one, showing that increasing the quantity
of references helps improve performance. How-
ever, adding synthetic references created by para-
phrasing decreases the performance to some ex-
tent. This shows that it is important to add high-
quality references, otherwise it might have the op-
posite effect of harming the overall performance.

6.2 Quality Estimation with kNN

We report on the segment-level performance of
kNN-QE. Experiments on kNN-QE performance
on the token level can be found in Appendix A.
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(MT system: comet bestmbrMT).
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Figure 4: Correlation between the performance on evaluat-
ing translation segments and the performance on QE ranking,
limited by MT system and domain.

kNN-QE better than MT probability, but worse
than supervised QE The performance of our
kNN-QE approach is shown in Table 3. We con-
sistently observe that the performance of the kNN
token distance metric is better than the other kNN-
QE metrics. kNN token distance (Row 3) has bet-
ter performance than the probability baseline (Row
1) by 0.1 increase in Spearman correlation to hu-
mans in most cases. However, it still falls behind
the supervised QE baseline (Row 2). Ensembling
all four kNN-QE metrics gives improvement in
performance, but not significant, as it is only ≈
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Figure 5: QE-M Task: Effect of number of references. The
first 2 boxes use human references only, while the last 2 boxes
also include synthetic references created by paraphrasing.
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Transformer Scratch Fine-tuned DeltaLM
TED WMT22 TED WMT22

Baselines
1 Probability 0.535 0.525 0.462 0.423
2 Supervised QE 0.773 0.793 0.705 0.771

kNN-QE
3 TED kNN token distance a 0.650 0.623 0.575 0.438
4 datastore kNN sentence similarity a 0.570 0.553 0.527 0.398
5 kNN nr. distinct tokens b 0.475 0.469 0.423 0.336
6 kNN tokens = output token b 0.489 0.497 0.410 0.348
7 Ensemble c 0.652 0.627 0.576 0.439

8 20% TED kNN token distance a 0.620 0.601 0.554 0.412
9 datastore kNN sentence similarity a 0.532 0.486 0.496 0.373
10 kNN nr. distinct tokens b 0.498 0.494 0.407 0.373
11 kNN tokens = output token b 0.491 0.507 0.390 0.353
12 Ensemble c 0.622 0.604 0.555 0.413

13 Europarl kNN token distance a 0.546 0.514 0.543 0.414
14 datastore kNN sentence similarity a 0.121 0.246 0.103 0.051
15 (̸= train) kNN nr. distinct tokens b 0.383 0.351 0.320 0.271
16 kNN tokens = output token b 0.437 0.465 0.384 0.335
17 Ensemble c 0.548 0.517 0.544 0.415
a: Number of neighbors k = 1. b: Number of neighbors k = 10.
c: Ensembling from the other four KNN-QE metrics.

Table 3: Overall performance of kNN-QE on the segment level.

0.002 points higher than the performance of the
kNN token distance metric alone.

Performance diminishes with fine-tuned MT on
out-of-domain test set From Table 3, we can see
the performance change when moving from the in-
domain test set (TED) to out-of-domain test set
(WMT22). For the Transformer MT model trained
from scratch on TED (”Transformer Scratch”), our
approach works for both in-domain and out-of-
domain test sets, where it outperforms the proba-
bility baseline. On the other hand, for the DeltaLM
model fine-tuned on TED, our approach only out-
perform the probability baseline on the in-domain
test set. On the out-of-domain test set, it performs
similar or worse than the probability baseline. This
is possibly due to the fine-tuned DeltaLM model
being pretrained on other data than TED, thus hav-
ing more knowledge on the out-of-domain test set
which is not identifiable if we only use the datas-
tore on TED. It can be concluded that (1) kNN-QE
works best if we build the datastore using the train-
ing data of the model, not only fine-tuning data and

(2) with the appropriate training datastore, the ap-
proach works for out-of-domain test sets.

Reducing the datastore has less negative ef-
fect than expected As can be seen in Figure 6,
generally, the QE performance of the kNN token
distance and kNN sentence similarity metrics in-
creases as the portion of training data used to cre-
ate the datastore increases. However, the QE per-
formance only increases drastically if we increase
the datastore until 20%, afterward, it starts to flat-
ten. For the other two metrics, the QE perfor-
mance slightly fluctuates with different datastore
sizes. More detailed numbers can be seen in Ta-
ble 3, where the QE performance using 20% data-
store is only worse than using the full TED data-
store by ≈ 0.03 reduction in Spearman correla-
tion. This is a positive observation, since build-
ing a smaller datastore would be more memory-
efficient and inference-speed-efficient.

Switching to non-train datastore hurts perfor-
mance As can be seen from Table 3, changing to
the Europarl datastore reduces the performance of
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Figure 6: Effect of reduced datastore. Experiment conducted
with Transformer Scratch MT model on TED. Similar pat-
terns observed with fine-tuned DeltaLM and WMT 22 data.

kNN-QE. This is expected, since a non-train datas-
tore would not be representative of the MT model’s
knowledge. However, using the Europarl datastore
for kNN-QE still works to some extent, as the QE
correlation to humans is still quite high, at around
0.5 using the kNN token distance metrics (Row
13). This is potentially due to the use of forced
decoding on reference: in the datastore, we use ref-
erence translation as prefix to generate each token,
making the generated tokens have higher quality.
Thus the closer the inference-time generated to-
kens are to the high-quality ones in the datastore,
the more likely that they also have high quality.

Interestingly, using this same-size but non-train
datastore leads to worse performance than using
only 20% of the train datastore, which further
strengthens the importance of having a datastore
that represents the model’s knowledge.

We also observe that the negative impact of
switching to a non-train datastore is less significant
for the fine-tuned DeltaLM model than the Trans-
former model trained from scratch. This is poten-
tially due to DeltaLM’s pretraining data containing
the same or similar data to the Europarl data, thus
the Europarl datastore represents the knowledge of
the fine-tuned DeltaLM model to some extent.

Effect of number of neighbors As can be seen
in Figure 7, kNN token distance and kNN sen-
tence similarity metrics only need a small num-
ber of retrieved neighbors. Their performance de-
creases as the number of nearest neighbors in-
creases. This is an indication that only the distance
of the inference-time generated token to its clos-
est training neighbor matters for these two met-
rics. However, for the other 2 metrics, i.e., num-
ber of distinct kNN tokens and number of kNN
tokens same as model output, the higher the num-
ber of neighbors retrieved the better. This is due

to these two metrics only comparing the surface-
level token output, thus retrieving a small num-
ber of neighbors doesn’t provide as much informa-
tion. Based on these observations, we choose the
number of neighbors to be k = 1 for kNN token
distance and kNN sentence similarity metrics and
k = 10 for the other two metrics to report in the
main Table 3.

Observe that with different numbers of near-
est neighbors, the kNN token distance metric still
performs the best. This means that we can go
for this metric in practice with a small number
of retrieved neighbors, which benefits the infer-
ence speed. Combining the small value of k = 1
with the reduced 20% TED datastore, we observe
around 19% increase in inference time when ap-
plying kNN-QE to the generation process.
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Figure 7: Effect of number of neighbors. Experiment con-
ducted with Transformer Scratch MT on TED. Similar pat-
terns observed with fine-tuned DeltaLM and WMT 22 data.

7 Conclusion

In this paper, we proposed kNN-QE – a model-
specific, unsupervised Quality Estimation ap-
proach which exploits the information from the
MT model’s training data. We also propose
an automatic QE evaluation method for such
model-specific QE approaches, which make use
of reference-based metrics. Our experiments show
that this automatic evaluation method is sufficient,
and that the reference-based MetricX-23 XL is the
most suitable. Using this automatic QE evaluation
method, we found that kNN-QE performs better
than the MT probability baseline, but still falls be-
hind the supervised QE approach. We also find
that our approach works with a small number of re-
trieved neighbors and a small portion of the train-
ing datastore, making it more memory- and time-
efficient to be used in practice. For future work,
we can explore whether this method is applicable
to other types of generative models, such as the
currently prominent Large Language Models.
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Fethi Bougares, Rajen Chatterjee, Marta R. Costa-
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Test set QE method Pearson Correlation F1-score
TED Probability 0.07 0.08

kNN token distance a 0.21 0.27
News Probability 0.14 0.12

kNN token distance a 0.21 0.36
a: Number of neighbors k = 1.

Table 4: kNN-QE performance on the token level.

Appendix A. kNN-QE on token level

A.1 Experimental Setup

Motivation for manual evaluation To evaluate
the performance of kNN-QE on the token level,
we need gold-standard token-level quality labels.
On the segment level, we have proposed an auto-
matic QE evaluation method (Section 4) by using
segment-level quality scores made by reference-
based metrics as gold standard instead of human
quality scores. In principle, we can do the same
for token-level evaluation, by finding a reference-
based metric that provides quality labels on the to-
ken level.

However, the performance of reference-based
metrics on the token level is usually not as good as
on the segment level. For example, the xCOMET
metric provides both error-span prediction and
segment-level quality scores. Their segment-level
quality scores correlate well with human MQM
scores, at 0.653 Pearson. Meanwhile, the error-
span prediction performance is quite poor, at 0.320
F1 score (although they are still very useful when
being aggregated to provide segment scores). This
is reasonable, since more fine-grain evaluation
tends to be more difficult.

Due to the not-yet-perfect token-level perfor-
mance of reference-based metrics, we choose not
to use them as gold standard to evaluate kNN-QE.
We instead opt for performing manual annotation
on the token level of the MT output to evaluate
kNN-QE.

Manually annotated data for evaluation We
manually annotated the MT output on the token
level. We annotate 2110 tokens from 100 out-
put sentences on TED data (in-domain test set)
and 3503 tokens from 100 output sentences on the
News test data (out-of-domain test set).

Metrics Recall that for each generated subword,
kNN-QE provides a quality score. To report the
performance of kNN-QE on the token level, we

use two metrics: Pearson Correlation and F1-
score. For Pearson Correlation, we treat the
human-annotated labels as continuous scores (0
representing a BAD token, 1 representing a OK to-
ken), and calculate its correlation to the kNN-QE
scores. For the F1-score, we turn the continuous
kNN-QE scores into binary labels using a thresh-
old. We choose a threshold that maximizes the F1-
score.

Baseline We compare the performance of kNN-
QE to an unsupervised baseline using probability
output from the MT model.

Experiment scope Since it is difficult to perform
manual evaluation on a large scale, we limit the
scope of our experiment on the token level. In
this experiment, we only report on the Transformer
model trained from scratch on TED and our best
kNN-QE metric, i.e., kNN token distance. Due to
this small scale, we only include the token-level
experiment here in the Appendix for more infor-
mation, rather than including it in the main part of
the paper.

A.2 Results and Discussion
As can be seen from Table 4, our kNN-QE out-
performs the MT probability baseline. This is an
indication that kNN-QE also works on the token
level. Additionally, we observe that the QE perfor-
mance is generally better on the out-of-domain test
set.
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