
Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1), pages 147–163
June 24-27, 2024 ©2024 European Association for Machine Translation

SubMerge: Merging Equivalent Subword Tokenizations
for Subword Regularized Models in Neural Machine Translation

Haiyue Song1 Francois Meyer2 Raj Dabre1
Hideki Tanaka1 Chenhui Chu3 Sadao Kurohashi3,4
1 NICT, Japan 2 University of Cape Town, South Africa

3 Kyoto University, Japan 4 NII, Japan
{haiyue.song, raj.dabre, hideki.tanaka}@nict.go.jp,

francois.meyer@uct.ac.za,
{chu, kuro}@i.kyoto-u.ac.jp

Abstract

Subword regularized models leverage mul-
tiple subword tokenizations of one target
sentence during training. Previous de-
coding algorithms select one tokenization
during inference, leading to the underuti-
lization of knowledge learned about mul-
tiple tokenizations. To address this, we
propose the SubMerge algorithm to res-
cue the ignored Subword tokenizations
through Merging equivalent ones during
inference. SubMerge is a nested search al-
gorithm where the outer beam search treats
words as the minimal units, and the inner
beam search provides a list of word can-
didates and their probabilities by merging
subword tokenizations that form the same
word. Experimental results on six machine
translation datasets show more accurate
word probability estimation and higher
translation quality using SubMerge than
beam search. Additionally, we provide
time complexity analysis and investigate
the effect of different beam sizes, training
set sizes, dropout rates, and whether it is
effective on non-regularized models.

1 Introduction

Despite the end-to-end nature that makes neu-
ral machine translation (NMT) (Sutskever et al.,
2014; Bahdanau et al., 2014; Vaswani et al., 2017;
Gehring et al., 2017) the most prevalent and con-
venient approach for machine translation (MT),
subword tokenization (Sennrich et al., 2016b;

© 2024 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

Training

Inference
Previous: Choose argmax	𝑃!(subword|context)

Context

▁watch ing

▁wat ching

▁w chingat

▁watched

0.2

0.2

0.3
0.1

❌

▁watch ing

▁wat ching

▁w chingat

Encoder Decoder

を⾒ている … …
watching

Context
watching

watched

0.5
Proposed: Choose argmax	𝑃! word context after merging

0.3

Figure 1: Subword regularized models suffer from discrep-
ancies between training and inference, where they are trained
on multiple target tokenizations and generate one. We pro-
pose to merge equivalent subword tokenizations that compose
the same word with different conditional probabilities during
the inference.

Provilkov et al., 2020; Kudo and Richardson,
2018; Kudo, 2018a) remains an indispensable pre-
processing step for most NMT systems. Subword
vocabularies address the out-of-vocabulary prob-
lem of word-based NMT systems (Kalchbrenner
and Blunsom, 2013; Bahdanau et al., 2014; Lu-
ong et al., 2015) by reducing new words to known
subwords, while avoiding the high computational
cost of character-based NMT systems (Gupta et al.,
2019; Kim et al., 2016; Costa-jussà and Fonollosa,
2016; Ling et al., 2015; Cherry et al., 2018) by en-
abling much shorter input and output sequences.

Deterministic segmenters like Byte-Pair Encod-
ing (BPE) (Sennrich et al., 2016b) and Sentence-

147

Piece (Kudo, 2018a) are widely used due to their
simplicity and effectiveness. They are determin-
isitic in the sense that they consistently generate
the same tokenization for a given sentence. NMT
models trained on consistent subword tokeniza-
tions typically allocate the majority of a sentence’s
true probability (considering all potential tokeniza-
tions by marginalizing over them) to its specific
tokenization (Cao and Rimell, 2021), except for
out-of-domain data (Chirkova et al., 2023). There-
fore, the probability of the sentence approximately
equals the probability of that tokenization.

On the other hand, stochastic segmenters such as
subword regularization methods (Provilkov et al.,
2020; Kudo, 2018a) produce multiple tokeniza-
tions of a given sentence during training, as illus-
trated in Figure 1. As a data augmentation method,
models trained on regularized data usually outper-
form those trained on non-regularized data, espe-
cially in low-resource scenarios. However, this
causes a discrepancy between training and infer-
ence. During training, the model learns to gen-
erate multiple target tokenizations for each source
sentence and learns to distribute the probability of
a target sentence across all the tokenizations. Dur-
ing inference, greedy or beam search approximates
the single highest probability tokenization. This
causes a discrepancy - the probability of a target
tokenization diverges drastically from the proba-
bility of a target sentence. The inaccurate proba-
bility estimation of the next word during inference
in turn leads to a degradation in translation qual-
ity. The way to overcome this is to incorporate the
marginal likelihood of the next words during de-
coding for the subword regularized models.

To this end, we propose SubMerge, a decoding
algorithm that aggregates probabilities from ex-
ponentially many tokenizations for a sentence by
merging subword tokenizations that form the same
word. The property of BPE-dropout (Provilkov
et al., 2020) that each word is individually seg-
mented makes aggregating probabilities from ex-
ponentially many tokenizations theoretically pos-
sible. As for the implementation, SubMerge is a
nested beam search approach. In the outer beam
search, we hide the detail of possible subword tok-
enizations of the word, treating words as minimal
units. This ensures that the outer beam is unaware
of and unaffected by the subword tokenizer. In
the inner beam search, we limit the search space
within the word boundary. The inner beam search

finds the n-best tokenizations, merges equivalent
ones, and returns a list of words and the corre-
sponding probabilities.

Previous attempts to estimate marginal likeli-
hood over tokenizations include summing over n-
best tokenizations (Cao and Rimell, 2021) and us-
ing importance sampling (Chirkova et al., 2023).
However, these algorithms focus on perplexity es-
timation, assuming the output is already in hand.
In our approach, we perform marginal likelihood
estimation for the next words along with the infer-
ence process, aiming to improve not only the esti-
mation precision but also the translation quality. In
a nutshell, our contributions are as follows:

• We propose SubMerge, a nested beam search
algorithm for generating text with subword
regularized models. It merges equivalent
subword tokenizations for the next words,
thereby enhancing probability estimation pre-
cision and translation quality.

• Experimental results on six machine trans-
lation datasets demonstrate significant im-
provements in estimating the underlying word
perplexity computation for a model and its
translation quality.

• We provide analyses of time complexity, var-
ious beam sizes, the selection of the inner
searching function, and the impact of hyper-
parameters.

2 Preliminaries

This section formulates the objective of the infer-
ence process of NMT models, highlights the dis-
tinction introduced by subword regularized mod-
els, and introduces how we address it.

Inference Objective An NMT model with
parameters θ during inference is to obtain
arg max

Y
Pθ(Y |X) where X and Y are the source

and target sentences in plain text form. For
subword-based NMT models, we tokenize X into
a sequence of tokens during both training and in-
ference. We tokenize Y during the training and
try to predict a sequence of tokens that compose Y
during inference. We use two tokenizers τS(X) =
x, where x = (x1, ..., xn) and τT (Y) = y, where
y = (y1, ..., ym). Each subword xi or yi is a non-
empty substring of the text X or Y in a finite-size
subword vocabulary predefined by the source or

148

target tokenizer. In theory,

Pθ(Y |X) ̸= Pθ(y|x), (1)

because there are multiple tokenizations of X and
Y (besides x and y) that the model Pθ would as-
sign non-zero probabilities to (Cao and Rimell,
2021).
Non-regularized Models For NMT models using
deterministic tokenizers such as BPE (Sennrich et
al., 2016b), tokenization function τ(·) is a bijec-
tive function, and we can approximate the objec-
tive using one tokenization with a small gap (less
than 0.5%) (Chirkova et al., 2023):

Pθ(Y |X) ≈ Pθ(y|x). (2)

Therefore, we can use arg max
y

Pθ(y|x) to ap-

proximate arg max
Y

Pθ(Y |X) with greedy or beam

search in inference. This allows us to identify
the next tokens with high conditional probabilities
without concern for the discrepancy between the
probability of raw text Y and of the particular tok-
enization y.
Subword Regularized Models For NMT models
using stochastic tokenizers (Provilkov et al., 2020),
the tokenization function τ yields multiple tok-
enizations for one sentence. That is τS(X) =
x ∈ VS(X) where x ∼ PτS (x|X). Similar for
Y . In this case, the number of possible segmen-
tation VS(X) increases exponentially according to
the length of X , which deviates Pθ(y|x) drasti-
cally from Pθ(Y |X), thus it requires marginaliza-
tion over all possible tokenizations:

Pθ(Y |X) =
∑

x∈VS(X)

∑

y∈VT (Y)

Pθ(y|x)PτS (x|X).

(3)

This study focuses on better estimating the
marginal likelihood of the target side, so we sim-
plify Eq. (3) by using the most probable source
tokenization arg max

x∈VS(X)
PτS(·)(x|X) and remove the

effect of the source tokenizer, resulting in:

Pθ(Y |X) ≈
∑

y∈VT (Y)

Pθ(y|x). (4)

Inference for Subword Regularized Models We
propose SubMerge to approximates Eq. (4) by in-
troducing an intermediate variable, word tokeniza-
tions w = (w1, ..., wn), generated by a word to-

kenizer τW (·) which is a bijective function.1 The
problem is simplified as:

Pθ(Y |x) = Pθ(w|x) =
n∏

i=1

Pθ(wi|w<i,x). (5)

We estimate Pθ(wi|w<i,x) by summing over
probabilities of subword tokenizations for one
word wi where the search space is much smaller
compared to the search space of tokenizations of a
whole sentence in Eq. (4):

Pθ(wi|w<i,x) ≈
∑

y′∈VT (wi)

Pθ(y
′|w<i,x). (6)

In practice, since the decoder only takes subword
as input, we feed the best subword tokenization of
the next word wi, which is arg max

y′∈VT (wi)
Pθ(y

′|w<i).

In this way, the probability of the target sentence
is accurately calculated through a deterministic
word tokenization as shown in Eq. (5), where the
probability estimation of each word is precisely
estimated through marginal likelihood estimation
shown in Eq. (6). We implement Eq. (5) with the
outer beam search as introduced in Section 3.2 and
Eq. (6) with our inner beam search as introduced
in Section 3.3.

3 Methodology

3.1 Overview of SubMerge
An overview of the SubMerge algorithm is shown
in Figure 2. It is a nested beam search decod-
ing algorithm that contains an outer beam search
as explained in Section 3.2 and an inner beam
search with subword merging post-processing as
explained in Section 3.3. The outer beam search
selects from a list of words considering the con-
ditional probability in each step and estimates the
most probable sentence arg max

Y
Pθ(Y |X). The

inner beam estimates the conditional probability
of words in Eq. (6) by merging the probabilities of
different subword tokenizations of the same words.

3.2 Outer Beam Search
The outer beam search algorithm is shown in Al-
gorithm 1. It follows the standard beam search ap-
proach, where the difference is that words serve
1That is τW (Y) = w. Note that word tokenizer is not a bijec-
tive function for languages such as Japanese or Chinese. For
these languages, we can use specific word segmentaters such
as Jumanpp or Stanford Word Segmenter, which are bijective.

149

𝒚!"

▁watch ing

▁wat ching

▁w chingat

▁watched

He is at home

watching

watched

looking

now

……

……

……

his

▁watch ed

house

room

▁TV

▁tele

▁the

▁TV

▁TV

▁sub/<eos>

Inner beam search

Outer beam search

Merge

Figure 2: Overview of SubMerge. It contains an outer beam
search that views words as minimal units. The candidate
words and their probabilities are obtained from merging sub-
word tokenizations in the n-best list of the inner beam search.

as the basic units. At each time step t in line 3,
we explore each state s in the queue Bt−1 that
saves the best results in the previous step. When
s is not finished, the candidates of the next words
are obtained from a call to the inner beam search
shown in line 9. Each state in the outer beam
search queue contains the probability of the gener-
ation, the previous words, and their most probable
tokens. Each state s′ from the inner beam search
contains the probability of the possible next word,
the next word itself, and the most probable sub-
word tokenization of that word. We add the new
state to Bt shown in line 14 and only save the top-
K ones shown in line 16. The most probable sub-
word tokenization is used as the contextual input
in the next decoding step.

In practice, we take the logarithm (log(·)) of the
probabilities for computational precision. We im-
plemented early stopping after all sequences reach
the special end-of-sentence (< eos >) token.

3.3 Inner Beam Search
The inner beam search is shown in Algorithm 2. It
consists of two parts: 1) a token-level beam search
within the word boundary and 2) post-processing
to merge probabilities from equivalent subword to-
kenizations that compose the same word.

The first part is similar to that of the outer beam

Algorithm 1: OuterBeamSearch
Data: Beam width K, max length T
Result: Best sequence of states

1 Initialization:
2 B0 ← {(0, [], [])};
3 for t← 1 to T do
4 Bt ← ∅;
5 foreach s ∈ Bt−1 do
6 if s reaches < eos > then
7 Bt.append(s);
8 continue;

9 foreach s′ ∈ InnerBS(s[2]) do
10 score, word, toks = s′;
11 score← s[0] + score;
12 words← s[1] + words;
13 toks← s[2] + toks;
14 Bt.append((score, words, toks));

15 Sort Bt by scores in descending order;
16 Bt ← Bt[: K]

17 return BT

search. The stopping criteria of one sequence
are reaching the start of the next word (with the
start-of-word indicator ’ ’ Unicode U+2581) or the
< eos > token, where this stopping token will not
be added to the token list. Otherwise, the explo-
ration of the sequence continues according to the
next subword probability distribution given by the
decoder. During the post-processing part, we re-
move special tokens and spaces during the detok-
enization of a token list to form the word and re-
turn a list of words with their probabilities. The
time complexity of SubMerge is O(T ·K3), where
T is the sentence length and K is the beam size
with the derivation in Section 6.

4 Experimental Setup

We introduce the MT datasets and pre-processing
settings Section 4.1. In Section 4.2, we provide de-
tails around the model hyper-parameters, training
and inference settings. In Section 4.3, we present
our evaluation metrics.

4.1 Data and Pre-processing
Datasets We conducted MT experiments with
datasets listed in Table 1, including WMT’22
Livonian–English (Liv–En), Asian Language
Treebank (ALT), IWSLT’15 Vietnamese–English
(Vi–En), WMT’16 Romanian–English (Ro–En),
WMT’15 Finnish–English (Fi–En), and WMT’14
German–English (De–En) datasets. ALT is a
multi-way parallel dataset containing data in En-
glish and other Asian languages including Fil-
ipino (Fil), Indonesian (Id), Japanese (Ja), Malay

150

Algorithm 2: InnerBeamSearch
Data: Beam width K, max length T , toks
Result: Next word list

1 Initialization:
2 B0 ← {(0, toks)};
3 for t← 1 to T do
4 Bt ← ∅;
5 foreach s ∈ Bt−1 do
6 if s reaches or < eos > then
7 Bt.append(s);
8 continue;

9 foreach s′ ∈ Decoder(s[1]) do
10 score, toks = s′;
11 score← s[0] + score;
12 toks← s[1] + toks;
13 Bt.append((score, toks));

14 Sort Bt by scores in descending order.;
15 Bt ← Bt[: K]

16 W = {};
17 foreach s ∈ BT do
18 score, toks = s;
19 word = detokenize(toks);
20 if word /∈W then
21 W [word] = (score, toks)

22 else
23 W [word][0]+ = score

24 return list(W.items())

Dataset Train Valid Test

WMT’22 Liv–En 1, 127 586 856
ALT Asian Langs–En 18k 1, 000 1, 018

IWSLT’15 Vi–En 133k 1, 553 1, 268
WMT’16 Ro–En 612k 1, 999 1, 999
WMT’15 Fi–En 1.8M 1, 500 1, 370
WMT’14 De–En 4.5M 45, 781 3, 003

Table 1: Statistics of the datasets.

(Ms), Vietnamese (Vi), and simplified Chinese
(Zh). We used the ALT-standard-split tool2 to split
the dataset into train, validation, and test sets.

Data Pre-processing We performed word tok-
enization on all data. We applied Juman++ (Tol-
machev et al., 2018) to data in Japanese, Stanford-
tokenizer (Manning et al., 2014) to data in Chi-
nese, and Moses tokenizer (Koehn et al., 2007) to
data in other languages. We normalized Roma-
nian data and removed diacritics following previ-
ous work (Sennrich et al., 2016a). We prepared
the WMT’14 English–German dataset using a data
cleaning and normalization tool from Fairseq.3

2www2.nict.go.jp/astrec-att/member/
mutiyama/ALT
3github.com/facebookresearch/fairseq/
blob/main/examples/translation/

We applied subword tokenization to each trans-
lation direction separately. For source or target lan-
guage, we trained a subword tokenizer with a sub-
word vocabulary of 8k on the monolingual corpus
from the training set. The vocabulary size is com-
puted by the VOLT algorithm (Xu et al., 2021).
For languages in WMT’22, ALT and IWSLT’15,
they are 7k to 8k, and for the remaining datasets
they are 10k to 11k. We used 8k for consistency.
We applied a widely adopted toolkit4 to train BPE-
dropout tokenizers with a dropout rate of 0.2 for
the generation of regularized data and train BPE
tokenizers for the generation of non-regularized
data. The dropout rate is selected through hyper-
parameter grid search from 0.1 to 0.5 with steps of
0.1, where we found 0.2 usually optimal and rate
≥ 0.3 resulted in unstable training.

4.2 NMT Settings

Model We used the Fairseq framework (Ott et
al., 2019). We refer model settings in previous
works (Rubino et al., 2020; Provilkov et al., 2020).
For WMT’22, ALT and IWSLT’15 datasets, we
used 1 attention head, 6 decoder layers, and 4 or
6 encoder layers (4 layers only for En←→Fil and
Ja→En) and FFN dim of 512. For other datasets
we used the standard transformer base architec-
ture (Vaswani et al., 2017). We set dropout and at-
tention dropout rates to 0.1. We applied layer nor-
malization (Lei Ba et al., 2016; Mao et al., 2023)
for both the encoder and decoder.

Training We set the batch size to 3, 072 tokens
for sentence in the source language and used eight
GPUs, resulting in 25k tokens per batch. We used
the Adam optimizer (Kingma and Ba, 2014) with
β1 = 0.9 , β2 = 0.98, and ϵ = 10−9. We
used warmup and linear decay for the learning
rate (Vaswani et al., 2017), with 4k warm-up steps,
an initial learning rate of 1.7 ∗ 10−7 and a final
learning rate of 5×10−4. We used label smoothing
for the cross entropy loss with ϵls = 0.1 (Szegedy
et al., 2015). We calculated the loss on the valida-
tion set after each epoch and applied early stopping
when no improvement was observed for 10 epochs.

SubMerge led to better word-level perplexities
than traditional beam search and higher BLEU and
chrF++ scores, often achieving statistically signif-
icant improvements.

prepare-wmt14en2de.sh
4github.com/google/sentencepiece

151

Word Perplexity ↓ BLEU ↑ chrF++↑
Beam Search SubMerge Beam Search SubMerge Beam Search SubMerge

Low-Resource Scenario
WMT’22 Liv→En 5.93 3.43 1.52 2.04+0.5 18.85 19.45+0.6

WMT’22 En→Liv 19.39 6.88 2.70 3.21+0.5 19.14 19.41+0.3

ALT Fil→En 12.68 4.59 31.10 31.82*
+0.7 57.98 59.17+1.2

ALT En→Fil 9.56 4.14 30.20 31.14*
+0.9 59.64 60.14+0.5

ALT Id→En 17.91 5.91 27.35 28.73*
+1.4 53.61 56.39+2.8

ALT En→Id 16.44 4.91 33.63 34.19 +0.6 63.14 63.89+0.8

ALT Ja→En 24.90 7.79 15.07 15.26*
+0.2 45.07 45.46+0.4

ALT En→Ja 6.55 3.69 14.38 14.59 +0.2 27.92 29.02+1.1

ALT Ms→En 11.28 4.33 31.86 32.16*
+0.3 59.01 60.09+1.1

ALT En→Ms 12.82 4.18 38.83 39.28 +0.5 66.25 66.91+0.7

ALT Vi→En 17.21 6.14 23.64 24.97*
+1.3 52.32 52.93+0.6

ALT En→Vi 8.64 3.52 27.35 27.64 +0.3 53.66 53.82+0.2

ALT Zh→En 23.11 7.81 13.92 14.31*
+0.4 43.54 44.43+0.9

ALT En→Zh 13.61 6.76 9.03 9.87*
+0.8 22.76 23.25+0.5

Middle- and High- Resource Scenario
IWSLT’15 Vi→En 14.41 5.62 27.87 28.43*

+0.6 48.62 50.59+2.0

IWSLT’15 En→Vi 7.98 3.39 28.08 28.16 +0.1 49.27 50.18+0.9

WMT’16 Ro→En 7.44 3.22 33.85 33.77 −0.1 58.75 59.07+0.3

WMT’16 En→Ro 6.78 3.11 34.35 34.50 +0.1 58.66 58.89+0.2

WMT’15 Fi→En 11.27 4.27 18.95 18.88 −0.1 47.24 47.55+0.3

WMT’15 En→Fi 22.52 7.81 16.51 16.65 +0.1 47.66 47.97+0.3

WMT’14 De→En 10.33 3.90 28.85 28.94 +0.1 55.99 56.52+0.5

WMT’14 En→De 12.74 4.64 24.69 24.83 +0.1 52.68 52.77+0.1

Table 2: Results of Subword Regularized Models. Statistical significance p < 0.01 is indicated by * against Beam Search.
SubMerge consistently improves over the Beam Search baseline in most directions. Word perplexity results represent the ability
to accurately estimate sentence probability rather than fluency.

Inference We selected the checkpoint with the
best loss on the validation set. We used beam
search and SubMerge with a beam size of 4 with-
out additional normalization techniques, such as
length penalty or temperature sampling (Dong et
al., 2022).

4.3 Evaluation Metrics
We report word perplexity on generated trans-
lations to compare the probabilities assigned to
generations by models. To evaluate translation
quality, we report BLEU using sacreBLEU (Post,
2018),5 chrF++ (Popović, 2017),6 and BLEURT
(Appendix A). We performed paired bootstrap re-
sampling for statistical significance tests (Koehn,
2004).

The word perplexity is calculated as follows.
We first evaluate the negative log probability of the
generated sentences for models using SubMerge
by:

sscore = −
∑

i

logPθ(wordi), (7)

5BLEU+c.mixed+l.en-lang+#.1+s.exp+tok.13a+v.1.5.1
6github.com/m-popovic/chrF with c6w2F0.4. Simi-
lar trends were observed using different chrF settings.

and models with beam search by:

sscore = −
∑

i

logPθ(toki). (8)

We evaluated the average word perplexity by

wppl = exp(
1

N
sscore), (9)

where N is the number of words. We evaluated the
word perplexity based on the generated hypothe-
sis rather than the reference. This reflects the ac-
tual scenario in generation tasks where we dynam-
ically generate the next token (word) conditioned
on what the model has generated instead of on the
ground truth. Nevertheless, word perplexity is a
conditional probability dependent on not only the
input but also the parameters in the model. There-
fore, the perplexity results must always be consid-
ered along with model-independent metrics such
as BLEU scores.

5 Translation Quality Results

The results for subword regularized models are
shown in Table 2.

152

Word Perplexity We observed that word perplex-
ity results improved substantially in the regular-
ized models in contrast to the tiny gap (0.5%) re-
ported in the non-regularized models (Chirkova et
al., 2023) and in our analysis shown in Section 7.5.
This is due to the fact that multiple tokenizations
for one word appeared during training, which acts
as a label-smoothing function on multiple correct
next tokens. Therefore, the probability weight is
distributed across multiple subwords thus, it be-
comes necessary to incorporate the marginal like-
lihood. It is worth noting that here word perplexity
represents the precision of probability estimation
rather than fluency or quality of the output.
Translation Quality We also found translation
quality improved, especially in low-resource sce-
narios where the average BLEU score improve-
ment is 0.6, whereas in higher resource scenar-
ios, it is 0.3. We also observed consistent im-
provement in the chrF++ score. While only one
translation direction among higher resource direc-
tions is statistically significant, 8 out of 12 low-
resource directions see statistically significant im-
provements. Furthermore, we observed that the
improvement is greater for languages where words
contain more subwords on average (Tsubword). In
the ALT dataset, each Japanese word contains an
average of 1.59 subwords, resulting in a modest
improvement of only 0.2 BLEU. In contrast, Fil-
ipino has a Tsubword of 2.16, leading to an im-
provement of 0.9 BLEU.

6 Efficiency

We show the theoretical analysis of time complex-
ity as well as running time results of SubMerge
comparing with beam search.
Time Complexity Let K denote beam size and
Tword denote the number of words in the sen-
tence. In the outer beam search Algorithm 1, the
loop in line 3 contains at most T steps, and line
5 contains at most K steps. Therefore, the time
complexity of the SubMerge is O(Tword ∗ K ∗
O(InnerBeamSearch()).

In the inner beam search Algorithm 2, line 3
contains at most Tsubword steps, which is the num-
ber of subwords within the word boundary. Line
5 contains at most K steps, and line 9 contains at
most K steps because each beam yields maximum
K candidates by selecting top-K probable tokens.
Therefore, the time complexity of Algorithm 2 is
O(Tsubword ∗K ∗K).

The overall time complexity of SubMerge is
O(

∑
i(Tsubword) ∗ K3) = O(T ∗ K3) which is

K times slower than that of beam search which is
O(T ∗K2).
Inference Time We compared the running times
in the IWSLT’15 En→Vi direction using K = 4
extracted from the log data reported by the Fairseq
framework. SubMerge took 1,665 seconds to gen-
erate 1,268 sentences, whereas beam search took
303 seconds, showing SubMerge is approximately
5.5 times slower. We set the batch size to 1 be-
cause the current SubMerge implementation does
not yet support batch processing.

7 Analysis

We investigate the effect of different beam sizes on
the algorithm in Section 7.1. Section 7.2 explores
using a sampling algorithm as the inner search al-
gorithm. Section 7.3 and Section 7.4 respectively
analyze the impact of the training set size and the
dropout rate. Section 7.5 show conditions in which
SubMerge is effective.

7.1 Assessing Beam Sizes Variants

Figures 3 and 4 show the word perplexities and
BLEU scores of using different beam sizes for both
non-regularized models and subword regularized
models, comparing beam search and SubMerge.

1 2 4 6 8 10
Beam Size

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

W
or

d
PP

L

WMT'15 En->Fi

BPE w/ Beam Search
BPE w/ SubMerge
BPE-dropout w/ Beam Search
BPE-dropout w/ SubMerge

Figure 3: Word perplexity results using different beam sizes
on the WMT’15 En→Fi direction.

We observed that as we increased the beam
size, the word perplexity dropped sharply for BPE-
dropout with SubMerge. When using a large
beam size such as 10, it achieved comparable re-
sults to non-regularized models trained on one-
best tokenization. Nevertheless, SubMerge does
not yet accumulate as large a proportion of the

153

1 2 4 6 8 10
Beam Size

13

14

15

16

17

BL
EU

 S
co

re
WMT'15 En->Fi

BPE w/ Beam Search
BPE w/ SubMerge
BPE-dropout w/ Beam Search
BPE-dropout w/ SubMerge

Figure 4: BLEU results using different beam sizes on the
WMT’15 En→Fi direction.

probability distribution as using a non-regularized
model. Since the training is on multiple segmen-
tations, it certainly comes closer than when using
beam search. For non-regularized models, com-
bining equivalent paths for perplexity estimation
also proved to be effective. We also observed that
increasing beam size can lead to translation quality
improvement for the SubMerge method. However,
this is not the case for all directions (Cohen and
Beck, 2019) and we put the full results using dif-
ferent beam sizes for all datasets in Appendix C.

7.2 Inner Search Algorithm Variants

We replaced the inner beam search with the sam-
pling algorithm as shown in Algorithm 3. In the
algorithm, Q is the queue that contains possible
subword tokenizations of the next word. The sam-
pling algorithm selects the next token tokj in line
10 for each ongoing sample s according to the
probability distribution of subwords in the target
vocabulary outputted by the softmax function after
the decoder. The current s is updated for both the
score and the string. We call this pure sampling be-
cause we did not add sampling temperature, top-k
or top-p filtering. We perform the merging post-
processing the same as the inner beam search.

The word perplexity results are shown in Fig-
ure 5. For the sampling algorithm, we sampled
n2 tokenizations (where n is the beam size) in
the inner loop and for each path, we started with
the same historical information and selected the
next subword according to the probability distri-
bution until we reached the beginning of the next
word. We then perform the same merging post-
processing. However, we observed that the per-
plexity was higher than n-best tokenizations. This

is because the sampling process could easily get
lost at some step by selecting a token in the long
tail with a very low probability.

Algorithm 3: InnerSampling
Data: Sample times K, max length T , toks
Result: Next word list

1 Initialization:
2 s0 ← {(0, toks)};
3 Q← ∅;
4 for i← 1 to K do
5 s← s0;
6 for j ← 1 to T do
7 if s reaches or < eos > then
8 Q.append(s);
9 break;

10 Sample tokj from Decoder(s[1]);
11 Update s using tokj ;

12 Sort Q by scores in descending order.;
13 W = {};
14 foreach s ∈ Q do
15 score, toks = s;
16 word = detokenize(toks);
17 if word /∈W then
18 W [word] = (score, toks)

19 else
20 W [word][0]+ = score

21 return list(W.items())

ALT
XX->

En

ALT
En

->XX

IW
SLT

'15
 Vi

->En

IW
SLT

'15
 En

->Vi

WMT'1
6 R

o->
En

WMT'1
6 E

n->
Ro

WMT'1
5 F

i->
En

WMT'1
5 E

n->
Fi

WMT'1
4 D

e->
En

WMT'1
4 E

n->
De

0

5

10

15

20

25

W
or

d
PP

L

17.85

8.18
6.10

11.27

5.37
4.53

14.42

10.01

5.62
7.98

3.90
3.39

7.44
3.70

3.22

6.78
3.523.11

11.27

5.07
4.27

22.52

10.70

7.81
10.33

4.63
3.90

12.74

5.59
4.64

Beam Search
Sampling
SubMerge

Figure 5: Word perplexity results comparing BPE-dropout
with beam search to two variants of SubMerge: using either
sampling as the inner search function or beam search.

7.3 Assessing Training Set Sizes

SubMerge is effective in extremely low-resource
scenarios, as shown in Figure 6. We reported
BLEU scores using beam search and SubMerge
during decoding for models trained on 1k to 18k
parallel sentences. SubMerge consistently out-
performed beam search across training set sizes.
Moreover, the BLEU improvement reached ap-
proximately 3.4 using only 1k data. This observa-
tion reveals the potential of SubMerge to be used
in domain adaptation scenarios with limited data.

154

1k 2k 4k 8k 16k18k
Training Size

5

10

15

20

25

30

BL
EU

 S
co

re

3.37
1.94 0.9

0.49

1.99

0.72
ALT Fil->En

Beam Search
SubMerge

Figure 6: Translation quality using different sizes of training
data. The x-axis is logarithmized.

7.4 Impact of Dropout Rates
Using a lower dropout rate in BPE-dropout yielded
lower word perplexity and higher BLEU scores in
higher resource scenarios, as shown in Table 3.
When the dropout rate is low, the randomness of
subword segmentation for a given word also de-
creases, leading to reduced variability in the train-
ing data and, concurrently, a diminished range of
choices during the inference process. In the con-
text of low-resource scenarios, reduced variability
implies diminished data augmentation, which can
adversely affect the model’s generalization capa-
bility. Conversely, in higher resource settings, de-
creased variability signifies reduced noise, poten-
tially enhancing model performance.

Word PPL ↓ BLEU ↑
Dropout Rate 0.1 0.2 0.1 0.2

ALT Others→En 4.69 6.10 22.06 24.54
ALT En→Others 4.16 4.53 24.75 26.12

IWSLT’15 Vi→En 3.09 5.62 30.03 28.43
IWSLT’15 En→Vi 2.56 3.39 29.61 28.16
WMT’16 Ro→En 2.34 3.22 34.75 33.77
WMT’16 En→Ro 2.21 3.11 35.39 34.50
WMT’15 Fi→En 3.25 4.27 18.87 18.88
WMT’15 En→Fi 4.94 7.81 16.64 16.65
WMT’14 De→En 2.86 3.90 29.70 28.94
WMT’14 En→De 3.15 4.64 24.94 24.83

Table 3: Results of SubMerge for models trained on BPE-
dropout data with different dropout rates.

7.5 Does SubMerge Work on
Non-regularized Models?

In short, No. We explored whether the proposed
SubMerge method is applicable to non-regularized
models using deterministic BPE tokenization. Ta-

Word PPL ↓ BLEU ↑
BeamSearch SubMerge BeamSearch SubMerge

WMT’22 Liv→En 3.60 3.37 0.36 0.44
WMT’22 En→Liv 5.22 4.55 0.64 0.90
ALT Others→En 6.02 5.60 15.73 15.40
ALT En→Others 4.90 4.77 18.06 17.82

IWSLT’15 Vi→En 2.95 2.79 24.34 25.63
IWSLT’15 En→Vi 2.43 2.42 25.09 24.86
WMT’16 Ro→En 2.14 2.11 32.05 31.70
WMT’16 En→Ro 2.00 1.98 32.98 32.85
WMT’15 Fi→En 2.85 2.76 17.08 16.94
WMT’15 En→Fi 4.03 3.79 15.30 15.06
WMT’14 De→En 2.39 2.40 30.18 30.04
WMT’14 En→De 2.45 2.36 25.88 25.71

Table 4: Results of non-regularized models trained on data
using BPE tokenizer. We show the averaged results in En→
XX and XX→ En directions for the ALT dataset.

ble 4 presents word perplexities and BLEU scores
on non-regularized models using beam search or
SubMerge as the decoding algorithm.

We observed lower word perplexity using Sub-
Merge compared to using beam search. How-
ever, the improvement is not as significant (ap-
proximately 6%) as the improvement achieved by
SubMerge for subword regularized models. This
is consistent with our expectations. Models were
trained on a single tokenization for each training
word, so one tokenization accumulates the most
probability weight. For the non-regularized model,
results show the translation quality of SubMerge is
not as good as that of beam search. Therefore, the
proposed SubMerge method is only applicable to
subword regularized models in the NMT task.

For other tasks, such as question answering, the
word perplexity is greater because the task is less
structured than MT, where the source sentence is
a highly limiting constraint. For less constrained
tasks, it is possible that SubMerge will improve the
performance of even non-regularized models. We
leave this for future work to explore.

8 Related Work

SubMerge is designed for decoding with text gen-
eration models for which likely tokenization prob-
abilities diverge drastically from sentence proba-
bilities. In other words, there are multiple tok-
enizations for one target sentence, and the proba-
bility distribution is splintered among them. Our
objective is to enhance the inference algorithm
on the target side. On the source side, merging
probabilities of multiple tokenizations for a sin-
gle source sentence has been shown to improve
translation performance in low-resource scenar-

155

ios (Takase et al., 2022). Although we only exper-
imented on models trained on data segmented by
BPE-dropout (Provilkov et al., 2020), it also works
for SentencePiece Regularization (Kudo, 2018a),
MaxMatch-Dropout (Hiraoka, 2022) and NMT
models with multiple subword segmenters (Kamb-
hatla et al., 2022). On the other hand, NMT
models trained on sentences segmented by de-
terministic segmenter only benefit from marginal
likelihood estimation in out-of-domain data or
long words (Cao and Rimell, 2021; Chirkova
et al., 2023). Deterministic subword segmen-
tation includes not only subword-level meth-
ods such as WordPiece (Schuster and Nakajima,
2012), BPE (Sennrich et al., 2016b), Sentence-
Piece (Kudo and Richardson, 2018), dynamic pro-
gramming encoding (He et al., 2020), BERT-
Seg (Song et al., 2022), but also byte-level (Sha-
ham and Levy, 2021), character-level (Tay et al.,
2021), word-level (Mikolov et al., 2013), and hy-
brid word-character methods (Luong and Man-
ning, 2016).

Marginal likelihood estimation can be imple-
mented in two ways: sampling and dynamic pro-
gramming. Sampling methods include summing
over n-best tokenizations (Cao and Rimell, 2021)
or important tokenizations (Chirkova et al., 2023).
Sampling can be easily applied to any genera-
tion model. However, a manageable number of
tokenizations cannot precisely estimate the prob-
ability of sentences with an exponentially large
number of tokenizations, which is the case dur-
ing the inference of the subword regularized mod-
els. On the other hand, dynamic programming
can handle an exponentially large number of to-
kenizations by merging the same historical states,
as introduced in sequence modeling via segmenta-
tions (Wang et al., 2017) and applied in the mixed-
character-subword models (He et al., 2020; Meyer
and Buys, 2023). However, they merge the his-
torical states by approximating the previous out-
put by character-level data. That is, after the de-
coder generates one subword, it is split into char-
acters and fed to the decoder. This is not applica-
ble to pure subword models. Based on the property
that each word is individually segmented in BPE-
dropout (Provilkov et al., 2020), we obtain n-best
tokenizations within a small search space and treat
the best tokenization of each word the historical
state, taking advantage of both marginal likelihood
estimation methods.

9 Conclusion and Future Work

We propose SubMerge to estimate the marginal
likelihood of the next word by merging equiva-
lent subword tokenizations during the inference of
subword regularized models. Results demonstrate
a significant improvement in word perplexity es-
timation and translation quality improvement in
terms of BLEU and chrF++ scores, especially in
low-resource scenarios.

Current inference algorithms are mostly based
on conditional probability, which is a short-term
value function. For future work of inference, we
suggest aligning the value function towards evalu-
ation metrics and human preference through rein-
forcement learning, where models are more aware
of longer-term rewards.

Limitations

We did not experiment with common techniques
in the beam search and SubMerge, such as length
penalty. This is because we use a nested beam
search, and the way to define the length (whether to
use the number of tokens or the number of words)
may differ from the definition in a traditional beam
search. However, combining SubMerge with such
techniques could be valuable for further work.

The word perplexity results reported in this pa-
per are on the generated texts rather than reference
texts. They do not correlate with fluency or trans-
lation quality, and we only use them to report how
much of the probability weight of a model is being
used during decoding, which is still useful.

We use the SentencePiece tool for the current
implementation of BPE and BPE-dropout algo-
rithms. Therefore, the SubMerge implementation
is also based on the format of this specific tool,
which uses ” ” (U+2581) to represent the begin-
ning of a new word. However, other tools may use
”@@” at the end of a subword to indicate that the
current word has not ended yet. Therefore, the im-
plementation of SubMerge may be slightly differ-
ent in terms of ending conditions in the inner beam
search.

We did not experiment on large-scale datasets
(e.g., datasets with more than 100M parallel sen-
tences). Reasons include 1) computational budget
limitations and 2) the goal is verifying the algo-
rithm rather than developing systems. We assume
that the improvement will be marginal in high-
resource scenarios.

156

References
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural Machine Translation by Jointly
Learning to Align and Translate. arXiv e-prints,
page arXiv:1409.0473, September.

Cao, Kris and Laura Rimell. 2021. You should evaluate
your language model on marginal likelihood over to-
kenisations. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2104–2114, Online and Punta Cana, Do-
minican Republic, November. Association for Com-
putational Linguistics.

Cherry, Colin, George Foster, Ankur Bapna, Orhan
Firat, and Wolfgang Macherey. 2018. Revisiting
character-based neural machine translation with ca-
pacity and compression. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4295–4305, Brussels, Bel-
gium, October-November. Association for Computa-
tional Linguistics.

Chirkova, Nadezhda, Germán Kruszewski, Jos Rozen,
and Marc Dymetman. 2023. Should you marginal-
ize over possible tokenizations? In Proceedings of
the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 1–12, Toronto, Canada, July. Association for
Computational Linguistics.

Cohen, Eldan and Christopher Beck. 2019. Empir-
ical analysis of beam search performance degrada-
tion in neural sequence models. In Chaudhuri, Ka-
malika and Ruslan Salakhutdinov, editors, Proceed-
ings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 1290–1299. PMLR,
09–15 Jun.

Costa-jussà, Marta R. and José A. R. Fonollosa. 2016.
Character-based neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 357–361, Berlin, Germany, August.
Association for Computational Linguistics.

Dong, Chenhe, Yinghui Li, Haifan Gong, Miaoxin
Chen, Junxin Li, Ying Shen, and Min Yang. 2022.
A survey of natural language generation. ACM Com-
put. Surv., 55(8), dec.

Gehring, Jonas, Michael Auli, David Grangier, Denis
Yarats, and Yann N. Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings of the
34th International Conference on Machine Learning
- Volume 70, ICML’17, page 1243–1252. JMLR.org.

Gupta, Rohit, Laurent Besacier, Marc Dymetman, and
Matthias Gallé. 2019. Character-based nmt with
transformer.

He, Xuanli, Gholamreza Haffari, and Mohammad
Norouzi. 2020. Dynamic programming encoding

for subword segmentation in neural machine transla-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
3042–3051, Online, July. Association for Computa-
tional Linguistics.

Hiraoka, Tatsuya. 2022. MaxMatch-dropout: Sub-
word regularization for WordPiece. In Proceedings
of the 29th International Conference on Computa-
tional Linguistics, pages 4864–4872, Gyeongju, Re-
public of Korea, October. International Committee
on Computational Linguistics.

Kalchbrenner, Nal and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1700–1709, Seattle,
Washington, USA, October. Association for Compu-
tational Linguistics.

Kambhatla, Nishant, Logan Born, and Anoop Sarkar.
2022. Auxiliary subword segmentations as related
languages for low resource multilingual translation.
In Proceedings of the 23rd Annual Conference of
the European Association for Machine Translation,
pages 131–140, Ghent, Belgium, June. European As-
sociation for Machine Translation.

Kim, Yoon, Yacine Jernite, David Sontag, and Alexan-
der Rush. 2016. Character-aware neural language
models. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 30(1), Mar.

Kingma, Diederik P. and Jimmy Ba. 2014. Adam: A
method for stochastic optimization.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexan-
dra Constantin, and Evan Herbst. 2007. Moses:
Open source toolkit for statistical machine transla-
tion. In Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics Com-
panion Volume Proceedings of the Demo and Poster
Sessions, pages 177–180, Prague, Czech Republic,
June. Association for Computational Linguistics.

Koehn, Philipp. 2004. Statistical significance tests
for machine translation evaluation. In Proceed-
ings of the 2004 Conference on Empirical Methods
in Natural Language Processing, pages 388–395,
Barcelona, Spain, July. Association for Computa-
tional Linguistics.

Kudo, Taku and John Richardson. 2018. Sentence-
Piece: A simple and language independent subword
tokenizer and detokenizer for neural text processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium,
November. Association for Computational Linguis-
tics.

157

Kudo, Taku. 2018a. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia, July. Association for Compu-
tational Linguistics.

Kudo, Taku. 2018b. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates.

Lei Ba, Jimmy, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer Normalization. arXiv e-prints,
page arXiv:1607.06450, July.

Ling, Wang, Isabel Trancoso, Chris Dyer, and Alan W
Black. 2015. Character-based neural machine trans-
lation.

Luong, Minh-Thang and Christopher D. Manning.
2016. Achieving open vocabulary neural machine
translation with hybrid word-character models.

Luong, Thang, Ilya Sutskever, Quoc Le, Oriol Vinyals,
and Wojciech Zaremba. 2015. Addressing the rare
word problem in neural machine translation. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 11–19,
Beijing, China, July. Association for Computational
Linguistics.

Manning, Christopher, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60, Bal-
timore, Maryland, June. Association for Computa-
tional Linguistics.

Mao, Zhuoyuan, Raj Dabre, Qianying Liu, Haiyue
Song, Chenhui Chu, and Sadao Kurohashi. 2023.
Exploring the impact of layer normalization for zero-
shot neural machine translation. In Rogers, Anna,
Jordan Boyd-Graber, and Naoaki Okazaki, editors,
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1300–1316, Toronto, Canada,
July. Association for Computational Linguistics.

Meyer, Francois and Jan Buys. 2023. Subword
segmental machine translation: Unifying segmenta-
tion and target sentence generation. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 2795–2809, Toronto, Canada, July. As-
sociation for Computational Linguistics.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space.

Ott, Myle, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota, June. Association for Computational Lin-
guistics.

Popović, Maja. 2017. chrF++: words helping character
n-grams. In Proceedings of the Second Conference
on Machine Translation, pages 612–618, Copen-
hagen, Denmark, September. Association for Com-
putational Linguistics.

Post, Matt. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels, October. Association for
Computational Linguistics.

Provilkov, Ivan, Dmitrii Emelianenko, and Elena Voita.
2020. BPE-dropout: Simple and effective subword
regularization. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1882–1892, Online, July. Association
for Computational Linguistics.

Pu, Amy, Hyung Won Chung, Ankur P Parikh, Sebas-
tian Gehrmann, and Thibault Sellam. 2021. Learn-
ing compact metrics for mt. In Proceedings of
EMNLP.

Rubino, Raphael, Benjamin Marie, Raj Dabre, Atushi
Fujita, Masao Utiyama, and Eiichiro Sumita. 2020.
Extremely low-resource neural machine transla-
tion for asian languages. Machine Translation,
34(4):347–382.

Schuster, M. and K. Nakajima. 2012. Japanese and ko-
rean voice search. In 2012 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5149–5152.

Sennrich, Rico, Barry Haddow, and Alexandra Birch.
2016a. Edinburgh neural machine translation sys-
tems for WMT 16. In Proceedings of the First Con-
ference on Machine Translation: Volume 2, Shared
Task Papers, pages 371–376, Berlin, Germany, Au-
gust. Association for Computational Linguistics.

Sennrich, Rico, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1715–1725, Berlin, Germany, August. Association
for Computational Linguistics.

Shaham, Uri and Omer Levy. 2021. Neural machine
translation without embeddings. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:

158

Human Language Technologies, pages 181–186, On-
line, June. Association for Computational Linguis-
tics.

Song, Haiyue, Raj Dabre, Zhuoyuan Mao, Chenhui
Chu, and Sadao Kurohashi. 2022. BERTSeg: BERT
based unsupervised subword segmentation for neu-
ral machine translation. In Proceedings of the 2nd
Conference of the Asia-Pacific Chapter of the Asso-
ciation for Computational Linguistics and the 12th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 85–94,
Online only, November. Association for Computa-
tional Linguistics.

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Ghahramani, Z., M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages
3104–3112. Curran Associates, Inc.

Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. 2015. Re-
thinking the inception architecture for computer vi-
sion.

Takase, Sho, Tatsuya Hiraoka, and Naoaki Okazaki.
2022. Single model ensemble for subword regu-
larized models in low-resource machine translation.
In Muresan, Smaranda, Preslav Nakov, and Aline
Villavicencio, editors, Findings of the Association
for Computational Linguistics: ACL 2022, pages
2536–2541, Dublin, Ireland, May. Association for
Computational Linguistics.

Tay, Yi, Vinh Q. Tran, Sebastian Ruder, Jai Gupta,
Hyung Won Chung, Dara Bahri, Zhen Qin, Si-
mon Baumgartner, Cong Yu, and Donald Metzler.
2021. Charformer: Fast character transformers via
gradient-based subword tokenization.

Tolmachev, Arseny, Daisuke Kawahara, and Sadao
Kurohashi. 2018. Juman++: A morphological anal-
ysis toolkit for scriptio continua. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 54–59, Brussels, Belgium, November. Associ-
ation for Computational Linguistics.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Guyon, I., U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Wang, Chong, Yining Wang, Po-Sen Huang, Abdel-
rahman Mohamed, Dengyong Zhou, and Li Deng.
2017. Sequence modeling via segmentations.

Xu, Jingjing, Hao Zhou, Chun Gan, Zaixiang Zheng,
and Lei Li. 2021. Vocabulary learning via optimal
transport for neural machine translation. In Proceed-
ings of the 59th Annual Meeting of the Association

for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 7361–7373,
Online, August. Association for Computational Lin-
guistics.

159

A BLEURT Results

Table 5 shows BLEURT score results using the
BLEURT-20 model (Pu et al., 2021). We can
observe a similar trend with other metrics such
as BLEU or chrF++, where the improvement is
large in low-resource directions and comparable in
higher-resource directions.

B Comparing with Non-Subword Models

We trained character-based and word-based mod-
els on IWSLT’15 Vi–En and WMT’16 Ro–En
datasets and showed inferior performance com-
pared to subword-based models using SubMerge
as shown in Table 6. This conclusion is aligned
with that in previous paper (Kudo, 2018b) and re-
port.7

C Full Results for Different Beam Sizes

Tables 7, 8 and 9 show negative sentence log prob-
ability, word perplexity and BLEU scores for dif-
ferent beam sizes. The conclusions still remain the
same where SubMerge improved probability es-
timation precision, which however did not bring
translation quality improvement.

BLEURT ↑
Beam Search SubMerge

Low-Resource Scenario
WMT’22 Liv→En 17.40 17.47
WMT’22 En→Liv 42.74 42.40

ALT Fil→En 55.35 56.70
ALT En→Fil 47.95 47.78
ALT Id→En 51.65 53.91
ALT En→Id 56.72 57.10
ALT Ja→En 41.54 41.88
ALT En→Ja 27.02 26.86

ALT Ms→En 56.87 57.83
ALT En→Ms 59.32 59.44
ALT Vi→En 49.61 50.97
ALT En→Vi 44.79 45.11
ALT Zh→En 40.95 41.38
ALT En→Zh 28.19 29.19

Middle- and High-Resource Scenario
IWSLT’15 Vi→En 51.75 52.57
IWSLT’15 En→Vi 47.13 47.46
WMT’16 Ro→En 61.52 61.35
WMT’16 En→Ro 52.08 51.76
WMT’15 Fi→En 57.12 56.84
WMT’15 En→Fi 53.67 53.41

WMT’14 De→En 60.01 59.82
WMT’14 En→De 54.97 54.27

Table 5: BLEURT Results of Subword Regularized Models.

7github.com/google/sentencepiece/blob/master/doc/experiments.md

160

Models Vi→En En→Vi Ro→En En→Ro

Char-based 24.72 27.04 30.45 29.82
Word-based 21.40 25.24 26.33 25.67

Subword-based 28.43 28.16 33.77 34.50

Table 6: BLEU score results comparing different models on IWSLT’15 Vi–En and WMT’16 Ro–En datasets.

IWSLT’15
Vi→En

IWSLT’15
En→Vi

WMT’16
Ro→En

WMT’16
En→Ro

WMT’15
Fi→En

WMT’15
En→Fi

WMT’14
De→En

WMT’14
En→De

BeamSize=1
BPE w/ Beam Seach 25.67 24.37 19.86 19.08 23.64 23.30 21.91 21.01
BPE w/ SubMerge 24.82 24.06 22.87 20.62 23.40 23.07 28.98 20.25

BPE-dropout w/ Beam Seach 30.51 31.59 28.11 27.68 32.35 31.22 31.77 33.45
BPE-dropout w/ SubMerge 30.16 31.14 27.83 27.56 31.81 30.99 - 32.57

BeamSize=2
BPE w/ Beam Seach 23.54 22.52 18.75 17.99 21.83 21.21 19.90 20.11
BPE w/ SubMerge 22.15 22.18 18.42 18.96 21.36 20.69 18.71 19.32

BPE-dropout w/ Beam Seach 29.74 30.58 27.93 27.22 31.84 30.55 31.25 33.03
BPE-dropout w/ SubMerge 25.83 27.15 23.95 23.45 27.52 26.75 26.59 28.72

BeamSize=3
BPE w/ Beam Seach 22.95 21.90 18.39 17.53 21.18 20.43 19.31 19.75
BPE w/ SubMerge 21.33 21.66 18.12 18.17 20.66 19.95 18.44 18.97

BPE-dropout w/ Beam Seach 29.56 30.28 27.87 26.93 31.63 30.00 31.05 32.74
BPE-dropout w/ SubMerge 23.59 24.70 21.56 21.16 30.45 24.69 24.21 26.41

BeamSize=4
BPE w/ Beam Seach 22.59 21.61 18.21 17.31 20.80 20.10 19.08 19.54
BPE w/ SubMerge 20.97 21.31 17.84 17.20 20.39 19.75 20.16 18.82

BPE-dropout w/ Beam Seach 29.52 30.06 27.79 26.79 31.46 29.71 30.88 32.57
BPE-dropout w/ SubMerge 22.57 23.65 20.35 19.86 23.82 23.72 22.91 25.08

BeamSize=5
BPE w/ Beam Seach 22.43 21.42 18.07 17.18 20.50 19.81 18.88 19.43
BPE w/ SubMerge 20.66 21.14 17.70 17.64 20.16 19.53 19.33 18.70

BPE-dropout w/ Beam Seach 29.42 29.82 27.67 26.71 31.56 29.52 30.72 32.41
BPE-dropout w/ SubMerge 22.38 22.74 19.39 19.05 25.77 22.76 22.02 24.11

BeamSize=6
BPE w/ Beam Seach 22.21 21.31 18.01 17.06 20.42 19.67 18.77 19.37
BPE w/ SubMerge 20.46 20.96 17.69 16.97 20.09 19.41 19.18 18.62

BPE-dropout w/ Beam Seach 29.42 29.65 27.67 26.65 31.20 29.41 30.66 32.36
BPE-dropout w/ SubMerge 21.75 22.31 18.82 18.38 22.61 22.23 21.41 23.49

BeamSize=8
BPE w/ Beam Seach 21.95 21.13 17.85 16.87 20.21 19.45 18.66 19.25
BPE w/ SubMerge 20.26 20.77 17.53 17.44 19.80 19.18 18.74 18.51

BPE-dropout w/ Beam Seach 29.08 29.51 27.57 26.57 31.19 29.18 30.49 32.14
BPE-dropout w/ SubMerge 21.20 22.07 18.28 17.87 21.80 21.65 20.83 22.80

BeamSize=10
BPE w/ Beam Seach 21.77 20.93 17.75 16.72 20.06 19.24 18.60 19.16
BPE w/ SubMerge 20.08 20.62 17.41 17.06 19.69 19.02 18.41 18.39

BPE-dropout w/ Beam Seach 28.84 29.39 27.46 26.47 30.69 29.02 30.40 32.03
BPE-dropout w/ SubMerge 20.82 21.56 17.84 17.44 22.03 21.12 20.37 22.26

Table 7: Negative sentence log probability of the generated hypothesis using different beam sizes.

161

IWSLT’15
Vi→En

IWSLT’15
En→Vi

WMT’16
Ro→En

WMT’16
En→Ro

WMT’15
Fi→En

WMT’15
En→Fi

WMT’14
De→En

WMT’14
En→De

BeamSize=1
BPE w/ Beam Seach 3.34 2.67 2.27 2.12 3.19 4.83 2.64 2.58
BPE w/ SubMerge 3.30 2.67 2.55 2.26 3.20 4.80 3.20 2.52

BPE-dropout w/ Beam Seach 4.42 3.42 3.20 2.99 4.79 8.32 4.19 4.59
BPE-dropout w/ SubMerge 4.42 3.41 3.18 3.00 4.76 8.28 - 4.47

BeamSize=2
BPE w/ Beam Seach 3.05 2.50 2.18 2.04 2.95 4.28 2.45 2.50
BPE w/ SubMerge 2.92 2.48 2.15 2.10 2.88 4.00 2.34 2.39

BPE-dropout w/ Beam Seach 4.30 3.29 3.19 2.95 4.76 8.01 4.13 4.54
BPE-dropout w/ SubMerge 3.56 2.92 2.70 2.53 3.85 6.06 3.35 3.68

BeamSize=3
BPE w/ Beam Seach 2.98 2.45 2.15 2.01 2.88 4.09 2.41 2.47
BPE w/ SubMerge 2.84 2.44 2.12 2.05 2.79 3.83 2.30 2.36

BPE-dropout w/ Beam Seach 4.31 3.26 3.19 2.92 4.77 7.82 4.12 4.51
BPE-dropout w/ SubMerge 3.25 2.67 2.46 2.32 4.29 5.28 3.02 3.34

BeamSize=4
BPE w/ Beam Seach 2.95 2.43 2.14 2.00 2.85 4.03 2.39 2.45
BPE w/ SubMerge 2.79 2.42 2.11 1.98 2.76 3.79 2.40 2.36

BPE-dropout w/ Beam Seach 4.31 3.26 3.19 2.91 4.77 7.74 4.11 4.50
BPE-dropout w/ SubMerge 3.09 2.56 2.34 2.21 3.25 4.94 2.86 3.15

BeamSize=5
BPE w/ Beam Seach 2.93 2.42 2.13 1.99 2.83 3.98 2.38 2.45
BPE w/ SubMerge 2.77 2.41 2.10 2.02 2.75 3.75 2.35 2.35

BPE-dropout w/ Beam Seach 4.26 3.24 3.18 2.91 4.80 7.68 4.10 4.49
BPE-dropout w/ SubMerge 2.97 2.52 2.26 2.15 3.48 4.68 2.75 3.03

BeamSize=6
BPE w/ Beam Seach 2.92 2.41 2.13 1.99 2.82 3.97 2.38 2.44
BPE w/ SubMerge 2.76 2.40 2.10 1.97 2.75 3.75 2.35 2.35

BPE-dropout w/ Beam Seach 4.27 3.23 3.18 2.91 4.76 7.64 4.10 4.49
BPE-dropout w/ SubMerge 2.88 2.46 2.21 2.09 3.09 4.51 2.68 2.95

BeamSize=8
BPE w/ Beam Seach 2.90 2.40 2.12 2.00 2.82 3.94 2.38 2.44
BPE w/ SubMerge 2.74 2.39 2.09 2.01 2.74 3.72 2.32 2.34

BPE-dropout w/ Beam Seach 4.23 3.22 3.19 2.90 4.76 7.56 4.08 4.48
BPE-dropout w/ SubMerge 2.82 2.43 2.16 2.05 2.98 4.35 2.63 2.87

BeamSize=10
BPE w/ Beam Seach 2.89 2.40 2.12 2.00 2.82 3.93 2.38 2.44
BPE w/ SubMerge 2.74 2.39 2.09 1.98 2.73 3.72 2.32 2.34

BPE-dropout w/ Beam Seach 4.20 3.22 3.17 2.89 4.69 7.51 4.08 4.46
BPE-dropout w/ SubMerge 2.79 2.41 2.13 2.03 3.03 4.22 2.58 2.82

Table 8: Word perplexity of the generated hypothesis using different beam sizes.

162

IWSLT’15
Vi→En

IWSLT’15
En→Vi

WMT’16
Ro→En

WMT’16
En→Ro

WMT’15
Fi→En

WMT’15
En→Fi

WMT’14
De→En

WMT’14
En→De

BeamSize=1
BPE w/ Beam Seach 23.68 24.44 31.34 32.53 16.61 14.10 29.34 25.16
BPE w/ SubMerge 24.22 24.18 31.08 32.14 16.55 14.05 26.45 24.91

BPE-dropout w/ Beam Seach 29.28 28.52 34.45 34.87 18.21 16.09 29.08 24.46
BPE-dropout w/ SubMerge 29.13 28.56 34.10 34.53 18.31 16.28 - 24.31

BeamSize=2
BPE w/ Beam Seach 23.98 24.92 31.82 32.79 17.06 14.83 30.05 25.63
BPE w/ SubMerge 25.40 24.80 31.45 32.62 17.10 14.80 30.19 25.59

BPE-dropout w/ Beam Seach 29.87 29.21 35.02 35.25 18.64 16.70 29.48 24.73
BPE-dropout w/ SubMerge 30.01 29.16 34.56 35.19 18.80 16.30 29.53 24.72

BeamSize=3
BPE w/ Beam Seach 24.44 24.92 32.03 33.02 16.89 15.30 30.25 25.84
BPE w/ SubMerge 25.47 24.94 31.66 33.00 16.97 14.84 30.23 25.75

BPE-dropout w/ Beam Seach 29.77 29.34 35.06 35.55 18.77 16.98 29.58 24.89
BPE-dropout w/ SubMerge 29.64 29.20 34.45 35.36 18.26 16.49 29.51 24.84

BeamSize=4
BPE w/ Beam Seach 24.34 25.09 32.05 32.98 17.08 15.30 30.18 25.88
BPE w/ SubMerge 25.63 24.86 31.70 32.85 16.94 15.06 30.04 25.71

BPE-dropout w/ Beam Seach 29.65 29.40 34.96 35.44 18.80 16.95 29.75 24.79
BPE-dropout w/ SubMerge 30.03 29.61 34.75 35.39 18.87 16.64 29.70 24.94

BeamSize=5
BPE w/ Beam Seach 24.38 25.02 32.02 32.95 17.05 15.26 30.13 25.80
BPE w/ SubMerge 25.79 24.93 31.75 33.00 17.07 14.89 30.08 25.67

BPE-dropout w/ Beam Seach 29.36 29.44 34.99 35.55 18.97 17.14 29.69 24.82
BPE-dropout w/ SubMerge 29.50 28.67 34.48 35.43 18.37 16.74 29.61 24.87

BeamSize=6
BPE w/ Beam Seach 24.45 25.07 31.99 32.88 17.02 15.28 30.11 25.78
BPE w/ SubMerge 25.58 24.86 31.62 32.85 17.04 14.77 30.07 25.67

BPE-dropout w/ Beam Seach 29.35 29.53 34.96 35.47 19.05 17.26 29.61 24.81
BPE-dropout w/ SubMerge 29.58 29.18 34.46 35.32 14.41 16.99 29.50 24.91

BeamSize=8
BPE w/ Beam Seach 24.57 24.81 31.86 32.37 17.14 15.23 30.06 25.68
BPE w/ SubMerge 25.86 24.83 31.72 32.81 16.78 14.89 29.93 25.63

BPE-dropout w/ Beam Seach 29.33 29.52 34.99 35.58 18.95 17.21 29.54 24.73
BPE-dropout w/ SubMerge 29.73 29.52 34.76 35.27 18.88 17.06 29.46 24.87

BeamSize=10
BPE w/ Beam Seach 24.77 24.93 31.78 32.05 17.09 15.24 30.09 25.75
BPE w/ SubMerge 25.93 24.66 31.63 32.85 16.69 14.97 29.90 28.16

BPE-dropout w/ Beam Seach 29.32 29.41 34.97 35.59 19.08 17.32 29.58 24.80
BPE-dropout w/ SubMerge 29.39 28.92 34.45 35.39 18.88 16.92 29.28 24.68

Table 9: BLEU scores on test sets using different beam sizes.

163

