
Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1), pages 191–206
June 24-27, 2024 ©2024 European Association for Machine Translation

Detector–Corrector: Edit-Based Automatic Post Editing for Human Post
Editing

Hiroyuki Deguchi1 Masaaki Nagata2 Taro Watanabe1
1Nara Institute of Science and Technology

2NTT Communication Science Laboratories, NTT Corporation
1{deguchi.hiroyuki.db0, taro}@is.naist.jp

2masaaki.nagata@ntt.com

Abstract

Post-editing is crucial in the real world be-
cause neural machine translation (NMT)
sometimes makes errors. Automatic post-
editing (APE) attempts to correct the out-
puts of an MT model for better transla-
tion quality. However, many APE mod-
els are based on sequence generation, and
thus their decisions are harder to interpret
for actual users. In this paper, we pro-
pose “detector–corrector”, an edit-based
post-editing model, which breaks the edit-
ing process into two steps, error detec-
tion and error correction. The detec-
tor model tags each MT output token
whether it should be corrected and/or re-
ordered while the corrector model gener-
ates corrected words for the spans iden-
tified as errors by the detector. Experi-
ments on the WMT’20 English–German
and English–Chinese APE tasks showed
that our detector–corrector improved the
translation edit rate (TER) compared to the
previous edit-based model and a black-box
sequence-to-sequence APE model, in ad-
dition, our model is more explainable be-
cause it is based on edit operations.

1 Introduction

Neural machine translation (NMT) (Sutskever et
al., 2014; Bahdanau et al., 2015; Luong et al.,
2015; Wu et al., 2016; Vaswani et al., 2017) some-
times make errors (Ott et al., 2018), and post-
editing is crucial in the real world to correct the

© 2024 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.

Figure 1: Overview of the post-editing process of our
detector–corrector model. The detector tags as “Jeden
Abend” is untranslated, “drink” and “I” should be reordered,
etc. The corrector generates the word sequence for replace-
ment and insertion.

mis-translations. Automatic post-editing (APE) at-
tempts to correct and refine the translations gen-
erated by MT models (MT sentences) for better
translation quality. However, many APE mod-
els are based on sequence generation (Junczys-
Dowmunt and Grundkiewicz, 2018; Correia and
Martins, 2019; Sharma et al., 2021; Chatterjee et
al., 2019; Chatterjee et al., 2020; Bhattacharyya
et al., 2022), and their decision for correction is
harder to interpret due to the black-box nature of
the generation models.

Some prior work (Malmi et al., 2019; Gu et
al., 2019; Omelianchuk et al., 2020; Stahlberg and
Kumar, 2020; Mallinson et al., 2020; Mallinson
et al., 2022) showed that edit-based models im-
prove interpretability in monolingual text editing,
e.g., grammatical error correction (GEC), com-
pared with sequence-to-sequence models. The
APE task can be regarded as a text edit task in
terms of rewriting MT sentences, but differs from
general monolingual text editing tasks in that it
uses cross-lingual information from source sen-
tences, such as inserting untranslated words and re-

191

ordering translation words. For example, if an edit-
based model cannot perform reordering, it is rep-
resented as deletion and insertion, which increases
the number of edit operations and makes it harder
for humans to interpret the edit.

In this paper, we propose “detector–corrector”,
an edit-based post-editing model, in which the
post-editing process is broken into two steps for
assisting human post-editing: error detection and
error correction. We designed our model after
interviewing with professional translators regard-
ing the post-editing process; specifically, they first
spot errors and then make corrections, and omis-
sion errors are crucial for the editing process. The
overview of our detector–corrector model is shown
in Figure 1. The detector model, which extends
a word-level quality estimation (QE) model, tags
each MT output token as whether it should be
corrected and/or reordered and identifies which
source tokens are not translated in the MT sen-
tence. Then, the corrector model receives the
annotated source and MT sentences and corrects
words for each span identified as incorrect in the
detector model. Our corrector model can insert any
number of spans of variable length. In addition,
we propose data augmentation methods especially
designed for the detector and corrector models to
enhance each model, and lightweight iterative re-
finement to improve the inference speed.

Experiments on the WMT’20 English–German
(En–De) and English–Chinese (En–Zh) APE tasks
showed that our detector–corrector improved
translation edit rate (TER) (Snover et al., 2006)
compared to not only an edit-based model (Gu
et al., 2019) but also a black-box sequence-to-
sequence model by 0.7 points in En–De and En–
Zh. Moreover, our model is more explainable
than sequence-to-sequence models because it is
based on edit operations and it can be integrated
into computer-aided translation tools (Herbig et
al., 2020).

2 Background and Related Work

2.1 Edit-Based Model

Chen et al. (2020) have built an edit-based GEC
system that detects erroneous spans and then cor-
rects the words within the detected erroneous
spans. GECToR (Omelianchuk et al., 2020) is also
an edit-based GEC mode, in which the model pre-
dicts the error type tag for each word, and then
words identified as errors are corrected according

to the rules for each tag type.
Levenshtein Transformer (Gu et al., 2019), a

non-autoregressive Transformer encoder-decoder
model, predicts deletion, placeholder insertion,
and word filling. It can be used for the APE task
by rewriting an MT sentence, but it cannot repre-
sent reordering and detecting untranslated words.
Seq2Edits (Stahlberg and Kumar, 2020) edits an
input text by span tagging and replacement pre-
diction to improve interpretability for text-editing
tasks. However, it is not suitable for the APE task
because it only monotonically edits an MT output
from left to right according to the tags and cannot
perform reordering of spans or inserting missing
words which often occur in erroneous translations.
FELIX (Mallinson et al., 2020) breaks down text
editing into three components: tagging, reorder-
ing, and word in-filling. It performs tagging using
a pre-trained encoder model like BERT, reorder-
ing using a pointer network, and predicting words
of replacement and insertion using a masked lan-
guage model. However, it does not explicitly use
source information. In addition, word insertion is
predicted non-autoregressively; thus, the number
of words to be inserted must be given in advance
for the insertion operation, which is not trivial.
EdiT5 (Mallinson et al., 2022) uses the T5 (Raf-
fel et al., 2020) encoder-decoder and decomposes
the editing process into (1) tagging that decides
which tokens are kept, (2) reordering the input to-
kens, and (3) insertion that infills the missing to-
kens. Unlike FELIX, Edit5 uses the autoregressive
T5 decoder for word prediction, allowing for vari-
able length insertion. However, the positions that
can be inserted depend on the special tokens used
in pre-training of T5 for filling masked spans, e.g.,
<extra id 6> as <pos6>; thus, the number of
positions that can be inserted is limited to those
observed in pre-training.

2.2 Word-Level Quality Estimation

The word-level quality estimation task estimates
the word-level quality of MT sentences, which is
closely related to the post-editing task. It is di-
vided into three binary classifications (Specia et
al., 2020): MT-tag, MT-gap, and SRC-tag. MT-
tag detects erroneous words in MT sentences. MT-
gap predicts where to insert untranslated words in
MT sentences, and SRC-tag detects untranslated
source words.

Predictor-estimator model (Kim et al., 2017a;

192

Kim et al., 2017b) is a well-known architecture
for the word-level quality estimation task, in which
the predictor is used for feature extraction from
translation results while the estimator estimates
the translation quality based on the features from
the predictor. Ding et al. (2021) used Leven-
shtein Transformer (Gu et al., 2019) for the word-
level quality estimation task. Their method uses
the edit probabilities of deletion and insertion of
Levenshtein Transformer as tag prediction prob-
abilities instead of explicitly predicting OK/BAD
tags. DirectQE (Cui et al., 2021) is a pre-training
method designed for the QE task, which consists
of two components: generator and detector. In pre-
training, The generator rewrites words by a cross-
lingual masked language model, then the detec-
tor detects the replaced words. After pre-training,
the detector model is fine-tuned with real QE data.
SiameseTransQuest (Ranasinghe et al., 2020) em-
ployed the word-level QE architecture using XLM-
R for the sentence-level quality estimation task,
and they showed that using XLM-R is effective
in the QE task. Ranasinghe et al. (2021) demon-
strated that the fine-tuned XLM-R predicts word-
level QE on other language pairs than a language
pair that is trained explicitly, i.e., the model can
perform zero-shot QE.

2.3 Automatic Post Editing

The automatic post-editing (APE) task aims to im-
prove the translation quality by editing translations
generated from black-box MT models (Chatter-
jee et al., 2020). The APE system receives the
source and MT sentences and generates the post-
edited (PE) sentence. This task mainly evaluates
correction performance using translation edit rate
(TER) (Snover et al., 2006) based on the edit dis-
tance between the human-revised translation and
the corrected sentence.

Correia and Martins (2019) built a sequence-
to-sequence APE system by only fine-tuning pre-
trained BERT models, in which weight initializa-
tion is carefully designed to employ pre-trained
weights for both encoder and decoder. In the
APE shared task, the high-ranked systems of-
ten employ Transformer encoder-decoder architec-
tures with pre-trained models (Chatterjee et al.,
2020; Bhattacharyya et al., 2022; Yang et al.,
2020; Wang et al., 2020; Lee et al., 2020; De-
oghare and Bhattacharyya, 2022; Huang et al.,
2022). The sequence-to-sequence model, which

Figure 2: Overview of our detector model. The model detects
OK and BAD tags as 0 and 1, respectively.

learns post-editing in an end-to-end manner, can
achieve high translation quality; however, it can-
not explicitly expose the editing process, making
it hard to utilize the model in scenarios that re-
quire manual checking. The copy mechanism (Gu
et al., 2016) can be used for APE tasks by copying
words in MT sentences that do not need to be mod-
ified (Huang et al., 2019). This model can show us
edited and non-edited words using the copy prob-
ability. Neural Programmer-Interpreter (NPI) (Vu
and Haffari, 2018) generates PE sentences by pre-
dicting the edit actions and the target tokens com-
prising three editing operations: keep, delete, and
insert. Although NPI is more interpretable than
the sequence-to-sequence models, it cannot repre-
sent reordering nor differentiate replacement and
insertion. Deoghare et al. (2023) incorporated the
word-level quality estimation into an APE model.
Their model predicts which word should be edited
through multi-task learning; however, it cannot use
human-annotated QE tags because the information
of QE tags, which is passed to the decoder, is rep-
resented as hidden vectors.

3 Proposed Model: Detector–Corrector

3.1 Detector

Our detector model (Figure 2) predicts shift and
edit operations based on translation edit rate
(TER) (Snover et al., 2006). TER iteratively re-
orders an input sequence to minimize the edit dis-
tance from the target sequence, called “shift” op-
eration, then calculates edit distance between the
reordered input sequence and the target sequence,
called “edit” operations. To represent this TER
behavior, our detector model performs tagging
to predict whether edits are need needed (“Tag-
ging” in Figure 2), and reordering of the given

193

MT sentence with a pointer network (Vinyals et
al., 2015) (“Reordering” in Figure 2). Let x =
(x1, . . . , x|x|) ∈ V∗ and y = (y1, . . . , y|y|) ∈ V∗

denote the given source sentence and its transla-
tion generated by machine translation (MT sen-
tence), respectively, where V∗ is the Kleene clo-
sure of the vocabulary1 V . Note that both x
and y always have the end-of-sentence symbol
“</s>” as the last tokens, i.e., x|x| = y|y| =
“</s>”. Let x ◦ y be the concatenated se-
quence, where ◦ represents the join operation
with a separator token between the sequences2.
XLM-RoBERTa (XLM-R) encoder (Conneau et
al., 2020) encodes the concatenated sequence x◦y
into D-dimensional hidden vectors through L lay-
ers H(L) = (h

(L)
1 , . . . ,h

(L)
|x◦y|)

⊤ ∈ R|x◦y|×D.

Tagging To perform tagging, we train a word-
level quality estimation model. In particular, the
detector model performs three binary classifica-
tions as defined by Specia et al. (2020): MT-tag,
MT-gap, and SRC-tag.

Let oT ∈ {0, 1}|y| denote the MT-tag which
represents whether an MT token would be edited,
i.e., oTi = 1 if yi is deletion or replacement in a
TER edit sequence, e.g., “bier” in Figure 2. The
MT-tag classification identifies whether an MT to-
ken should be edited based on the bad probabili-
ties:

pTi := p(oTi = 1|x,y) = σ(w⊤
T h

(lT)
yi), (1)

where wT ∈ RD is a learned parameter for MT-tag
prediction, 1 ≤ lT ≤ L denotes the layer used for
MT-tag prediction, and σ : R → [0, 1] is a sigmoid
function. Note that h(l)

yi is a row of H(l), which is
the hidden vector corresponding to the token yi in
the l-th layer.

Similarly, MT-gap classification predicts
whether some words need to be inserted at a
token boundary in the MT sentence based on the
insertion probabilities:

pGi := p(oGi = 1|x,y) = σ(w⊤
G[h

(lG)
yi−1

;h(lG)
yi]),

(2)
where oG ∈ {0, 1}|y| represents insertion in a TER
edit sequence, e.g., the token boundary between
1We employ XLM-R, a multilingual encoder; thus, the vocab-
ulary is shared between the source and target languages.
2In XLM-R, the class token is represented by “<s>”, and two
sentences are joined by “</s>” symbols, like “<s> a b c
</s> </s> A B </s>”. We regard the first symbol as the
end-of-sentence symbol of the first sentence, i.e., x|x|, and
the second one as the separator token.

“bier” and “</s>” in Figure 2. wG ∈ R2D is
a learned parameter for MT-gap prediction, 1 ≤
lG ≤ L denotes the layer used for MT-gap pre-
diction, and [·; ·] denotes the concatenation of two
vectors. Note that y0 is the separator token be-
tween the source and MT sentences.

Likewise, the SRC-tag oS ∈ {0, 1}|x| is con-
structed from a source-target word alignment as
xi = 1 if xi is not aligned to any target token like
“Jeden” and “Abend” in Figure 2. In this paper, we
used AWESOME-ALIGN (Dou and Neubig, 2021)
to obtain the gold alignment. The SRC-tag classi-
fication predicts whether a source token is untrans-
lated or not using the probabilities:

pSi := p(oSi = 1|x,y) = σ(w⊤
S h

(lS)
xi

), (3)

where wS ∈ RD is a learned parameter for SRC-
tag prediction and 1 ≤ lS ≤ L denotes the layer
used for SRC-tag prediction.

During inference, each tag oT , oG, and oS are
respectively predicted to be “BAD” when each
probability pi is greater than 0.5, and “OK” oth-
erwise.

Reordering Our detector also predicts reorder-
ing by generating the reordered sequence ȳ =
(ȳ1, . . . , ȳ|ȳ|) using the pointer network (Vinyals
et al., 2015) at the top of the decoder. It autore-
gressively selects the next token for each timestep
from the MT sentence according to the probability
pR, as follows:

ȳ∗ = argmax
(ȳ1,...,ȳ|ȳ|)

|y|∏

i=1

pR(ȳi|x,y, ȳ<i), (4)

pR(ȳi = yj |x,y, ȳ<i) ∝ exp(k⊤
yjqȳi), (5)

kyj = Wkhyj , (6)

qȳi = WqDecoder(ȳ<i,H
(L)), (7)

where Decoder : V∗ × R|x◦y|×D → RD is a
Transformer decoder that computes a hidden vec-
tor of the i-th step qȳi from the given encoder hid-
den vectors and the prefix of reordered sequence.
Wq ∈ RD×D and Wk ∈ RD×D are the learned
parameters, and ȳ∗ is the reordered sequence pre-
dicted by the model. Note that the hidden vec-
tors H(L) are computed using the same encoder
as used in tagging.

During inference, the tokens of the MT sentence
and their corresponding MT-tag and MT-gap are
reordered according to the order of ȳ∗. Note that

194

the MT-gap tags are reordered in accordance with
the order of their right-side tokens of boundaries.
For example, in Figure 2, the MT-gap model pre-
dicts that some words need to be inserted at the to-
ken boundary between “bier” and “</s>”, and the
boundary position is attached to the left of “</s>”
after reordering.

Objective function We trained the MT-tag, MT-
gap, and SRC-tag classifications by minimizing
their objective functions, LT , LG, and LS , com-
puted by the binary cross-entropy, as follows:

−
∑

i

(oi log pi + (1− oi) log(1− pi)) , (8)

where oi ∈ {0, 1} is the ground truth label of the
probability pi. The model is also trained to gen-
erate reordered MT sentences by minimizing the
following cross-entropy:

LR = −
|y|∑

i=1

log pR(ȳi|x,y, ȳ<i), (9)

where the gold reordered sequence is created from
the TER shift alignment. Finally, our detector
model is trained by minimizing the following ob-
jective L through multi-task learning:

L = LT + LG + LS + LR. (10)

Note that all loss functions in L are computed dur-
ing a single forward pass since the encoder param-
eters are shared between all tagging and reordering
predictions.

3.2 Corrector
The corrector model (Figure 3) corrects the re-
ordered MT sentence by generating tokens corre-
sponding to the erroneous spans identified by MT-
tag and MT-gap predictions. The corrector repre-
sents edit operations by predicting zero words in a
bad span for deletion, one or more words in a bad
span for replacement, and one or more words in an
insertion span for insertion, as shown on the output
of the decoder in Figure 3.

First, the tags predicted by the detector model
are used to annotate the source sentence and its
corresponding reordered MT output as span tags.
In the source sentence, <bad> and </bad> tags
are inserted to the beginning and end of untrans-
lated spans, respectively, using the SRC-tag oS , as
shown on the left side of the input of the XLM-
R encoder in Figure 3. Similarly, <bad> and

Figure 3: Token generation within each tagged span by our
corrector model.

</bad> tags are inserted into reordered MT out-
put where identified by the MT-tag tagging oT in
addition to the <ins> and </ins> tags to the po-
sitions that need to be inserted words, as shown on
the right side of the input of the XLM-R encoder
in Figure 3.

Next, the annotated source and reordered MT
sentences are concatenated with the separator to-
ken and fed into the encoder. We initialize the
corrector encoder with XLM-R as well as the de-
tector model in order to preserve consistency with
the subword unit tags used in the detector. Then,
the decoder generates tokens for all tagged spans
in the left-to-right manner until the number of cor-
rected spans satisfies the number of bad and inser-
tion spans in the annotated reordered MT sentence.
Finally, our detector–corrector outputs a corrected
target sentence by replacing each tagged span of
the MT sentence with a token sequence predicted
by the corrector decoder.

Our corrector can be regarded as a translation
suggestion (TS) model (Yang et al., 2022a; Yang
et al., 2022b), in which better alternative transla-
tions are suggested phrase-by-phrase by replacing
incorrect translation spans. Our model differs from
TS models in that untranslated spans in source sen-
tences are explicitly identified and incorrect trans-
lations and/or insertions are clearly differentiated
by the bad and insertion tags, respectively. Fur-
thermore, MT sentences are reordered and multi-
ple spans are corrected in our model, which are out
of the scope of the TS task3.

3The TS task assumes only a single incorrect span for each
sentence and does not treat reordering.

195

3.3 Data Augmentation
3.3.1 Data Augmentation for Detector

Since the detector–corrector is trained to cor-
rect only erroneous spans identified by the detec-
tor, improving the tagging accuracy will directly
lead to improved translation quality. For this pur-
pose, we create the synthetic data from the refer-
ence translations of the training data and let the
detector learn the editing operations of deletion,
replacement, and insertion. We randomly delete
tokens with a probability of 5%, insert tokens with
a probability of 10%, and replace tokens with a
probability of 30%. We employ XLM-R to fill the
masked tokens for the replacement and insertion
decision.

3.3.2 Data Augmentation for Corrector
The training data for the corrector model is cre-

ated from the tokens for each span identified as
an error using the oracle annotated source and
MT sentences. However, the detector might make
wrong decision during inference, which might
cause a large discrepancy between the training and
inference for the corrector. In addition, the perfor-
mance of the corrector might suffer from the lim-
ited coverage of the vocabulary in the training data
when compared with a conventional sequence-to-
sequence MT model. For these reasons, we em-
ploy two simple data augmentation methods for
the corrector model without additional computa-
tional cost: MT training and PE training. These
two augmentation methods are orthogonal with
each other; thus, they can be combined.

MT Training In MT training, the corrector
model is trained to predict the PE sentence from
only the source sentence without the correspond-
ing MT sentence. To preserve the model consis-
tency, an MT output is treated as an empty text
by augmenting with “<ins> </ins>” so that the
model learns to insert the whole PE sentence from
the empty MT sentence. The encoder input se-
quence of MT training is formulated as follows:

<bad> x </bad> ◦ <ins> </ins>, (11)

and the corrector is trained to generate the
post-edited sentence with the insertion, i.e.,
<ins> yPE </ins>, where yPE ∈ V∗ is the
post-edited sentence.

PE Training PE training differs from MT train-
ing in that the MT sentences are given. The cor-
rector model is trained to generate the whole PE

sentence from the given source and MT sentences.
This is the same setting as the standard sequence-
to-sequence APE model training, except that the
MT sentence is explicitly annotated as “<bad>”.
To maintain model consistency, the whole MT sen-
tence is treated as a bad span to be corrected:

x ◦ <bad> y </bad>, (12)

and the model learns to replace the MT sentence
with the PE sentence, i.e., the model is trained to
generate <bad> yPE </bad>.

3.4 Lightweight Iterative Refinement
The detector model detects each erroneous span
in a non-autoregressive manner; thus, a single in-
ference may not generate sufficiently correct PE
sentences that are consistent across the entire sen-
tence. To address such issues, some prior non-
autoregressive models (Gu et al., 2019; Kasai et
al., 2020; Omelianchuk et al., 2020) decode se-
quences by iteratively feeding the output into the
model. We follow the practice by iteratively re-
fining an MT sentence by treating the post-edited
sentence corrected by our model as an MT output,
i.e., the corrected sentence in the k− 1-th iteration
is used as the input of the detector model in the
k-th iteration. However, the iterative refinement
approach demands huge computation in particular
for our approach, in which an end-to-end inference
predicts three edit operations in the following or-
der: tagging, reordering, and correcting.

Tagging can be predicted with only a single for-
ward pass of the detector encoder, and correcting
can be finished very quickly since it generates only
a few words for each erroneous span. In contrast,
reordering is relatively slower than the other oper-
ations because the decoder runs for the length of
the MT sentence in an auto-regressive manner.

In order to overcome such bottleneck, we pro-
pose lightweight refinement, in which inference is
carried out only by predicting tags and generating
correct tokens without reordering after the second
time in the iterative refinement.

4 Experiments

4.1 Setup
We compared the translation quality of our
detector–corrector with that of the sequence-to-
sequence (seq2seq) APE model and Levenshtein
Transformer (LevT) (Gu et al., 2019). We evalu-
ated TER (↓T), BLEU (↑B), and COMET (↑C) us-

196

ing SACREBLEU (Post, 2018) and COMET4 (Rei
et al., 2020; Rei et al., 2022) in the WMT’20
English–German (En–De) and English–Chinese
(En–Zh) automatic post-editing tasks.

Datasets Training data came from WMT’20
APE tasks, which were created from wikipedia ar-
ticles that contain 7,000 sentences, and we applied
upsampling by 20 times to them. In addition to
the provided data, we created additional training
data that consists of ⟨source sentence, MT sen-
tence, PE sentence⟩ triplets using a parallel corpus
following the idea from Negri et al. (2018). In par-
ticular, we randomly sampled 2 million sentences
from the training data of the WMT’19 En–De and
En–Zh translation tasks and translated them with
MT models, which were used to generate the data
for the APE tasks (Fomicheva et al., 2020). As
described in Section 3.3, the training data for the
detector and corrector were further augmented.
The data statistics are shown in the appendix (Ta-
ble 10).

Models The seq2seq APE model, LevT, and our
detector–corrector comprise the XLM-R large en-
coder and Transformer decoder. The seq2seq,
LevT, and corrector models were trained in 60,000
steps, and the detector model was trained in 40,000
steps. All models were optimized by Adam opti-
mizer (β1 = 0.9, β2 = 0.98). The learning rate
was linearly increased up to 4,000 steps and then
decayed proportional to the inverse square root of
the training steps. The beam size was set to 5,
and the length penalty was set to α = 1.0. We
saved checkpoints of all models for every 1,000
steps and took an average of the last 5 checkpoints.
The LevT edited the MT sentences 5 times itera-
tively, and the detector–corrector edited 4 times,
i.e., k = 4, by tuning on the development set. For
tagging, we used the intermediate representations
of the 20th layer, i.e., lT = lG = lS = 20 in En–
De, and the 24th layer, i.e., lT = lG = lS = 24
in En–Zh. The details of each model are shown in
the appendix (Table 9).

4.2 Results

Our main results are shown in Table 1. Our
detector–corrector model improved TER and
BLEU from both LevT and seq2seq models. Espe-
cially in TER, detector–corrector outperforms the

4https://huggingface.co/Unbabel/
wmt22-comet-da

Dataset Model ↓T ↑B ↑C

En–De do nothing (MT) 31.3 50.2 77.1
seq2seq 28.4 53.3 77.7
LevT (Gu et al., 2019) 31.9 49.4 75.6
detector–corrector 27.7† 53.6 79.6†

En–Zh do nothing (MT) 58.3 24.3 86.3
seq2seq 56.7 26.0 89.4†

LevT (Gu et al., 2019) 59.3 23.6 86.0
detector–corrector 56.0 26.1 89.2

Table 1: Comparison of post-editing performance in the
WMT’20 En–De and En–Zh APE tasks. Do nothing (MT)
does not edit MT sentences and the scores are calculated be-
tween MT and PE sentences. The best scores of each dataset
are emphasized by the bold font. The symbol † indicates that
the score difference is statistically significant (p < 0.05) be-
tween seq2seq and detector–corrector.

En–De En–Zh

Model ↓T ↑B ↑C ↓T ↑B ↑C

ours 27.7† 53.6† 79.6† 56.0† 26.1† 89.2†

- light-iter 28.9 52.1 77.7 56.6 25.5 88.0
-- MT training 29.3 51.5 77.7 56.6 25.4 88.3
-- PE training 29.2 51.8 77.7 56.6 25.2 88.3
-- DAug for corrector 30.2 50.1 77.6 57.0 24.9 88.6
--- DAug for detector 31.2 49.0 77.1 61.2 22.7 86.7

Table 2: Ablation study of our methods in the WMT’20 En–
De and En–Zh APE tasks. The symbol † indicates that the
score difference is statistically significant (p < 0.05) between
“ours” and “- light-iter”.

black-box seq2seq model by 0.7 % in En–De and
En–Zh while providing the editing process.

Table 2 shows the ablation study of our pro-
posed methods. In the table, “light-iter” denotes
the lightweight iterative refinement, and “DAug”
denotes data augmentation. The results show that
both lightweight iterative refinement and data aug-
mentation for the detector and corrector are ef-
fective, which improve the TER scores by 3.5 %
in En–De and 5.2 % in En–Zh compared to the
vanilla detector–corrector.

Our data augmentation for the detector can
be used for other baseline models, seq2seq and
LevT5. To confirm that the data augmentation is
effective for our model, we also trained the base-
line models using the augmented data. Table 3
shows that the translation quality of baseline mod-
els trained on the augmented data. Unlike the
“DAug for detector” row in Table 2, there is no
improvement in all metrics of more than 1 % even
if the augmented data is used. This is because the

5The data augmentation for corrector cannot be applied to
other models because they have been already trained to gen-
erate the whole target sentence.

197

↓T ↑B ↑C

Dataset Model w/o w w/o w w/o w

En–De seq2seq 28.4 28.4 53.3 52.9 77.7 78.0
LevT 31.9 32.1 49.4 49.0 75.6 75.8

En–Zh seq2seq 56.7 57.0 26.0 26.0 89.4 89.5
LevT 59.3 59.9 23.6 23.4 86.0 86.1

Table 3: Translation quality of baseline models trained using
our data augmentation for the detector.

Tagging Dataset DAug MCC F1-OK F1-BAD

Target En–De w/o 0.468 0.935 0.523
w/ 0.475 0.937 0.526

En–Zh w/o 0.505 0.893 0.602
w/ 0.537 0.902 0.619

Source En–De w/o 0.782 0.985 0.794
w/ 0.791 0.985 0.805

En–Zh w/o 0.641 0.943 0.695
w/ 0.676 0.948 0.724

Table 4: Word-level quality estimation performance of our
detector model.

data augmentation for the detector is designed to
enhance word-level quality estimation.

To summarize, we confirmed that our model
outperformed LevT and a black-box seq2seq
model, and our approaches mitigate the transla-
tion quality degradation issue caused by predict-
ing tags in a non-autoregressive manner and being
trained from only a vocabulary limited to correc-
tion words.

5 Discussion

5.1 Accuracy of the Detector

We evaluated the tagging performance of our de-
tector model and investigated the effectiveness of
data augmentation for the detector. Since tags are
predicted on subword units, we assigned a BAD
tag to a word if one of the subwords in the word
was assigned a BAD tag. The gold tags are cal-
culated from the TER edit sequence after applying
the shift operations in the same way as described
in Section 3.1.

Table 4 shows the results of the word-level
quality estimation. In the table, “MCC” de-
notes Matthews correlation coefficient (Matthews,
1975). “Target” and “Source” are the target-side
tagging, i.e., MT-tag and MT-gap without distinc-
tion, and the source-side tagging, i.e., SRC-tag, re-
spectively. We only compared our models with and
without data augmentation. This is because in the

Dataset Model ↓T ↑B ↑C

En–De do nothing (MT) 31.3 50.2 77.1
detector–corrector 27.7 53.6 79.6

w/ oracle tags 13.8 74.6 82.9
(-13.9) (+21.0) (+3.3)

En–Zh do nothing (MT) 58.3 24.3 86.3
detector–corrector 56.0 26.1 89.2

w/ oracle tags 33.2 46.6 90.1
(-22.8) (+20.5) (+0.9)

Table 5: Correction performance in the WMT’20 En–De and
En–Zh APE tasks when the erroneous spans are given manu-
ally.

WMT’20 word-level QE task, the target-side tags
are produced from TER edit operations without
shift operations, and the source-side tags are pro-
duced by FAST ALIGN6 (Dyer et al., 2013), while
in our model the target-side tags include the shift
operation and the source-side tags are produced
by AWESOME-ALIGN. The results show that the
data augmentation for the detector improved the all
MCC scores, which has the direct impact to the im-
provements measured by BLEU and TER for our
detector–corrector as shown in Table 2.

5.2 Correction Performance of Oracle
Tagged Sentences

We evaluated the performance of the corrector
model for oracle tags, assuming a setting in which
error spans are given manually. Oracle tags were
given from the TER alignment between the MT
sentence and the reference translation as well as
the supervision in the training data.

In Table 5, “w/ oracle tags” shows the result
of oracle correction in the WMT’20 En–De and
En–Zh APE tasks. The results showed that when
given the ideal tags, the correction performance
significantly improved by -13.9 and -22.8 % TER,
+21.0 and +20.5 % BLEU, and +3.3 and +0.9 %
COMET in En–De and En–Zh, respectively. This
means that the corrector model has been success-
fully trained, and a further improvement in post-
editing performance can be achieved by improving
the accuracy of the detector model.

5.3 Ablation Study of Reordering

We also investigated the effectiveness of using the
reordering operation. The training data for the
model without reordering was created from the
edit alignments based on the edit distance. We

6SIMALIGN (Jalili Sabet et al., 2020) is employed since the
WMT’21 word-level QE task.

198

En–De En–Zh

Reordering ↓T ↑B ↑C ↓T ↑B ↑C

w/ 28.9 52.1 77.7 56.6 25.5 88.0
w/o 28.9 52.4 78.2 57.4 24.9 88.1

Table 6: Translation quality of detector–corrector with and
without reordering. Note that we evaluated translation quality
on the results of the first iteration in iterative refinement.

En–De En–Zh

Reordering # of edits TERMT # of edits TERMT

w/ 2,506 17.6 5,603 31.6
w/o 2,614 18.5 7,410 38.0

Table 7: The total number of spans tagged by the detector and
TER scores that measured the amount of editing from the MT
sentence to the post-edited sentence corrected by the corrector
in the WMT’20 APE En–De and En–Zh tasks.

compared the translation quality in the first iter-
ation. Table 6 shows the experimental results of
detector–corrector with and without reordering. In
TER, which indicates the number of edits to the
reference translation, detector–corrector without
reordering resulted in the same score as detector–
corrector with reordering in En–De and degraded
in En–Zh.

To investigate this gap in TER scores, we
counted the total number of spans tagged by the
detector and evaluated the TER score that mea-
sured the number of edits from the MT sentence to
the post-edited sentence corrected by our detector–
corrector (TERMT). Table 7 shows that the num-
ber of edited spans was decreased by reordering,
especially in En–Zh. In addition, the reordering
operation reduces the TERMT by 0.9% and 6.4%
in En–De and En-Zh, respectively. This means
that the number of edits from the MT sentence and
the number of edits to the reference translation de-
creases by using the reordering operation; hence,
the editing process becomes easier for humans to
interpret.

In summary, we confirmed that reordering is ef-
fective in reducing the number of edits, as shown
by the TER scores in Table 6 and Table 7.

5.4 Effectiveness of Iterative Refinement

To verify the effectiveness of iterative refine-
ment, we evaluated BLEU and TER scores in the
WMT’20 En–De APE task at various numbers of
inference iterations k ∈ {1, 2, 3, 4, 5} on the de-
velopment set. We also compared the difference
between including (“full-iter”) and not including

1 2 3 4 5
k

29.0

29.5

30.0

30.5

31.0

TE
R

Refinement
full-iter
light-iter
baseline (MT)

(a) Comparison of TER scores for each iteration.

1 2 3 4 5
k

50.5

51.0

51.5

52.0

52.5

53.0

BL
EU

Refinement
full-iter
light-iter
baseline (MT)

(b) Comparison of BLEU scores for each iteration.

Figure 4: Comparison of various iterations in iterative refine-
ment. The scores were evaluated on the development set in
the WMT’20 En–De APE task.

1 2 3 4 5
k

1.4
1.6
1.8
2.0
2.2
2.4

of

 ta
gg

ed
 sp

an
s Refinement

light-iter
full-iter

Figure 5: Number of tagged spans per sentence in the
WMT’20 En–De APE task.

(“light-iter”) reordering when k ≥ 2. Figure 4(a)
and 4(b) shows that the first iterative refinement
(k = 2) significantly improved the TER and BLEU
scores from the first inference (k = 1). From
k = 2 to 4, we see a slight improvement in both
TER and BLEU. Comparing the iterative refine-
ment methods, light-iter was slightly more accu-
rate than full-iter, but the difference is lower than
0.1 % in both metrics.

Figure 5 shows the average number of bad- and
insertion-tagged spans of MT sentences, which
was corrected by the corrector. The figure shows
that the number of corrected spans decreases in
each iteration, especially when it significantly de-
creases in the second refinement, i.e., k = 2, which
corresponds to the decrease of TER and BLEU in
Figure 5.

199

Source Georgia Lee , 89 , Australian jazz and blues singer .
Reference 乔治亚 ·李 (Georgia Lee) , 89岁,澳大利亚爵士和蓝调歌手。
MT (TER=64.7) 89岁的佐治亚州李 ,澳大利亚爵士乐和布鲁斯歌手 .

Reordered MT 的佐治亚州李 89岁 ,澳大利亚爵士乐和布鲁斯歌手 .

k = 1 Annotated source Georgia Lee <bad>, </bad> 89 , Australian jazz and blues singer .

Annotated MT <bad>的</bad> 佐治亚 <bad>州</bad> 李 <ins></ins> 89岁,澳大利亚爵

士乐和 <bad>布鲁斯</bad> 歌手 <bad>.</bad>

Correction <bad></bad> <bad> · </bad> <ins>,</ins> <bad>蓝调</bad>

<bad>。</bad>
Output (TER=35.3) 佐治亚 ·李 , 89岁 ,澳大利亚爵士乐和蓝调歌手。

k = 2 Annotated source Georgia Lee , 89 , Australian jazz and blues singer .
Annotated MT 佐治亚 ·李 <ins></ins> , 89岁,澳大利亚爵士乐和蓝调歌手。
Correction <ins> (George Lee) </ins>
Output (TER=17.7) 佐治亚 ·李 (George Lee) , 89岁 ,澳大利亚爵士乐和蓝调歌手。

Table 8: An example of the editing process.

1-D 1-C 2-D 2-C 3-D 3-C 4-D 4-C 5-D 5-C
Inference step

10

20

30

40

50

60

Cu
m

ul
at

iv
e

se
co

nd
s Refinement

light-iter
full-iter

Figure 6: Cumulative time taken for each inference step. “k-
D” and “k-C” denote the k-th inference step of the detector
model and corrector model, respectively.

We also measured the cumulative time for each
inference step. Figure 6 shows the total inference
time in seconds for full-iter and light-iter when
processing 1,000 sentences. In the figure, “k-D”
and “k-C” denote the k-th inference step of the de-
tector model and corrector model, respectively. It
can be seen that light-iter infers faster than full-
iter because light-iter does not predict reordering,
which is time-consuming, in the detector inference
at each iteration in k ≥ 2.

From the results, our detector–corrector is fur-
ther improved by using iterative refinement at least
twice, and the inference speed is reduced by two-
thirds using our lightweight iterative refinement
without losing qualities.

5.5 Case Study: Editing Process
We analyzed examples of the editing processes of
detector–corrector. Table 8 shows an example of
the editing process of an MT sentence. In the ta-
ble, the “Annotated source” line is the source sen-
tences annotated with SRC-tag by the detector, and

the “Annotated MT” line is the reordered MT sen-
tences annotated with MT-tag and MT-gap by the
detector. The “Correction” and “Output” lines are
the correction sequence generated by the corrector
and the outputs of the detector–corrector, respec-
tively. The table shows that our model detects and
corrects the erroneous spans iteratively, and out-
puts the sentence with 17.7 TER in the second it-
eration. Note that the detector did not detect any
erroneous spans in this example when k ≥ 3. The
table also shows that our model swaps two spans,
“89 岁” and “佐治亚州 李”, which makes the
word order align with the source sentence and ref-
erence translation.

6 Conclusion

We proposed “detector–corrector”, the edit-based
automatic post-editing (APE) model, which ex-
plains which words are wrong in MT sentences
and how to correct them for human post-editors.
Experiments on the WMT’20 English–German
and English–Chinese APE tasks showed that our
detector–corrector model provides the editing pro-
cess and outperformed the previous edit-based
model, Levenshtein Transformer, and a black-box
sequence-to-sequence APE model in TER.

In the future, we will further investigate what
is needed to reduce the workload of human post-
editors.

Acknowledgements

This work was partially supported by JSPS KAK-
ENHI Grant Number JP21H05054.

200

References
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Bengio, Yoshua
and Yann LeCun, editors, 3rd International Confer-
ence on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings.

Bhattacharyya, Pushpak, Rajen Chatterjee, Markus
Freitag, Diptesh Kanojia, Matteo Negri, and Marco
Turchi. 2022. Findings of the WMT 2022 shared
task on automatic post-editing. In Koehn, Philipp,
Loı̈c Barrault, Ondřej Bojar, Fethi Bougares, Rajen
Chatterjee, Marta R. Costa-jussà, Christian Feder-
mann, Mark Fishel, Alexander Fraser, Markus Fre-
itag, Yvette Graham, Roman Grundkiewicz, Paco
Guzman, Barry Haddow, Matthias Huck, Antonio Ji-
meno Yepes, Tom Kocmi, André Martins, Makoto
Morishita, Christof Monz, Masaaki Nagata, Toshi-
aki Nakazawa, Matteo Negri, Aurélie Névéol, Mari-
ana Neves, Martin Popel, Marco Turchi, and Marcos
Zampieri, editors, Proceedings of the Seventh Con-
ference on Machine Translation (WMT), pages 109–
117, Abu Dhabi, United Arab Emirates (Hybrid),
December. Association for Computational Linguis-
tics.

Chatterjee, Rajen, Christian Federmann, Matteo Ne-
gri, and Marco Turchi. 2019. Findings of the
WMT 2019 shared task on automatic post-editing.
In Bojar, Ondřej, Rajen Chatterjee, Christian Fed-
ermann, Mark Fishel, Yvette Graham, Barry Had-
dow, Matthias Huck, Antonio Jimeno Yepes, Philipp
Koehn, André Martins, Christof Monz, Matteo Ne-
gri, Aurélie Névéol, Mariana Neves, Matt Post,
Marco Turchi, and Karin Verspoor, editors, Proceed-
ings of the Fourth Conference on Machine Trans-
lation (Volume 3: Shared Task Papers, Day 2),
pages 11–28, Florence, Italy, August. Association
for Computational Linguistics.

Chatterjee, Rajen, Markus Freitag, Matteo Negri, and
Marco Turchi. 2020. Findings of the WMT 2020
shared task on automatic post-editing. In Barrault,
Loı̈c, Ondřej Bojar, Fethi Bougares, Rajen Chat-
terjee, Marta R. Costa-jussà, Christian Federmann,
Mark Fishel, Alexander Fraser, Yvette Graham, Paco
Guzman, Barry Haddow, Matthias Huck, Antonio Ji-
meno Yepes, Philipp Koehn, André Martins, Makoto
Morishita, Christof Monz, Masaaki Nagata, Toshi-
aki Nakazawa, and Matteo Negri, editors, Proceed-
ings of the Fifth Conference on Machine Translation,
pages 646–659, Online, November. Association for
Computational Linguistics.

Chen, Mengyun, Tao Ge, Xingxing Zhang, Furu Wei,
and Ming Zhou. 2020. Improving the efficiency
of grammatical error correction with erroneous span
detection and correction. In Webber, Bonnie, Trevor
Cohn, Yulan He, and Yang Liu, editors, Proceed-
ings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),

pages 7162–7169, Online, November. Association
for Computational Linguistics.

Conneau, Alexis, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Ju-
rafsky, Dan, Joyce Chai, Natalie Schluter, and Joel
Tetreault, editors, Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 8440–8451, Online, July. Association
for Computational Linguistics.

Correia, Gonçalo M. and André F. T. Martins. 2019.
A simple and effective approach to automatic post-
editing with transfer learning. In Korhonen, Anna,
David Traum, and Lluı́s Màrquez, editors, Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3050–3056,
Florence, Italy, July. Association for Computational
Linguistics.

Cui, Qu, Shujian Huang, Jiahuan Li, Xiang Geng, Zaix-
iang Zheng, Guoping Huang, and Jiajun Chen. 2021.
Directqe: Direct pretraining for machine translation
quality estimation. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
12719–12727.

Deoghare, Sourabh and Pushpak Bhattacharyya. 2022.
IIT Bombay’s WMT22 automatic post-editing
shared task submission. In Koehn, Philipp, Loı̈c
Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chat-
terjee, Marta R. Costa-jussà, Christian Federmann,
Mark Fishel, Alexander Fraser, Markus Freitag,
Yvette Graham, Roman Grundkiewicz, Paco Guz-
man, Barry Haddow, Matthias Huck, Antonio Ji-
meno Yepes, Tom Kocmi, André Martins, Makoto
Morishita, Christof Monz, Masaaki Nagata, Toshi-
aki Nakazawa, Matteo Negri, Aurélie Névéol, Mari-
ana Neves, Martin Popel, Marco Turchi, and Marcos
Zampieri, editors, Proceedings of the Seventh Con-
ference on Machine Translation (WMT), pages 682–
688, Abu Dhabi, United Arab Emirates (Hybrid),
December. Association for Computational Linguis-
tics.

Deoghare, Sourabh, Diptesh Kanojia, Fred Blain,
Tharindu Ranasinghe, and Pushpak Bhattacharyya.
2023. Quality estimation-assisted automatic post-
editing. In Bouamor, Houda, Juan Pino, and Kalika
Bali, editors, Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 1686–
1698, Singapore, December. Association for Com-
putational Linguistics.

Ding, Shuoyang, Marcin Junczys-Dowmunt, Matt Post,
and Philipp Koehn. 2021. Levenshtein training for
word-level quality estimation. In Moens, Marie-
Francine, Xuanjing Huang, Lucia Specia, and Scott
Wen-tau Yih, editors, Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6724–6733, Online and Punta

201

Cana, Dominican Republic, November. Association
for Computational Linguistics.

Dou, Zi-Yi and Graham Neubig. 2021. Word align-
ment by fine-tuning embeddings on parallel corpora.
In Merlo, Paola, Jorg Tiedemann, and Reut Tsarfaty,
editors, Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 2112–2128,
Online, April. Association for Computational Lin-
guistics.

Dyer, Chris, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM model 2. In Vanderwende, Lucy, Hal
Daumé III, and Katrin Kirchhoff, editors, Proceed-
ings of the 2013 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
644–648, Atlanta, Georgia, June. Association for
Computational Linguistics.

Fomicheva, Marina, Shuo Sun, Lisa Yankovskaya,
Frédéric Blain, Francisco Guzmán, Mark Fishel,
Nikolaos Aletras, Vishrav Chaudhary, and Lucia
Specia. 2020. Unsupervised quality estimation for
neural machine translation. Transactions of the As-
sociation for Computational Linguistics, 8:539–555.

Gu, Jiatao, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Erk, Katrin and
Noah A. Smith, editors, Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
1631–1640, Berlin, Germany, August. Association
for Computational Linguistics.

Gu, Jiatao, Changhan Wang, and Junbo Zhao.
2019. Levenshtein transformer. In Wallach, H.,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32. Curran
Associates, Inc.

Herbig, Nico, Tim Düwel, Santanu Pal, Kalliopi
Meladaki, Mahsa Monshizadeh, Antonio Krüger,
and Josef van Genabith. 2020. MMPE: A Multi-
Modal Interface for Post-Editing Machine Transla-
tion. In Jurafsky, Dan, Joyce Chai, Natalie Schluter,
and Joel Tetreault, editors, Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 1691–1702, Online, July.
Association for Computational Linguistics.

Huang, Xuancheng, Yang Liu, Huanbo Luan, Jingfang
Xu, and Maosong Sun. 2019. Learning to copy for
automatic post-editing. In Inui, Kentaro, Jing Jiang,
Vincent Ng, and Xiaojun Wan, editors, Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 6122–6132, Hong
Kong, China, November. Association for Computa-
tional Linguistics.

Huang, Xiaoying, Xingrui Lou, Fan Zhang, and
Tu Mei. 2022. LUL’s WMT22 automatic post-
editing shared task submission. In Koehn, Philipp,
Loı̈c Barrault, Ondřej Bojar, Fethi Bougares, Rajen
Chatterjee, Marta R. Costa-jussà, Christian Feder-
mann, Mark Fishel, Alexander Fraser, Markus Fre-
itag, Yvette Graham, Roman Grundkiewicz, Paco
Guzman, Barry Haddow, Matthias Huck, Antonio Ji-
meno Yepes, Tom Kocmi, André Martins, Makoto
Morishita, Christof Monz, Masaaki Nagata, Toshi-
aki Nakazawa, Matteo Negri, Aurélie Névéol, Mari-
ana Neves, Martin Popel, Marco Turchi, and Marcos
Zampieri, editors, Proceedings of the Seventh Con-
ference on Machine Translation (WMT), pages 689–
693, Abu Dhabi, United Arab Emirates (Hybrid),
December. Association for Computational Linguis-
tics.

Jalili Sabet, Masoud, Philipp Dufter, François Yvon,
and Hinrich Schütze. 2020. SimAlign: High qual-
ity word alignments without parallel training data us-
ing static and contextualized embeddings. In Cohn,
Trevor, Yulan He, and Yang Liu, editors, Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 1627–1643, Online, November.
Association for Computational Linguistics.

Junczys-Dowmunt, Marcin and Roman Grundkiewicz.
2018. MS-UEdin submission to the WMT2018
APE shared task: Dual-source transformer for auto-
matic post-editing. In Bojar, Ondřej, Rajen Chatter-
jee, Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Antonio Ji-
meno Yepes, Philipp Koehn, Christof Monz, Matteo
Negri, Aurélie Névéol, Mariana Neves, Matt Post,
Lucia Specia, Marco Turchi, and Karin Verspoor, ed-
itors, Proceedings of the Third Conference on Ma-
chine Translation: Shared Task Papers, pages 822–
826, Belgium, Brussels, October. Association for
Computational Linguistics.

Kasai, Jungo, James Cross, Marjan Ghazvininejad, and
Jiatao Gu. 2020. Non-autoregressive machine trans-
lation with disentangled context transformer. In III,
Hal Daumé and Aarti Singh, editors, Proceedings
of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine
Learning Research, pages 5144–5155. PMLR, 13–
18 Jul.

Kim, Hyun, Hun-Young Jung, Hongseok Kwon, Jong-
Hyeok Lee, and Seung-Hoon Na. 2017a. Predictor-
estimator: Neural quality estimation based on tar-
get word prediction for machine translation. ACM
Trans. Asian Low-Resour. Lang. Inf. Process., 17(1),
sep.

Kim, Hyun, Jong-Hyeok Lee, and Seung-Hoon Na.
2017b. Predictor-estimator using multilevel task
learning with stack propagation for neural quality es-
timation. In Bojar, Ondřej, Christian Buck, Rajen
Chatterjee, Christian Federmann, Yvette Graham,
Barry Haddow, Matthias Huck, Antonio Jimeno
Yepes, Philipp Koehn, and Julia Kreutzer, editors,
Proceedings of the Second Conference on Machine

202

Translation, pages 562–568, Copenhagen, Denmark,
September. Association for Computational Linguis-
tics.

Lee, Jihyung, WonKee Lee, Jaehun Shin, Baikjin
Jung, Young-Kil Kim, and Jong-Hyeok Lee. 2020.
POSTECH-ETRI’s submission to the WMT2020
APE shared task: Automatic post-editing with
cross-lingual language model. In Barrault, Loı̈c,
Ondřej Bojar, Fethi Bougares, Rajen Chatterjee,
Marta R. Costa-jussà, Christian Federmann, Mark
Fishel, Alexander Fraser, Yvette Graham, Paco Guz-
man, Barry Haddow, Matthias Huck, Antonio Ji-
meno Yepes, Philipp Koehn, André Martins, Makoto
Morishita, Christof Monz, Masaaki Nagata, Toshi-
aki Nakazawa, and Matteo Negri, editors, Proceed-
ings of the Fifth Conference on Machine Translation,
pages 777–782, Online, November. Association for
Computational Linguistics.

Luong, Thang, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Màrquez, Lluı́s, Chris
Callison-Burch, and Jian Su, editors, Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lisbon,
Portugal, September. Association for Computational
Linguistics.

Mallinson, Jonathan, Aliaksei Severyn, Eric Malmi,
and Guillermo Garrido. 2020. FELIX: Flexible
text editing through tagging and insertion. In Cohn,
Trevor, Yulan He, and Yang Liu, editors, Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 1244–1255, Online, November.
Association for Computational Linguistics.

Mallinson, Jonathan, Jakub Adamek, Eric Malmi,
and Aliaksei Severyn. 2022. EdiT5: Semi-
autoregressive text editing with t5 warm-start. In
Goldberg, Yoav, Zornitsa Kozareva, and Yue Zhang,
editors, Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 2126–2138,
Abu Dhabi, United Arab Emirates, December. Asso-
ciation for Computational Linguistics.

Malmi, Eric, Sebastian Krause, Sascha Rothe, Daniil
Mirylenka, and Aliaksei Severyn. 2019. Encode,
tag, realize: High-precision text editing. In Inui,
Kentaro, Jing Jiang, Vincent Ng, and Xiaojun Wan,
editors, Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5054–5065, Hong Kong, China, November. Associ-
ation for Computational Linguistics.

Matthews, Brian W. 1975. Comparison of the pre-
dicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure, 405(2):442–451.

Negri, Matteo, Marco Turchi, Rajen Chatterjee, and
Nicola Bertoldi. 2018. ESCAPE: a large-scale
synthetic corpus for automatic post-editing. In

Calzolari, Nicoletta, Khalid Choukri, Christopher
Cieri, Thierry Declerck, Sara Goggi, Koiti Hasida,
Hitoshi Isahara, Bente Maegaard, Joseph Mariani,
Hélène Mazo, Asuncion Moreno, Jan Odijk, Stelios
Piperidis, and Takenobu Tokunaga, editors, Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan, May. European Language Re-
sources Association (ELRA).

Omelianchuk, Kostiantyn, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR – grammatical error correction: Tag, not
rewrite. In Burstein, Jill, Ekaterina Kochmar, Clau-
dia Leacock, Nitin Madnani, Ildikó Pilán, Helen
Yannakoudakis, and Torsten Zesch, editors, Pro-
ceedings of the Fifteenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 163–170, Seattle, WA, USA → Online, July.
Association for Computational Linguistics.

Ott, Myle, Michael Auli, David Grangier, and
Marc’Aurelio Ranzato. 2018. Analyzing uncer-
tainty in neural machine translation. In Dy, Jen-
nifer G. and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018, volume 80 of
Proceedings of Machine Learning Research, pages
3953–3962. PMLR.

Post, Matt. 2018. A call for clarity in reporting
BLEU scores. In Bojar, Ondřej, Rajen Chatter-
jee, Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Antonio Ji-
meno Yepes, Philipp Koehn, Christof Monz, Matteo
Negri, Aurélie Névéol, Mariana Neves, Matt Post,
Lucia Specia, Marco Turchi, and Karin Verspoor, ed-
itors, Proceedings of the Third Conference on Ma-
chine Translation: Research Papers, pages 186–191,
Brussels, Belgium, October. Association for Compu-
tational Linguistics.

Raffel, Colin, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Ranasinghe, Tharindu, Constantin Orasan, and Rus-
lan Mitkov. 2020. TransQuest: Translation qual-
ity estimation with cross-lingual transformers. In
Scott, Donia, Nuria Bel, and Chengqing Zong, ed-
itors, Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 5070–
5081, Barcelona, Spain (Online), December. Inter-
national Committee on Computational Linguistics.

Ranasinghe, Tharindu, Constantin Orasan, and Ruslan
Mitkov. 2021. An exploratory analysis of multilin-
gual word-level quality estimation with cross-lingual
transformers. In Zong, Chengqing, Fei Xia, Wenjie
Li, and Roberto Navigli, editors, Proceedings of the

203

59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 2: Short Papers), pages 434–440, Online, Au-
gust. Association for Computational Linguistics.

Rei, Ricardo, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Webber, Bonnie, Trevor Cohn, Yulan
He, and Yang Liu, editors, Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 2685–2702, On-
line, November. Association for Computational Lin-
guistics.

Rei, Ricardo, José G. C. de Souza, Duarte Alves,
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,
Alon Lavie, Luisa Coheur, and André F. T. Mar-
tins. 2022. COMET-22: Unbabel-IST 2022 submis-
sion for the metrics shared task. In Koehn, Philipp,
Loı̈c Barrault, Ondřej Bojar, Fethi Bougares, Rajen
Chatterjee, Marta R. Costa-jussà, Christian Feder-
mann, Mark Fishel, Alexander Fraser, Markus Fre-
itag, Yvette Graham, Roman Grundkiewicz, Paco
Guzman, Barry Haddow, Matthias Huck, Antonio Ji-
meno Yepes, Tom Kocmi, André Martins, Makoto
Morishita, Christof Monz, Masaaki Nagata, Toshi-
aki Nakazawa, Matteo Negri, Aurélie Névéol, Mari-
ana Neves, Martin Popel, Marco Turchi, and Marcos
Zampieri, editors, Proceedings of the Seventh Con-
ference on Machine Translation (WMT), pages 578–
585, Abu Dhabi, United Arab Emirates (Hybrid),
December. Association for Computational Linguis-
tics.

Sharma, Abhishek, Prabhakar Gupta, and Anil
Nelakanti. 2021. Adapting neural machine trans-
lation for automatic post-editing. In Barrault,
Loic, Ondrej Bojar, Fethi Bougares, Rajen Chat-
terjee, Marta R. Costa-jussa, Christian Federmann,
Mark Fishel, Alexander Fraser, Markus Freitag,
Yvette Graham, Roman Grundkiewicz, Paco Guz-
man, Barry Haddow, Matthias Huck, Antonio Ji-
meno Yepes, Philipp Koehn, Tom Kocmi, Andre
Martins, Makoto Morishita, and Christof Monz, ed-
itors, Proceedings of the Sixth Conference on Ma-
chine Translation, pages 315–319, Online, Novem-
ber. Association for Computational Linguistics.

Snover, Matthew, Bonnie Dorr, Rich Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In Proceedings of the 7th Conference of the
Association for Machine Translation in the Ameri-
cas: Technical Papers, pages 223–231, Cambridge,
Massachusetts, USA, August 8-12. Association for
Machine Translation in the Americas.

Specia, Lucia, Frédéric Blain, Marina Fomicheva, Er-
ick Fonseca, Vishrav Chaudhary, Francisco Guzmán,
and André F. T. Martins. 2020. Findings of the
WMT 2020 shared task on quality estimation. In
Barrault, Loı̈c, Ondřej Bojar, Fethi Bougares, Ra-
jen Chatterjee, Marta R. Costa-jussà, Christian Fed-
ermann, Mark Fishel, Alexander Fraser, Yvette Gra-

ham, Paco Guzman, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, André Mar-
tins, Makoto Morishita, Christof Monz, Masaaki Na-
gata, Toshiaki Nakazawa, and Matteo Negri, edi-
tors, Proceedings of the Fifth Conference on Ma-
chine Translation, pages 743–764, Online, Novem-
ber. Association for Computational Linguistics.

Stahlberg, Felix and Shankar Kumar. 2020. Seq2Edits:
Sequence transduction using span-level edit oper-
ations. In Webber, Bonnie, Trevor Cohn, Yulan
He, and Yang Liu, editors, Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 5147–5159, On-
line, November. Association for Computational Lin-
guistics.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Vol-
ume 2, NIPS’14, page 3104–3112, Cambridge, MA,
USA. MIT Press.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Guyon, I, U V Luxburg, S Bengio,
H Wallach, R Fergus, S Vishwanathan, and R Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Cortes, C., N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc.

Vu, Thuy-Trang and Gholamreza Haffari. 2018. Auto-
matic post-editing of machine translation: A neural
programmer-interpreter approach. In Riloff, Ellen,
David Chiang, Julia Hockenmaier, and Jun’ichi Tsu-
jii, editors, Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Process-
ing, pages 3048–3053, Brussels, Belgium, October-
November. Association for Computational Linguis-
tics.

Wang, Jiayi, Ke Wang, Kai Fan, Yuqi Zhang, Jun Lu,
Xin Ge, Yangbin Shi, and Yu Zhao. 2020. Al-
ibaba’s submission for the WMT 2020 APE shared
task: Improving automatic post-editing with pre-
trained conditional cross-lingual BERT. In Barrault,
Loı̈c, Ondřej Bojar, Fethi Bougares, Rajen Chat-
terjee, Marta R. Costa-jussà, Christian Federmann,
Mark Fishel, Alexander Fraser, Yvette Graham, Paco
Guzman, Barry Haddow, Matthias Huck, Antonio Ji-
meno Yepes, Philipp Koehn, André Martins, Makoto
Morishita, Christof Monz, Masaaki Nagata, Toshi-
aki Nakazawa, and Matteo Negri, editors, Proceed-
ings of the Fifth Conference on Machine Translation,
pages 789–796, Online, November. Association for
Computational Linguistics.

204

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Lukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. CoRR, abs/1609.08144.

Yang, Hao, Minghan Wang, Daimeng Wei, Hengchao
Shang, Jiaxin Guo, Zongyao Li, Lizhi Lei, Ying
Qin, Shimin Tao, Shiliang Sun, and Yimeng Chen.
2020. HW-TSC’s participation at WMT 2020 au-
tomatic post editing shared task. In Barrault, Loı̈c,
Ondřej Bojar, Fethi Bougares, Rajen Chatterjee,
Marta R. Costa-jussà, Christian Federmann, Mark
Fishel, Alexander Fraser, Yvette Graham, Paco Guz-
man, Barry Haddow, Matthias Huck, Antonio Ji-
meno Yepes, Philipp Koehn, André Martins, Makoto
Morishita, Christof Monz, Masaaki Nagata, Toshi-
aki Nakazawa, and Matteo Negri, editors, Proceed-
ings of the Fifth Conference on Machine Translation,
pages 797–802, Online, November. Association for
Computational Linguistics.

Yang, Zhen, Fandong Meng, Yingxue Zhang, Er-
nan Li, and Jie Zhou. 2022a. Findings of the
WMT 2022 shared task on translation suggestion.
In Koehn, Philipp, Loı̈c Barrault, Ondřej Bojar,
Fethi Bougares, Rajen Chatterjee, Marta R. Costa-
jussà, Christian Federmann, Mark Fishel, Alexan-
der Fraser, Markus Freitag, Yvette Graham, Ro-
man Grundkiewicz, Paco Guzman, Barry Haddow,
Matthias Huck, Antonio Jimeno Yepes, Tom Kocmi,
André Martins, Makoto Morishita, Christof Monz,
Masaaki Nagata, Toshiaki Nakazawa, Matteo Ne-
gri, Aurélie Névéol, Mariana Neves, Martin Popel,
Marco Turchi, and Marcos Zampieri, editors, Pro-
ceedings of the Seventh Conference on Machine
Translation (WMT), pages 821–829, Abu Dhabi,
United Arab Emirates (Hybrid), December. Associa-
tion for Computational Linguistics.

Yang, Zhen, Fandong Meng, Yingxue Zhang, Ernan
Li, and Jie Zhou. 2022b. WeTS: A benchmark for
translation suggestion. In Goldberg, Yoav, Zornitsa
Kozareva, and Yue Zhang, editors, Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 5278–5290, Abu
Dhabi, United Arab Emirates, December. Associa-
tion for Computational Linguistics.

A Ethical Considerations

We trained all models from open datasets; there-
fore, if their datasets have toxic text, the models
may have the risk of generating toxic content.

B Limitations

Our model can show the editing process and cor-
rection candidates by taking into account the opin-
ions of professional translators, but we have not
conducted a human evaluation of how much they
affect the actual post-editing process.

Our method may demand a larger memory foot-
print than a single seq2seq model because it runs
two models, the detector and corrector.

Our study focuses on correcting translation er-
rors, and thus our model cannot detect and correct
non-factual information when including them in a
source sentence.

Our model only corrects the erroneous spans de-
tected by the detector; thus, spans that the detector
fails to detect may remain uncorrected.

C Tools, Models, and Datasets

Tools We implemented all models in FAIRSEQ

which is published under the MIT-license.

Models We used the following pre-trained NMT
models implemented in FAIRSEQ to create the
training data.

• En–De: https://www.quest.dcs.
shef.ac.uk/wmt20_files_qe/
models_en-de.tar.gz

• En–Zh: https://www.quest.dcs.
shef.ac.uk/wmt20_files_qe/
models_en-zh.tar.gz

Our models were trained by using NVIDIA
A6000 GPU. The training costs, “GPU hours”,
multiplied by the number of GPUs and computa-
tion time, are shown in Table 9. Note that the trans-
lation performance for each model was evaluated
with only a single training.

Datasets We evaluated all models using
WMT’20 APE datasets published under the
Creative Commons Zero v1.0 Universal license.
Parallel data of the WMT’19 En–De and En–
Zh translation tasks, used in our training data,
can be used for research purposes as described
in https://www.statmt.org/wmt19/
translation-task.html.

In the En–Zh task, we tokenized the test set of
the En–Zh APE task using JIEBA7 to calculate the
TER and BLEU scores.
7https://github.com/fxsjy/jieba

205

Seq2Seq

Encoder XLM-R large (24 layers)
Decoder Transformer decoder

Number of layers 6
Hidden size 1024
FFN hidden size 4096

Learning rate 1e-4
Batch size 24,000 tokens
Training steps 60,000
Training cost 24.6 GPU hours

LevT

Encoder XLM-R large (24 layers)
Decoder Transformer decoder

Number of layers 6
Hidden size 1024
FFN hidden size 4096

Learning rate 1e-4
Batch size 12,000 tokens
Training steps 60,000
Training cost 12.4 GPU hours

Detector

Encoder XLM-R large (24 layers)
Decoder Transformer decoder

Number of layers 4
Hidden size 1024
FFN hidden size 4096

Learning rate 3e-5
Batch size 6,000 tokens
Training steps 40,000
Training cost 8.0 GPU hours

Corrector

Encoder XLM-R large (24 layers)
Decoder Transformer decoder

Number of layers 6
Hidden size 1024
FFN hidden size 4096

Learning rate 1e-4
Batch size 24,000 tokens
Training steps 60,000
Training cost 29.0 GPU hours

Table 9: Hyperparameters of the models.

The statistics of the training data are shown in
Table 10.

DAug for detector

w/o w/

(1) APE task data 7,000 7,000
(2) Translation task data 2,000,000 2,000,000

Training data of detector
Base data: (1)×20 + (2) 2,140,000 4,280,000

Training data of corrector
Base data: (1)×20 + (2) 2,140,000 4,280,000

+ MT training 4,280,000 8,560,000
+ PE training 4,280,000 8,560,000
+ MT & PE training 6,420,000 12,840,000

Table 10: Statistics of the training data. “DAug” denotes data
augmentation. In the experiment, to make the difference in
data size fair, we trained with the same number of parameter
updates without using the number of epochs, i.e., the number
of training epochs decreases as the data size increases.

206

