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Abstract

Machine translations are found to be lexi-
cally poorer than human translations. The
loss of lexical diversity through MT poses
an issue in the automatic translation of lit-
erature, where it matters not only what is
written, but also how it is written. Current
methods for increasing lexical diversity in
MT are rigid. Yet, as we demonstrate, the
degree of lexical diversity can vary consid-
erably across different novels. Thus, rather
than aiming for the rigid increase of lexi-
cal diversity, we reframe the task as recov-
ering what is lost in the machine transla-
tion process. We propose a novel approach
that consists of reranking translation can-
didates with a classifier that distinguishes
between original and translated text. We
evaluate our approach on 31 English-to-
Dutch book translations, and find that, for
certain books, our approach retrieves lexi-
cal diversity scores that are close to human
translation.

1 Introduction

With the introduction of neural machine transla-
tion (NMT), the performance of high-resource au-
tomatic translation has improved substantially. Es-
pecially since the introduction of the Transformer
architecture (Vaswani et al., 2017), state-of-the-
art NMT systems have outperformed previous ap-
proaches considerably (Lakew et al., 2018), with
some works even claiming human parity (Popel et
al., 2020). However, these claims are based mostly
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Figure 1: Reranking translation hypotheses based on the
probability they are originally written in the target language,
where the chosen rank is based on the lexical diversity score
of the original book, and could be lower than the most lexi-
cally diverse option.

on accuracy and fluency measures, while style is
often overlooked. In fact, according to expert eval-
uation, machine translation (MT) did actually not
reach human parity (Toral et al., 2018; Fischer and
Läubli, 2020). For instance, MT models have been
found to exacerbate linguistic patterns that occur
frequently, while underrepresenting patterns that
are found less commonly (Vanmassenhove et al.,
2019). As a result, automatically translated texts
are found to be lexically poorer than human trans-
lations (HT). This ‘artificially impoverished lan-
guage’ has previously been referred to as machine
translationese (Vanmassenhove et al., 2021).

In this paper, we focus on the translation of nov-
els. Contrary to technical domains, where meaning
preservation is the main criterion for acceptable
translations, literary translations have the addi-
tional criterion of style. This is because apart from
meaning preservation (what is written), maintain-
ing a certain reading experience (how it is writ-
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ten) is vital for novels (Toral and Way, 2015).
Importantly however, writing style (and linguistic
complexity) can vary considerably between books.
Some books contain repetitive language use, while
others are written in embellished language (see
Section 3). Current approaches that aim to miti-
gate the loss of lexical diversity do not accommo-
date this. State-of-the-art previous work (Freitag
et al., 2019; Freitag et al., 2022) increases lexical
diversity in a rigid way, not allowing for flexibility
at inference time.

Contributions (i) We show that lexical diversity
varies considerably across books, and argue that
this should be taken into account in MT; (ii) We
introduce a novel flexible method for recovering
lexical diversity in MT, informed by the diversity
of the original. (ii) We evaluate our method on 31
English novels which are translated to Dutch, and
find that our approach is effective when it comes
to book-tailored promotion of lexical diversity.

2 Related Work

Literary MT NMT has been argued to hold po-
tential for literary texts, for instance in assisting
professional translators or improving the immedi-
ate accessibility of untranslated foreign language
books (Matusov, 2019). However, MT has been
shown to decrease lexical diversity (Vanmassen-
hove et al., 2019; Vanmassenhove et al., 2021).
This is an issue, because literary works can be
viewed as a special domain in translation. Typi-
cally, literary translators are expected to preserve
not only literal elements from the source, such as
the plot, but also some sense of creative value (Ri-
era, 2022). In other words, a goal of literary trans-
lation could be to recreate the ‘aesthetic intentions
or effects’ that are possibly present in the source
book (Delabastita, 2011). Such ‘aesthetic inten-
tions’ can for instance be voice and metaphor, but
also repetition (Wright, 2016). Repetitive use of
language is commonly a conscious choice by the
writer, and has a function, such as drawing atten-
tion or establishing a pattern (Boase-Beier, 2011).
Given that lexical diversity can be an intentional
writing choice, it should be apparent that an ap-
proach that aims at recovering lexical diversity in
MT should not be boundless. Therefore, it is our
aim to inform recovery with the degree of relative
lexical diversity of the source text.

Machine Translationese Following recommen-
dations from Jiménez-Crespo (2023), we will
largely refrain from using the term translationese
in the rest of this paper. However, it is important
to note that previous work that aims to increase
lexical diversity in MT has mostly been framed as
part of ‘machine translationese’ reduction (Freitag
et al., 2019; Freitag et al., 2022; Dutta Chowd-
hury et al., 2022; Jalota et al., 2023). Transla-
tions have been found to differ from original texts
in a number of ways. For one, Baker (1993) ar-
gues that human translations into a language tend
to be lexically simpler than text originally writ-
ten in that language. Automatic classification ap-
proaches have been effective in detecting this dif-
ference (Baroni and Bernardini, 2005; Koppel and
Ordan, 2011; Volansky et al., 2015; Rabinovich
and Wintner, 2015; Pylypenko et al., 2021). More
recently, work has investigated linguistic differ-
ences between MT and HT (van der Werff et al.,
2022). Thus, it seems that modelling characteris-
tics of original versus translated texts has a direct
link to lexical diversity. Previous work (Freitag et
al., 2022) leveraged these detectable differences in
their approach to increase the naturalness of output
translations. We take inspiration from their lexical
diversity evaluation methods, and implement their
method as a baseline.

Reranking Methods Reranking hypotheses in
text generation originated before the age of neu-
ral paradigms (Shen et al., 2004; Collins and Koo,
2005). In essence, reranking entails re-ordering the
set of candidate outputs according to some crite-
rion, with the aim of providing a final output that
adheres better to that criterion. Such methods have
been applied for various tasks, such as summariza-
tion (Liu and Liu, 2021) and semantic parsing (Yin
and Neubig, 2019). In machine translation, pre-
vious approaches include discriminative reranking
(Lee et al., 2021) and reranking with energy-based
models (Arcadinho et al., 2022).

3 Why Recover Rather Than Increase
Lexical Diversity?

In this paper, we argue for tailored recovery of lex-
ical diversity. In this section, we first discuss sup-
port for this idea from the field of literary studies.
Then, we provide empirical evidence by applying
lexical diversity metrics to our test set.

287



0.05 0.07 0.09 0.11 0.13 0.15

TTR

0.05 0.07 0.09 0.11 0.13 0.15

TTR

0.25 1.00 1.75 2.50 3.25

Yule's I

0.25 1.00 1.75 2.50 3.25

Yule's I

50 70 90 110 130 150

MTLD

50 70 90 110 130 150

MTLD

Figure 2: Range and spread of lexical diversity metrics for HT (left, yellow) and original English (right, blue).

3.1 Theoretical Support
Previous work on writing style in novels acknowl-
edges that some books exhibit more lexical diver-
sity than others. As an example, Heaton (1970)
finds that no word in the original (i.e. English)
version of in The Old man and the Sea by Ernest
Hemingway contains more than six syllables. Ad-
ditionally, Hemingway tends to stick to particular
words, even when there are more diverse options:
in 184 situations of direct speech, he chooses to
use the word ‘said’ 170 times instead of for ex-
ample ‘asked’, ‘remarked’, ‘noticed’ or ‘yelled’.
An example from the other end of the spectrum is
James Joyce’s Ulysses. This work is known for
its experimental techniques and unorthodox lan-
guage use. Trotta (2014) illustrates this by high-
lighting Joyce’s use of neologisms, such as ‘He
smellsipped the cordial juice’ and ‘Davy Byrne
smiledyawnednodded all in one’. Moreover, Joyce
repeatedly uses non-verbs as verbs, like in ‘I am al-
mosting it.’ and even writes long sequences in un-
conventional spelling (Ahbeesee defeegee kelomen
opeecue rustyouvee doubleyou. Boys are they?’).
These examples make it clear that books can be
written with vastly different ‘aesthetic intentions’.
Thus, for preserving these intentions, MT ap-
proaches should not render them equally diverse
in terms of lexicon.

3.2 Empirical Support
We empirically verify whether these findings hold
for our data specifically, by estimating the lexical
diversity of the 31 books in our test set, which
we introduce in Section 5.1. We calculate three
measures of lexical variety (type-token ratio; TTR,
Yule’s I (Yule, 1944), and MTLD (McCarthy,
2005)) for each book in our test set. We further
elaborate on these metrics in Section 6. Next, we
apply the same metrics to the human translations

of those same books. Figure 2 shows that there is
indeed a wide range of diversity across books, for
both HT and original text. For example, in both
settings, we find that the highest MTLD value is al-
most two times as large as the lowest. This empha-
sises why it is not our aim to generate the highest
possible lexical diversity for every book. While we
observe similar ranges and distributions in HT vs.
original, the HT metrics are slightly higher. How-
ever, this does not necessarily mean that HT con-
tains more embellished language. We note that the
languages in our study, Dutch and English, are rel-
atively similar (both in terms of genealogy and lin-
guistic typology), but they differ in ways that can
influence diversity metrics. For instance, Dutch
contains compound nouns while English does not,
making a higher TTR for Dutch more likely.

This discrepancy means that we cannot compare
our Dutch MT to the original English book diver-
sity directly. Instead, here we compare MT with
HT. To verify whether this is sensible, we assess
the relationship between HT and the English orig-
inals, by computing Pearson’s correlation on the
corresponding diversity metrics. The results are
listed in Table 1, and the corresponding regres-
sion plots are found in Appendix B. We observe
strong correlations that are all statistically signif-
icant. This is important, because as the source
diversity is a reliable indicator of HT diversity, it
makes sense to use the source scores to approach
HT (see Section 4).

Metric Correlation coefficient p-value

TTR 0.971 < 0.00001
Yule’s I 0.929 < 0.00001
MTLD 0.953 < 0.00001

Table 1: Pearson correlation coefficients for HT and OR lex-
div metrics, rounded to three decimals.
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4 Reranking Method

As illustrated in Figure 1, our approach consists
of two parts: hypothesis generation and hypothesis
reranking. Firstly, we generate the n best transla-
tion candidates for each source sentence in the test
set with a vanilla domain-specific MT system (Sec-
tion 5.1). Note that we decode all books separately,
instead of concatenating all test set books. Then,
for each book, we apply a classifier (Section 5.2) to
the translation hypotheses and, through a softmax
layer, obtain the probability for each candidate that
it is an original Dutch sequence. Based on these
probabilities, we rerank the translation candidates.
In order to obtain the (expected) most lexically rich
candidate, we would then choose the rank with the
highest original-text probability. However, note
that this simple approach is flexible in the sense
that, instead of choosing the most original-like op-
tion, we have the option to choose a lower original-
text rank.

We leverage this flexibility for tailoring rank se-
lection to the lexical diversity of the original En-
glish book. First, for each original book, we calcu-
late a LexDiv score, which consists of the average
of the normalized TTR, Yule’s I and MTLD scores
(see Section 6). Then, we bin the books accord-
ing to their LexDiv score, relative to the total dis-
tribution. That is, given a list that is sorted based
on LexDiv, we categorize these into groups, where
the number of groups depends on the number of
nbest candidates in decoding. For example, for
n = 5, we bin the books into 5 different groups of
6 books (adding any remainders into the last bin).
The bin per book corresponds to the original-text
rank that is selected. As such, the selected rank
for each book depends on the lexical diversity of
its source, relative to the other books. Reranking
translation candidates is a suitable solution to our
task, because it accomodates flexibility, which is
tunable at inference time. There is no need to train
a separate model per diversity setting, saving com-
putational expenses. Additionally, our approach is
model-agnostic: reranking can be applied to any
MT model that can generate multiple translation
candidates.

5 Experimental set-up

5.1 Vanilla MT System

Data We use the dataset by Toral et al. (2024),
which contains 531 books that were originally

written in English and manually translated into
Dutch. We use 495 books for training, 5 for de-
velopment and 31 as a test set. The genres of the
books vary: they include literary fiction, popular
fiction, non-fiction and children’s books from over
100 authors. We do not make a distinction between
literary and ‘unliterary’ novels, as we believe this
to be a subjective judgment.1

Training Firstly, we align the sentences of the
English and Dutch versions of each book using
Vecalign (Thompson and Koehn, 2019). For the
books in the test set, we manually discard sen-
tences for which there existed no proper align-
ment, such as front matter sentences. Additionally,
we discard sentences with a cosine distance higher
than 0.7 (2.3% of all sentences). Then, we nor-
malise all punctuation using the MOSES toolkit.2

We then apply SentencePiece (Kudo and Richard-
son, 2018) subword segmentation to the data. For
this, we train a SentencePiece unigram model with
a joint vocabulary for both languages and a vocab-
ulary size of 32,000.

We train a Transformer-based translation model
using the Fairseq toolkit (Ott et al., 2019). More
specifically, we use the transformer iwslt de en ar-
chitecture. This is a Transformer base model with
6 encoder and decoder layers and an embedding di-
mension of 512. During training, we use an Adam
optimiser, a learning rate of 5e-4, the loss func-
tion cross entropy with label smoothing 0.1 and
the batch size is 64. Each model is trained until
convergence with a patience of 3 epochs, using the
BLEU score as a maximisation metric for finding
the best checkpoint.

Decoding Strategies By default, we use beam
search for decoding. Reranking approaches rely
heavily on the diversity of the translation hypothe-
ses: if the hypotheses are all very similar, rerank-
ing them is not likely to have a large effect. To
ensure diverse hypotheses, we use a beam size of
20. Additionally, we experiment with decoding
through diverse beam search (Vijayakumar et al.,
2016). We follow Vijayakumar et al. (2016) by us-
ing 3 groups, with a beam size of 21. Beyond beam
search, we investigate the effects of top-k and top-
p sampling, with the default parameters and sam-
pling size 10.

1A full list of author names, titles, genres and publishing years
of the test set books can be found in Appendix A, Table 8.
2http://www.statmt.org/moses/
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System development (90%)
Split Orig. # Books # Sentences # Words

Train (80%) Dutch 1,291 8,576,756 10,425,656
Other 1,291 12,470,149 165,263,466

Dev (10%) Dutch 162 1,005,832 12,533,406
Other 162 1,546,057 19,723,706

Test (10%) Dutch 162 1,189,690 14,721,914
Other 162 1,573,499 20,968,346

Original-text Classification (10%)
Split Orig. # Books # Sentences # Words

Train (80%) Dutch 143 982,114 11,528,789
Other 143 139,0351 17,951,613

Test (20%) Dutch 36 261,151 2,974,873
Other 36 340,950 4,283,604

Total 3,588 29,336,549 376,130,733

Table 2: Monolingual data set division and size.

5.2 Original-Text Classification
Data We use a monolingual dataset of more
than 7,000 Dutch books from varying original lan-
guages, authors and genres (Toral et al., 2024). For
each book, we annotate whether it was originally
written in Dutch.3 We discard 2,182 books for
which the original language is unclear or that were
not prose. We make sure to avoid overlap with the
parallel data set by removing any books that are
also part of the parallel data. Finally, we randomly
sample 1,794 of the remaining 2,190 books as to
match the total number of translated books, ensur-
ing an equal distribution. In total, we are left with
over 3,500 books and over 29M sentences. We fur-
ther divide these into data for system development
and data for original-text classification. We use
this data for reproducing previous work (Freitag et
al., 2022) and for training our classifier. Addition-
ally, we translate the classifier section of the mono-
lingual data set using a reverse-direction trained
version of the vanilla MT system (NL → EN), and
then perform round-trip-translation (RTT) back to
Dutch with the vanilla MT system, to obtain an MT
version of the monolingual classifier data. The full
data size statistics and division in training, devel-
opment and testing splits are listed in Table 2.

Training Currently, state-of-the-art performance
for original-text detection is based on BERT (De-
vlin et al., 2019), as demonstrated by Pylypenko et
al. (2021). We implement a similar system that dis-
tinguishes between original text and MT by train-
3The full annotation workflow can be found in Appendix C

ing a binary classification model. We fine-tune
Dutch language model BERTje (de Vries et al.,
2019). We train each model on the training split of
the original-text classification data (see Table 2).
We train models with batch size 128, accumulat-
ing gradients over 8 update steps, using the Adam
optimiser (Kingma and Ba, 2015) with a learning
rate of 3e-5. We use early stopping (patience 3) if
validation performance does not improve. On the
held-out test set, the classifier achieves an accuracy
of 85.9%. It obtains a precision of 90.6%, a recall
of 80.2% and the F1 score is 85.0%.

5.3 Baselines

APE Freitag et al. (2019) introduced Automatic
Post-Editing (APE) as a post-hoc method to in-
crease the ‘naturalness’ of MT output. Follow-
ing their approach, we train a post-processor that
‘translates’ synthetic Dutch sequences into more
natural Dutch sequences. For training this sys-
tem, we use the same data that was used to train
the classifier (Section 5.2), consisting of RTT
Dutch (which we use as source) and original Dutch
(which we use as target). We train a model with
the same architecture as the vanilla MT system.
We apply the post-processor to the output of the
vanilla MT system, in an attempt to obtain a trans-
lation with a lexical diversity that is closer to HT.

Tagging Our second baseline is based on Fre-
itag et al. (2022). We train an MT system that
learns to differentiate between original and trans-
lated text during training. This method requires
both translated and original Dutch target samples.
The translated target samples are found in our par-
allel dataset. We use the same original Dutch sam-
ples that are used in training the translationese
classifier. Following Freitag et al. (2022), we then
prepend <orig> to the English source sentences
that have original Dutch on the target side, and
<trans> for the source sentences that have trans-
lated Dutch. We train an MT system (same param-
eters as vanilla MT) on this data set. For infer-
ence, we prepend the source with <orig>, which
prompts the model to produce a translation that ex-
hibits characteristics that are often found in orig-
inal Dutch. Note that, in contrast to APE, this
method cannot be applied post-hoc.4

4Note that our implementation differs from Freitag et al.
(2022) in that they automatically differentiate natural and un-
natural samples from a large parallel corpus using contrasting
language models.
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6 Evaluation

We introduce three classes of metrics. Firstly, we
look at general text metrics, which are commonly
used for evaluating lexical diversity. Secondly, we
use translation-specific metrics. Lastly, we evalu-
ate the general translation quality.

6.1 General Text Metrics

TTR The type-token ratio is the ratio of types
(set of words) to tokens (actual words). A higher
TTR indicates that more (different) words are
used, which in turn indicates a higher lexical diver-
sity. While this method is known to be influenced
by the length of the text it is applied to, we report
it because it is easy to interpret and widely used.

Yule’s I As a metric that is less sensitive to vari-
ation in text length, we use Yule’s I (Yule, 1944).
We calculate this value as stated in Equation 1,
where V is the size of the vocabulary (number of
types) and t(i,N) denotes the frequency of types
which occur i times in a sample of length N.

Yule’s I =
V 2

∑V
i=1×t(i,N)− V

(1)

MTLD As an additional metric that has proven
to be robust to document length variety, we use
the measure of textual lexical diversity (MTLD),
which is sequentially calculated as the ‘average
length of sequential word strings in a text that
maintain a given TTR value’ (McCarthy, 2005).
We use the same TTR threshold (0.72) as Van-
massenhove et al. (2021).

We calculate these values using the LexicalRich-
ness Python library (Shen, 2022).

6.2 Translation-specific Metrics
Vanmassenhove et al. (2021) introduce a novel
automatic evaluation method for measuring lexi-
cal diversity in translations: Synonym Frequency
Analysis (SFA). It provides an insight into the
diversity of lexical choices in translations. For
English words that have multiple translations in
Dutch, it takes into account the frequency of these
translation options. We re-implement this method,
as it was not implemented for our language pair
before. We first lemmatise each word in the
source (English) side of our test set, using SpaCy
(nl core news lg).5 Next, we extract all possi-
ble translation options for the English adjectives,
5https://spacy.io/models/nl#nl core news lg

nouns and verbs by using a English-to-Dutch bilin-
gual dictionary.6 Next, for each translation option,
we count the number of occurrences in the MT out-
put for each system. The result is a vector which
contains the occurrence frequency of each transla-
tion synonym for an English word.

PTF The primary translation frequency (PTF) is
the average percentage (over all relevant source
words) of times the most frequent translation op-
tion was chosen, from all translation options. The
assumption is that if the output contains more sec-
ondary candidates, the text is more lexically di-
verse. We report the average PTF of all source
words.

CDU The CDU is the cosine distance between
the output vector for each source word and a vec-
tor of the same length with an equal distribution
for each translation option (with the same total).
We take the average CDU over all relevant source
words to compute a final CDU.

SynTTR Lastly, we compute the SynTTR by di-
viding the number of types (the length of the set
of all translation options) by the number of tokens
(the sum of all translation options vectors).

6.2.1 Translation Quality
We also calculate a general measure of transla-
tion quality, because the ‘naturalness’ of a trans-
lation does not necessarily imply that a trans-
lation is a faithful representation of the source.
A randomly generated string sequence might be
very lexically diverse, but likely does not carry
the source meaning. Firstly, we calculate BLEU
(Papineni et al., 2002), as implemented in Sacre-
BLEU (Post, 2018). We use the default settings,
which are case-sensitive. Secondly, to account
for the fact that BLEU does not necessarily eval-
uate meaning preservation, we additionally eval-
uate with COMET (Rei et al., 2020). English
and Dutch are relatively high-resource languages,
so we can use multilingual language embeddings.
We report comet-score, calculated with the default
wmt22-comet-da. Still, it should be noted that
these automatic metrics do not necessarily corre-
late strongly with human judgements, especially
for literary translation.

6We use the dictionary from https://freedict.org/
downloads. As an example, for the English adjective
touching, we find as Dutch translations: ontroerend, aangri-
jpend, emotioneel, treffend, roerend and aandoenlijk.
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Approach TTR ↑ Yule’s I ↑ MTLD ↑ PTF ↓ CDU ↓ SynTTR ↑ BLEU ↑ COMET ↑
HT 0.098 1.226 96.05 0.817 0.549 0.042 - -
Vanilla MT 0.089 0.951 90.21 0.832 0.550 0.040 32.32 0.824
APE 0.092 0.985 90.59 0.827 0.554 0.041 30.39 0.808
Tagging 0.095 1.111 94.08 0.829 0.550 0.041 31.33 0.807

Tailored RR (n=5) 0.091 1.002 92.46 0.829 0.552 0.041 30.92 0.815
Tailored RR (n=10) 0.091 1.013 93.26 0.829 0.547 0.041 30.07 0.810
Tailored RR (n=20) 0.092 1.010 93.27 0.830 0.558 0.041 28.98 0.802

Tailored RR (Top-k) 0.101 1.286 104.25 0.815 0.559 0.043 21.21 0.745
Tailored RR (Top-p) 0.092 1.017 91.21 0.828 0.552 0.041 29.97 0.808
Tailored RR (DBS) 0.092 1.010 92.70 0.828 0.553 0.040 29.36 0.805

Table 3: Scores averaged across books, where RR stands for reranking. We provide results for multiple decoding strategies.
Beam size is 20. Scores closest to HT are in bold font.
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Figure 3: Per-book comparison of MTLD between the (rigid) tagging baseline and (tailored) reranking method, where green
dotted lines are HT scores, and red dotted lines represent vanilla MT.

7 Results and Analysis

7.1 Quantitative Results

We first discuss the results over all books. Ta-
ble 3 shows the average results of measuring lexi-
cal diversity and general translation quality across
the various approaches. We find that vanilla MT
indeed produces lexically poorer translations than
HT, according to all our metrics. While the scores
of the APE baseline remain close to vanilla MT,
our tailored reranking approach retrieves a lexi-
cal diversity that is closer to HT. This suggests
that our method is a suitable alternative for post-
hoc editing, given that one has access to the MT
model for generating translation hypotheses. The
tagging baseline, which cannot be applied post-
hoc, retrieves and MTLD and CDU that is on aver-
age closest to HT. Importantly though, it should be
noted that reranking and tagging are not mutually
exclusive: one could apply reranking to the tag-
ging baseline to increase or decrease lexical diver-
sity further, where desired. When we compare de-
coding strategies of the tailored reranking method,

we first observe that using diverse beams search
and choosing a larger n retrieves at most slightly
more diversity. Especially top-k decoding retrieves
a much higher lexical diversity. However, tailored
reranking comes with a compromise in terms of
translation quality metrics.

Next, we demonstrate that these averages omit
a more fine-grained view. Figure 3 shows the dif-
ference in MTLD per book between vanilla MT,
HT, tagging and our most diverse reranking sys-
tem, based on top-k sampling, which is tailored
to the LexDiv score of the original English book.7

Our method renders almost every single book more
lexically diverse than the tagging baseline. In some
cases, this makes the results closer to HT in terms
of lexical diversity (e.g. 7, 13, 14, 16). However,
especially in cases where vanilla MT and HT are
close already, this is not always true (e.g. 1, 3, 5).

7A similar figure with the posthoc baseline APE instead of
tagging is shown in Appendix D.
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Ex. # Approach Text

1 Source The kid had no mother.
HT Dat joch heeft geen moeder gehad.
Vanilla MT Het kind had geen moeder.
Tagging De jongen had geen moeder.
Tailored RR Het joch had geen moeder.

2 Source He shipped his oars and brought a small line from under the bow.
HT Hij haalde de riemen in en pakte een kleine lijn die voor in de boot lag.
Vanilla MT Hij trok zijn riemen aan en haalde een klein lijntje onder de boeg vandaan.
Tagging Hij verscheurde zijn riemen en haalde een klein streepje onder de boeg vandaan.
Tailored RR Hij haalde zijn riemen en trok er een kleine lijn voor onder de boot vandaan.

3 Source In long shaky strokes Sargent copied the data.
HT In lange beverige halen kopieerde Sargent de gegevenheden.
Vanilla MT Met lange, bevende slagen kopieerde Sargent de gegevens.
Tagging Met lange bevende halen kopieerde Sargent de gegevens.
Tailored RR Met lange beverige halen schreef Sargent de data over .

Table 4: Examples to highlight surface-level differences between the systems’ output translations, where Tailored RR uses
top-k sampling.

7.2 Surface-level Inspection

The output translations were inspected by a na-
tive speaker. Table 4 shows three examples of how
translations differ between vanilla MT, tagging and
tailored reranking (with top-k sampling). In Ex-
ample 1 (from book 1, Sunset Park), we see that
the English noun ‘kid’ is translated as joch (‘boy’)
in the human translation, which is less common
than the vanilla MT’s kind (‘child’) and tagging’s
jongen (‘boy’). This is recovered by our tailored
reranking system, which uses joch too.

Example 2 is taken from book 10, The Old
Man and the Sea, which has low lexical diver-
sity by default (see Section 3). This is not taken
into account by the tagging baseline: the En-
glish ‘shipped’ is translated as a less common (and
wrong) verscheurde (‘shredded’). The tailored
reranking system (haalde, ‘brought’) is closest to
HT (haalde in, ‘brought in’). Additionally, the tag-
ging baseline wrongly translates the English ‘line’
as streepje (‘small stripe’), while tailored rerank-
ing (lijn, ‘line’) is again identical to HT. This case
illustrates that choosing a more common transla-
tion synonym, which may for instance results in a
lower PTF, may for some books be closer to HT.

By contrast, in Example 3 from the more lexi-
cally diverse Ulysses (book 15), the tagging base-
line stays closer to vanilla MT: both translate
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Figure 4: Change in MTLD for choosing different ranks,
where beam size is 20 and n = 20.

‘shaky’ as bevend (‘trembling’). Tailored rerank-
ing outputs beverig (‘shaky’), which is again re-
covering the HT. Furthermore, tailored rerank-
ing deviates from all other systems (and HT) by
translating ‘copied’ into the translation synonym
schreef over (copying something by writing). This
case may illustrate why the tailored reranking
based on top-k sampling surpasses the other sys-
tems in the overall metrics.

7.3 Ranks and Lexical Diversity

So far, we have assumed that reranking based on
the probability of a candidate being original text
leads to more lexically diverse output translations.
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Figure 5: MTLD for highest (green), lowest (red) and tailored (yellow) original-text rank.

Here, we verify whether choosing a lower prob-
ability of a candidate being original, actually im-
plies lexically poorer output translations (Figure
4). For the vanilla MT system with beam size 20
and n = 20, we first calculate the original-text
probability for each translation hypothesis. Sim-
ilar to reranking, we sort the hypotheses according
to this probability. Then, instead of binning, we
choose the nth rank, and calculate lexical diversity
of the output. Figure 4 shows the change in MTLD
scores for choosing a lower diversity rank. We ob-
serve that indeed, choosing a lower rank retrieves
lower diversity (note that there, a higher rank rep-
resents a smaller original-text probability). This
trend holds for TTR and Yule’s I as well (see Ap-
pendix E).

7.4 Tailoring and Lexical Diversity
To further demonstrate the effect of a tailored ap-
proach in lexical diversity, we compare MTLD
scores of a top-k reranking system that always out-
puts the highest original-text probability, with the
same system that always outputs the lowest, and
a tailored version. Figure 5 shows the results.
Firstly, we observe that, in every case, choosing a
rank that represents lower original-text probability
retrieves a lower MTLD score than choosing the
opposite. This corroborates the findings from the
previous section. Next, we look into how the tai-
lored reranking affects the output lexical diversity.
In Section 3, we used The Old Man and the Sea
(book 10) as an example of a book with a low de-
fault lexical diversity. We observe that our tailored
reranking system outputs the lowest original-text
probability rank for this book, resulting in a lower
MTLD score. For the example from Section 3 of a
lexically rich book, Ulysses (book 15), our tailored
system outputs a rank with a original-text proba-
bility higher than the minimum, thus retrieving an
MTLD score that is higher. This shows that tailor-
ing is at least somewhat intuitive.

8 Conclusion

We have argued for flexible recovery of lexical
diversity in literary MT. We showed that default
diversity varies per book in our dataset, and that
this lexical diversity is partially lost through MT.
We presented the first approach towards tailored
rescoring of translation candidates, which matches
HT more closely than previous baselines for some
books. Future work could explore how our method
can be combined with previous work, as it is
in principle model-agnostic. Investigations with
document-level translation, instead of sentence-
level translation only, could provide additional in-
sights. Furthermore, it may be useful to address
this task at an even finer-grained level, by explor-
ing diversity reranking on a sequence-level, in-
stead of a book-level.

Limitations

In this paper, we addressed the increase of lexi-
cal diversity in literary MT. However, it should be
noted that this is does not encompass writing style
as a whole. We evaluated our approach on one
high-resource language pair that consist of rela-
tively similar languages, in one translation direc-
tion. For the domain of literary translation, we
find this to be difficult to avoid. Still, experi-
ments with more languages and resource-scenarios
may retrieve interesting results. Moreover, while
our data is transparent in the sense that we know
and can explain exactly what it contains, we can-
not distribute the data ourselves because of copy-
right. Lastly, we acknowledge that large-scale hu-
man evaluation could give useful insights into the
differences between the systems.
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the Peregrine an Hábrók high performance com-
puting cluster.

References
Arcadinho, Samuel David, David Aparicio, Hugo

Veiga, and Antonio Alegria. 2022. T5QL: Taming
language models for SQL generation. In Bosselut,
Antoine, Khyathi Chandu, Kaustubh Dhole, Varun
Gangal, Sebastian Gehrmann, Yacine Jernite, Jekate-
rina Novikova, and Laura Perez-Beltrachini, editors,
Proceedings of the 2nd Workshop on Natural Lan-
guage Generation, Evaluation, and Metrics (GEM),
pages 276–286, Abu Dhabi, United Arab Emirates
(Hybrid), December. Association for Computational
Linguistics.

Baker, Mona. 1993. Corpus linguistics and translation
studies—implications and applications. In Text and
Technology, page 233. John Benjamins.

Baroni, Marco and Silvia Bernardini. 2005. A New
Approach to the Study of Translationese: Machine-
learning the Difference between Original and Trans-
lated Text. Literary and Linguistic Computing,
21(3):259–274, 08.

Boase-Beier, Jean. 2011. A critical introduction to
translation studies. Bloomsbury Publishing.

Collins, Michael and Terry Koo. 2005. Discriminative
reranking for natural language parsing. Computa-
tional Linguistics, 31(1):25–70.

de Vries, Wietse, Andreas van Cranenburgh, Arianna
Bisazza, Tommaso Caselli, Gertjan van Noord, and
Malvina Nissim. 2019. BERTje: A Dutch BERT
Model. arXiv:1912.09582, December.

Delabastita, Dirk. 2011. Literary translation. Hand-
book of translation studies, 2:69–78.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June. Associa-
tion for Computational Linguistics.

Dutta Chowdhury, Koel, Rricha Jalota, Cristina
España-Bonet, and Josef Genabith. 2022. Towards
debiasing translation artifacts. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3983–3991,
Seattle, United States, July. Association for Compu-
tational Linguistics.

Fischer, Lukas and Samuel Läubli. 2020. What’s
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A Test set novels

ID Author Title Year Published Genre

1 Paul Auster Sunset Park 2010 Literary fiction
2 David Baldacci Divine Justice 2008 Thriller, suspense
3 Julian Barnes The Sense of an Ending 2011 Literary fiction
4 John Boyne The Boy in the Striped Pyjamas 2006 Historical fiction
5 John le Carré Our Kind of Traitor 2010 Thriller, spy fiction
6 Jonathan Franzen The Corrections 2001 Literary fiction
7 Nicci French Blue Monday: A Frieda Klein Mystery 2011 Thriller, suspense
8 William Golding Lord of the Flies 1954 Literary fiction
9 John Grisham The Confession 2010 Thriller, suspense

10 Ernest Hemingway The Old Man and the Sea 1952 Literary fiction
11 Patricia Highsmith Ripley Under Water 1991 Thriller, suspense
12 Khaled Hosseini A Thousand Splendid Suns 2007 Literary fiction
13 John Irving Last Night in Twisted River 2009 Literary fiction
14 E.L. James Fifty Shades of Grey 2011 Erotic thriller
15 James Joyce Ulysses 1922 Literary fiction
16 Jack Kerouac On the Road 1957 Literary fiction
17 Stephen King 11/22/63 2011 Science-fiction
18 Sophie Kinsella Shopaholic and Baby 2007 Popular literature
19 David Mitchell The Thousand Autumns of Jacob de Zoet 2010 Historical fiction
20 George Orwell 1984 1949 Literary fiction
21 James Patterson The Quickie 2007 Thriller, suspense
22 Thomas Pynchon Gravity’s Rainbow 1973 Historical fiction
23 Philip Roth The Plot Against America 2004 Political fiction
24 J.K. Rowling Harry Potter and the Deathly Hallows 2007 Fantasy
25 J.D. Salinger The Catcher in the Rye 1951 Literary fiction
26 Karin Slaughter Fractured 2008 Thriller, suspense
27 John Steinbeck The Grapes of Wrath 1939 Literary fiction
28 J.R.R Tolkien The Return of the King 1955 Fantasy
29 Mark Twain Adventures of Huckleberry Finn 1884 Literary fiction
30 Oscar Wilde The Picture of Dorian Gray 1890 Literary fiction
31 Irvin D. Yalom The Spinoza Problem 2012 Historical fiction

Table 5: Information on test set books.

B Regression plots for human translation vs. original text lexical diversity
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Figure 6: Regression plots for TTR, Yule’s I and MTLD, with on the y-axis the scores for the original (English) versions, and
on the x-axis those for human translations.
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C Annotation workflow for monolingual Dutch books

1. Check whether the book is prose: we generally discard other forms of literature such as poetry and
plays and annotate this in category 3 (no label).

2. Check whether the original language of the book is listed on the website of the National Dutch
Library.8 If this is not the case:

(a) Check whether the language of the book is listed on the website of a Dutch reading community
website.9

(b) If step (a) is also not conclusive: check whether more information on the author is available,
for instance on a personal website where we can find the original titles.

(c) In case there is no reliable information available on the original language of a book, we discard
the book (category 3: no label)

3. Book titles with Dutch as their original language are annotated with the label ‘1’ (category 1). Books
that were written in a language other than Dutch were annotated with the label ‘0’ (category 2).

Special cases An interesting annotation case regards books from bilingual authors who learned Dutch
at a later age, such as Kader Abdolah. In our current guidelines, we do not take this into account
specifically; if originally written in Dutch, these books are annotated with category 1. We note that
books that were translated to Dutch were not all originally written in English: other source languages in
the data set include German, French and Spanish.

D Book-level MTLD comparison of APE and tailored reranking (top-k sampling)
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Figure 7: MTLD scores for APE and tailored reranking with top-k sampling, with on the y-axis the MTLD score for each book
in our test set (x-axis).

E Lexical diversity according to ranks
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Figure 8: TTR, MTLD and Yule’s I according to original-text rank, where a higher rank represents smaller original-text
probability.

8https://www.bibliotheek.nl/
9https://www.hebban.nl/
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