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Abstract

This study conducts a comprehensive com-
parison of three leading LLMs—GPT-4,
Claude 3, and Gemini—in two translation-
related tasks: automatic post-editing and
MQM error annotation, across four lan-
guages. Utilizing the pharmaceutical
EMEA corpus to maintain domain speci-
ficity and minimize data contamination,
the research examines the models’ per-
formance in these two tasks. Our find-
ings reveal the nuanced capabilities of
LLMs in handling MTPE and MQM tasks,
hinting at the potential of these models
in streamlining and optimizing translation
workflows. Future directions include fine-
tuning LLMs for task-specific improve-
ments and exploring the integration of
style guides for enhanced translation qual-
ity.

1 Introduction

Large language models (LLMs) have been at the
forefront of many recent advancements in natu-
ral language processing. These models show im-
pressive capabilities in a range of tasks, including
tasks that were unseen at training time. As modern
LLMs are typically multilingual, machine transla-
tion is a natural application of these models. De-
spite initial optimism, so far research has found
that well-tuned encoder-decoder models trained
specifically for the task tend to outperform LLMs
in most content types in the task of machine trans-
lation (Kocmi et al., 2023). However, promising
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results have been obtained in the peripheral tasks
of machine translation post-editing (Raunak et al.,
2023) and machine translation quality evaluation
(Kocmi and Federmann, 2023).

Post-editing of machine translation is a common
step in modern localization workflows, and can
be a significant expense for global organizations
producing content in multiple languages. Quality
evaluation can be used to obtain actionable insights
into the sources of machine translation errors, and
automated quality evaluation performed at transla-
tion time in the production workflow can inform
decisions about whether a translation needs addi-
tional attention or can be used directly. With the
great advancements in generative language mod-
els over the last year, the possibility of automating
these tasks using large language models (LLMs)
has received growing attention.

Thus, in this work, we set out to compare
the performance of three state-of-the-art LLMs on
these two tasks in four target languages: Por-
tuguese for Brazil (PTBR), Italian (IT), German
(DE), and Japanese (JA).

2 Related Research

With the advent of LLMs, several attempts have
been made to apply them to different transla-
tion tasks. Many works explore prompting LLMs
to perform translation and compare their perfor-
mance with the encoder-decoder based systems
(Kocmi et al., 2023; Hendy et al., 2023; Gao et
al., 2023; Lu et al., 2024; Vilar et al., 2023; Garcia
et al., 2023). Moslem (2023) proposed an adaptive
translation workflow using LLMs. Other scenar-
ios include a human-in-the-loop pipeline to guide
an LLM to produce customized output (Yang et
al., 2023) or an AI-mediated post-editing process
(Cady et al., 2023).
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There is evidence that LLMs can be success-
fully applied for MT quality evaluation. In the
first attempt to use a GPT model for this pur-
pose, Kocmi and Federmann (2023) demonstrated
their potential as zero-shot evaluators. Fernandes
et al. (2023) then took it one step further and
experimented with the AutoMQM methodology:
prompting an LLM to produce MQM-style anno-
tations of MT errors. This study is motivated by
the recent finding that the evaluation methodolo-
gies that are based on MQM annotations (Lommel
et al., 2014b) demonstrate higher correlation with
human judgments (Freitag et al., 2021a).

Automatic post-editing (APE) of MT is another
area where the utilization of LLMs has been con-
sidered. APE consists in using automated tech-
niques to improve the quality of black-box ma-
chine translation systems. It has been a popular re-
search topic in the MT community since the times
of statistical MT systems (Simard et al., 2007;
Bechara et al., 2011). With the evolution of deep
learning, neural models have been increasingly ap-
plied to APE tasks (Junczys-Dowmunt and Grund-
kiewicz, 2016; Pal et al., 2017; Tebbifakhr et al.,
2018; Correia and Martins, 2019). A detailed
overview on the history of APE can be found in the
excellent review article by do Carmo et al. (2021).

To our knowledge, two experiments were pub-
lished so far on utilizing LLMs for this task. Vidal
et al. (2022) used GPT-3 for the task and reported
promising results while concluded that there was
room for improvement in several areas. In a later
publication, Raunak et al. (2023) reported signif-
icant improvements over the initial MT output as
well as over the WMT baseline. However, the au-
thors did find it challenging to control the model
hallucinations.

Despite the promising results reported in these
studies, the latest WMT task on APE paints a dif-
ferent picture (Bhattacharyya et al., 2023). Out
of the three participating systems, one used GPT-
3.5-turbo (the other two used non-LLM methods),
however, it did not show any improvement over the
baseline. This was the first time LLMs were used
in this shared task.

From a wider perspective, one can notice that
the WMT competitions, which serve as an indus-
try and research reference, present a consistent
picture across different translation tasks. In the
translation task, LLMs are not “quite there” com-
pared to the encoder-decoder systems (Kocmi et

al., 2023). The same is demonstrated for APE:
the transformer systems trained specifically for this
task performed better than the more generic LLMs.

In our experiment, we carry out a varied study
on LLMs for AutoMQM evaluation and for auto-
matic post-editing by utilizing several state-of-the-
art LLMs. We suggest that our methodology will
help the community get a deeper understanding of
how efficient LLMs are for these tasks. Our con-
tribution, compared to previous experiments, con-
sists in comparing a variety of LLMs and their
performance on two different translation-related
tasks. This way, we can get insights on LLMs’
behavior: Do the models rank equally on both
tasks? Are there any specific models that signifi-
cantly outperform the rest?

3 Materials and Methods

Below we describe our process of data selection,
the models used at different stages, and the LLM
prompt development process for each task.

3.1 Data

For our work we chose to use data from a particular
domain, specifically the pharmaceutical regulatory
domain. We used the EMEA (European Medicines
Agency) corpus available on the OPUS website
(Tiedemann, 2009) so that our experiments could
be more easily reproduced. All data were drawn
from the English language corpus data. While the
creators of GPT-4 and others have not made full
details of their training data available, we must as-
sume that well-known public data sets have a high
likelihood of being included. However, this dataset
does not include Japanese, so any model succeed-
ing by brute-force memorization of the training set
alone would be expected to perform more poorly
in this language.

As this dataset contains a large number of du-
plicates and near duplicates, we first filtered the
raw data to remove these redundant data in a
case-, number-, punctuation-, and white-space-
insensitive manner. We then selected 100 sen-
tences at random as our test sentences. For each
test sentence, we selected 3 similar sentences that
would be used as the examples for in-context
learning in the quality evaluation and post-edition
tasks. Finding that the examples retrieved were
still extremely similar to the test examples in many
cases, we chose to impose a maximum similarity
threshold of 90% (as determined by pair-wise co-
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sine similarity of MiniLM embeddings).
The 100 test sentences and 300 example sen-

tences were translated into each target language
using our baseline machine translation models.
Evaluators who are translators specialized on the
Life Sciences domain were then asked to review
the translations of the 400 sentences and provide a
post-edited version resolving all errors and an error
analysis in MQM format using a closed set of cat-
egories and severities (Lommel et al., 2014b). The
evaluators had substantial experience in MTPE and
a varied level of experience in error annotation. We
worked with only one evaluator per language due
limitations on the number of linguists available for
the task. They worked in a proprietary data an-
notation tool and the sentences were presented to
them in isolation (i.e. without any context) due
to the the nature of the corpus. The annotations
of the 300 example sentences would be provided
to the models as examples (post-editions used for
the MTPE task, error analyses used for the MQM
task), while those pertaining to the test sentences
would be used to evaluate model performance.

3.2 Models
Translations were obtained from models using the
transformer base architecture. These models were
trained using the Marian framework (Junczys-
Dowmunt et al., 2018) and using the transformer-
base architecture with guided alignment using
alignment from fast align (Dyer et al., 2013).
These models were trained with between ten and
thirty million sentence pairs, for fifty epochs or
until the early stopping criterion was met (no im-
provement in validation set perplexity for 6 suc-
cessive validation checkpoints). The training data
for each model was a large and diverse bilingual
data set drawn from many domains, including the
biomedical, clinical, and regulatory domains, but
not including the EMEA dataset.

For the quality evaluation and post-editing tasks,
we collected responses from three state-of-the-
art LLMs: GPT-4 (gpt-4-0125-preview), Claude 3
(anthropic.claude-3-sonnet-20240229-v1:0), and
Gemini (gemini-pro).

3.3 Prompt Development
Prompt templates were generated for each model
and task (post-editing, MQM quality evaluation),
providing an explanation of the task and 3 exam-
ples, along with a new sentence. The template
prompted the model to perform either post-editing

or MQM quality evaluation on the new sentence.
To justify the complexity of the prompt, we also
collected responses from the models without pro-
viding examples, but we do not report these results
as they are strictly inferior to those obtained with
examples. For the MQM task, we also prompt the
model to produce a corrected translation.
An template of each prompt can be found in Ap-
pendix A. On top of that, an example of a complete
prompt for all models analyzed in the paper along
with all the responses for each model can be found
on our GitHub repository.

4 Evaluation

4.1 Baseline Machine Translation

While machine translation is not within the scope
of this research, the performance of the MT sys-
tems sets the context for the LLM tasks. We pro-
vide baseline quality metrics for the translation, a
breakdown of error type distribution, and other de-
tails in Section 5.

4.2 Post-editing

The task of post-editing involves not just correct-
ing errors, but also accepting correct translations.
Most segments in our test set did not require post-
edition, so we evaluate models both on their ability
to recognize and correct errors, as well as recog-
nize and maintain correct translations.

The quality of post-edition was judged using
Word Error Rate (WER), sacreBLEU (Post, 2018),
and COMET (Rei et al., 2022), each with respect
to the post-edited sentence provided by the lin-
guist. WER calculates the percentage of insertions,
deletions, and substitutions needed to transform
one sequence into another, while BLEU is a string-
based metric commonly used to evaluate the qual-
ity of machine-generated translations by compar-
ing them to human reference translations. A lower
WER and higher BLEU score indicate a higher
degree of textual similarity. Fugashi (McCann,
2020) is used for word segmentation of Japanese
text for computing these metrics. With regards to
COMET, it is a neural-based metric trained with
the objective of predicting human judgments of
MT quality. Unlike the text-based similarity met-
rics, COMET measures the syntactic similarity, or
similarity in an abstract meaning space. A higher
COMET score indicates a higher degree of seman-
tic similarity. For our results, wmt22-comet-da
was used for reference evaluation (COMET-REF)
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and wmt20-comet-qe-da for reference-free evalua-
tion (COMET-QE)

To quantify the tendency of LLM’s to over-
edit, or unnecessarily modify correct translations,
we use Mean Absolute Difference (MAD). MAD
quantifies the average disparity between the Lev-
enshtein distance of the Human Post-Edit and the
Levenshtein distance of the LLM’s output, from
the original MT output. A lower MAD suggests
that the LLM’s post-edits are closer to the human-
edited versions in terms of Levenshtein distance.

While the authors are aware of the limitations
of the automatic metrics, human evaluation was
not in scope for this experiment. As part of fu-
ture research, we do see benefit in performing hu-
man MQM-based quality evaluation as described
in Freitag et al. (2021b).

4.3 MQM

MQM error analysis involves identifying errors in
a translation, localizing the error in the translation
by providing the indices where the error begins and
ends, classifying the error into a hierarchical error
ontology, and judging the severity of the error. For
our tasks, linguists were asked to find all errors in
the sentences. To evaluate model performance on
this complex task, we rely on sentence-level error-
detection (whether a sentence contained an error
or not), below referred to as ErrorAcc, a sentence-
level fine-grained error-type detection accuracy re-
ferred to as ErrorTypeAcc, and a ErrorSpanPreci-
sion, a token-level fine-grained error-type detec-
tion. The error ontology is provided in Table 2
below.

- ErrorAcc: with this group of metrics we aim
at testing the ability of the model at detecting an
error in a sentence without paying attention to the
actual type of error. Accuracy measures the num-
ber of hits in comparison with the total number
of segments (Total number of hits/Total number
of sentences). Recall measures the percentage of
segments detected as containing an error from the
actual segments that contained an error (True pos-
itives / (True positives + False Negatives)), while
Precision measures the percentage of actual seg-
ments with errors among the ones that were pre-
dicted as containing an error (True positives / (True
positives + False Positives)). A low recall would
mean that the LLM is not able to find all the seg-
ments with an error, while a low precision would
mean that the LLM detects many segments as hav-

ing an error, when they in fact do not contain one.
- ErrorTypeAcc: Accuracy of the model when

detecting the fine-grained error category of a seg-
ment (16 classes in total). This accuracy type is
calculated at sentence level in only those segments
that were marked as containing an error by the lin-
guists and trying to find any of the errors detected
by the linguist in the predictions of the LLM. If
none of them are found in the sentence, that pre-
diction is counted as a failure, while if the same
error is found, it is counted as hit.

- ErrorSpanPrecision: Precision of the model at
detecting error spans. This metric is calculated
at token-level only on the segments where errors
were detected by the linguist.

We also calculate Cohen’s Kappa coefficient be-
tween the human annotations and the labels from
the LLMs at sentence-level in order to calculate
agreement between the former and each of the lat-
ter. This coefficient has a range between -1 (per-
fect disagreement) and 1 (perfect agreement), with
0 representing no agreement. We present these re-
sults scaled to the range of -100 to 100 for read-
ability. In future research, we believe it will be
also necessary to analyse the specific types of er-
rors where LLMs might demonstrate false posi-
tives and false negatives, as it can give us more
valuable insights.

5 Results

5.1 Machine Translation Baseline

We first explore the error distribution from the test
sentences in the 4 languages as annotated by our
reviewers. Errors of type Accuracy - Mistransla-
tion were the most common, amounting to a total
of 92 errors of this type across the whole set and
followed Style errors (a total of 68). See Table
2 for details about the error-type distribution. In
general, the baseline machine translation presents
an elevated number of critical and major errors, in
large part due to the specific technical nature of the
domain.

When comparing the machine translation with
the human post-edit, BLEU scores for each lan-
guage are between 84 and 90, and reference-based
COMET scores for each language were between
92 and 94 (See Table 1 below). Of the 400 test
translations reviewed and corrected by our review-
ers, only 197 translations were modified (approxi-
mately 49%). These results present a pretty good
baseline to start from, and will allow us, not only
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to test the ability of LLMs at post-editing segments
but also at leaving untouched those that do not
need a correction.

Post-edition accuracy metrics - Baseline scores
metric raw MT

DE
BLEU 86.6
WER 11.87
COMET-REF 92.71

IT
BLEU 84.6
WER 11.23
COMET-REF 93.59

PT
BLEU 89.6
WER 9.16
COMET-REF 93.40

JA
BLEU 86.1
WER 12.14
COMET-REF 93.51

Table 1: PE metrics of raw MT and human post-edited ver-
sion

5.2 Results of the post-edition task
Table 3 presents the results of the post-edition task,
categorized by metric and language.

Both Gemini and GPT demonstrated strong per-
formance across all metrics, with Gemini out-
performing in string-based automated evaluations
(i.e., BLEU, MAD and WER). However, it is note-
worthy that despite these promising performances,
raw MT consistently attained high scores across
our chosen metrics, achieving the highest BLEU
and WER scores across all languages and second
best COMET-scores for German and Italian. This
suggests that the introduced LLM post-editing did
not significantly enhance the translation quality. A
key factor contributing to this phenomenon might
be the inclination of the models to excessively edit
the machine-translated segment, resulting in devi-
ations from the human post-editing.

Our experiments were conducted with the hu-
man post-edited version as the reference in met-
rics such as BLEU, WER, and MAD. Hence, it is
plausible that while the LLM post-edit may not be
inherently deficient, it may have overly altered the
translation compared to the reference.

When considering the COMET QE score, which
is calculated in a quality-estimation setting (i.e.,
without using a reference translation), we notice

that COMET assigns higher scores to LLM post-
edits than the raw MT and even the human post-
edit. Further research should be carried out in or-
der to understand whether these results are proof of
an actual better quality from LLM outputs than the
original raw MT, or whether COMET-QE might be
biased towards machine-generated content.
Moreover, across languages, the raw machine
translation also achieved the highest scores with
string-based metrics, and outperformed most LLM
responses when using reference-based COMET
with the human post-edit as the reference.This
result is consistent with our findings that LLMs
might tend to make more extensive edits, leading
to an increased divergence from the human post-
edit.

While the models demonstrate capabilities in
certain aspects, such as string-based assessments,
their overall impact on translation quality requires
further investigation. These findings emphasise
the importance of refining post-editing strategies
to align more effectively with human preferences
and expectations.

5.3 Results of the MQM-analysis task
We now move to analyze the results obtained
in the MQM task. In Table 4, we present all
the metrics that were described in Section 4.3
including error detection accuracy, precision
and recall (ErrorAcc, ErrorPrecision and Er-
rorRecall), error-type categorization accuracy
(ErrorTypeAcc) and error-span detection precision
(ErrorSpanPrecision).
In this regard, GPT seems to be the winner
outperforming Claude and Gemini in all metrics
provided, although not by a large margin. How-
ever, it is fair noticing that the ErrorTypeAcc
(36.68%) and ErrorSpanPrecision are still quite
low even for this model meaning that GPT shows
promise at detecting sentences with errors but is
still lagging behind at categorizing them according
to the MQM types and detecting the actual error
span.

MQM metrics
metric Claude GPT mqm Gemini mqm
ErrorAcc 65.75 66.75 64.5
ErrorPrecision 60.03 62.31 60.80
ErrorRecall 82.09 85.58 82.58
ErrorTypeAcc 35.17 36.68 36.68
ErrorSpanPrecision 22.07 18.23 9.79

Table 4: MQM accuracy metrics.
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Error distribution of test data-set
Critical Major Minor Total

Acc-Mistranslation 32% 44% 22% 92
Style 0% 7% 92% 68
Grammar 0% 24% 75% 45
Acc-Untranslated 10% 13% 75% 29
Domain 7% 46% 46% 28
Acc-Omission 0% 46% 53% 13
Typography 0% 9% 90% 11
Source 0% 14% 85% 7
Register 0% 20% 80% 5
Inconsistency 0% 25% 75% 4
Locale Convention 0% 0% 100% 4
Termbase 0% 0% 100% 4
Spelling 0% 33% 66% 3
Acc-Addition 0% 100% 0% 2
Unintelligible 0% 50% 50% 2

Table 2: Error distribution on the test data-set (sentences for post-edition + sentences for examples)

Post-edition accuracy metrics
metric human raw MT claude pe GPT pe gemini pe

DE
BLEU N/A 86.6* 74.42 70.65 77.55
MAD N/A N/A 11.30 10.90 8.99
WER N/A 11.87* 22.73 24.27 18.16
COMET-REF N/A 92.71 90.82 91.71 91.21
COMET-QE 42.38 43.09 43.42 42.8 42.92

IT
BLEU N/A 84.6* 72.79 79.31 65.92
MAD N/A N/A 7.72 7.97 6.58
WER N/A 11.23* 22.81 21.93 18.21
COMET-REF N/A 93.59 92.01 93.00 92.93
COMET-QE 36.43 37.52 38.49 35.59 37.33

PT
BLEU N/A 89.6* 79.86 83.20 75.60
MAD N/A N/A 7.57 9.01 5.79
WER N/A 9.16 17.75 19.48 13.32
COMET-REF N/A 93.40 92.56 92.72 93.18
COMET-QE 35.39 37.14 38.36 38.98 36.82

JA
BLEU N/A 86.1* 70.00 71.30 76.13
MAD N/A N/A 11.67 14.56 9.60
WER N/A 12.14 19.46 22.02 14.91
COMET-REF N/A 93.51 92.63 92.69 93.45
COMET-QE 31.65 31.02 31.6 33.52* 31.27

Table 3: Metrics for the PE methods and raw MT, with reference to the human post-edit. * indicates scores with a statistically
significant difference from the second best score (p <0.05).
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For further exploring agreement between hu-
man annotations and models predictions, we cal-
culate Cohen’s Kappa. Results in Table 5 show a
similar behaviour to the aforementioned metrics:
GPT mqm shows the highest agreement with hu-
man annotators for MQM with a coefficient of
37.74. This is a compelling finding, since as,
Popovic et. al (2014a) claimed in their research
about inter-annotators’ agreement (IAA) on error-
analysis, human annotators’ meta-understanding
of language is variable, even when working with
professional translators. In this paper the au-
thors calculated IAA using Cohen’s Kappa in sev-
eral languages. Their resulting coefficients were
around 30 points for all the languages they stud-
ied.

Cohen’s Kappa Coefficient
Claude mqm GPT mqm Gemini mqm
35.76 37.74 30.17

Table 5: Cohen’s Kappa between human error annotations
and predictions from models with the MQM prompt.

Finally, when exploring the resulting post-edited
segments in this MQM setting, we found out that
these tend to outperform those achieved by the PE
prompt in many occasions (refer to Table 4 in Ap-
pendix B for a complete description of the met-
rics). However, while COMET-REF scores are
higher for the MQM methods, string-based met-
rics are still higher for raw MT. In a similar man-
ner as in the PE task, this suggests that LLMs are
over-editing correct segments.

5.4 Results on the accuracy of models at
selecting segments for post-edition

In Table 10 in Appendix C we offer a descrip-
tion of the number of segments which, accord-
ing to linguists, needed a correction and those that
were indeed corrected by the models (True Posi-
tives). This only includes the segments from the
test-set (400 segments, 100 per language), since
as it was mentioned in section 3.1, the extra 1,200
were passed as examples to the prompts. The most
striking result here is that MQM methods correct
40% less than the PE methods, thus leading to a
higher recall of the latter models. Depending on
the production setting, this might be a desirable
outcome where human review can be limited to
the segments that were modified by the model. In
a setting where a balance between precision and

recall is desired, GPT pe was the best performing
model with a f1-score of 70.66 points.

Table 6 highlights each LLM’s effectiveness in
modifying segments containing errors as well as
their ability to accurately modify the identified er-
rors within those segments. To calculate the for-
mer, we just search for how many segments have
been post-edited by the LLM. To calculate the lat-
ter, which is possibly more interesting for our re-
search, we get the error span marked by the linguist
and search for an exact match in the post-edited
version. If the sub-string is not found in the post-
edited sentence, we assume the error was modi-
fied. As shown in Table 6, we observe that Claude
tends to modify more segments than the other two
LLMs, and that the percentage of errors that were
modified is below the percentage of modified seg-
ments. This points out once again that, while mod-
els are rewriting many segments, they are not al-
ways correcting the actual error that was marked
by the linguist.

5.5 Qualitative analysis of generated MQM
and post-editions

We further carry out a small manual analysis of
the outputs of the LLMs in the quest for getting a
better understanding of their behaviour. We decide
to select Portuguese segments for its simplicity in
analysis. Examining some of the responses from
the PE and the MQM prompts, we observe the fol-
lowing:

• Sometimes the LLM detects the error and
even gets the right type. However, while
the PE prompt gets the post-edit right, the
resulting fixed translation from the LLM
using the MQM prompt is different from the
one provided by the linguist (see Table 7). In
the context of Life Sciences, there is a myriad
of regulatory instructions as to how certain
phrases should be translated, and while the
LLM produces a correct translation it does
not comply with the guidelines for this kind
of documents. Adding a style guide in the
prompt could the LLM produce a corrected
version that follows the style and wordings
from the guide.
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Percentage of segments and errors modified by the LLMs per severity
Segments modified Errors modified

Critical Major Minor Critical Major Minor
Claude mqm 80% 66% 84% 77% 45% 63%
Claude pe 100% 100% 88% 91% 80% 56%
GPT mqm 75% 61% 78% 66% 35% 64%
GPT pe 94% 93% 95% 89% 85% 67%
Gemini mqm 57% 43% 52% 54% 25% 38%
Gemini pe 77% 81% 85% 69% 53% 49%

Table 6: Comparison of the LLMs’ performance in modifying segments and errors per severity

Source: How does Nonafact work?

MT: Como funciona o não-afeto?

Human PE: Como o Nonafact funciona?

MQM:

Category: Accuracy - Mistranslation

Description: No relation to the source

Severity: Critical

Error span: não-afeto

GPT PE (PE prompt): Como o Nonafact funciona?

GPT PE (MQM prompt): Como funciona o Nonafact?

GPT MQM:

Category: Accuracy - Mistanslation

Severity: Critical

Description: -

Error span: não-afeto

Table 7: Example 1: Comparing human PE and MQM anal-
ysis with GPT’s generated output

• In other occasions, we also observe that the
LLM does not detect any error but still cor-
rects the sentence, although in different ways
depending on the prompt (see Table 8). Nev-
ertheless, once again the post-editions do not
align with the one provided by the linguist
and seem to be changing parts of the sentence
that were correct.

All these examples prove that there is still room
for improvement on the use of LLMs for the tasks
of post-edition and MQM analysis, specifically on
the domain that has been researched throughout
this paper. Firstly, by including a style guide of
the preferred output and secondly, by encouraging
a better alignment of the MQM analysis and the
fixed translation generated.

Source: If the control of epilepsy

is not clinically significantly improved
after an adequate trial,

vigabatrin treatment should not be continued.
MT: Se o controle da epilepsia

não melhorar significativamente após um estudo
clı́nico adequado, o tratamento com
vigabatrina não deve ser continuado.

Human PE: Se o controle da epilepsia

não melhorar significativamente após um estudo
clı́nico adequado, o tratamento com

vigabatrina não deverá ser continuado.
MQM:

Category: Fluency - Grammar

Description: Parallelism

Severity: Major

Error span: deve

GPT PE (PE prompt): Se o controle da epilepsia

não apresentar uma melhoria clı́nica significativa
após uma tentativa adequada,
o tratamento com vigabatrina

não deve ser continuado.
GPT PE (MQM prompt): Se o controle da epilepsia

não melhorar significativamente após um perı́odo
de teste adequado, o tratamento

com vigabatrina não deve ser continuado.
GPT MQM: No errors found

Table 8: Example 2: Comparing human PE and MQM anal-
ysis with GPT’s generated output

6 Discussion

After having carried out the automatic evaluation
of the results obtained on the two proposed tasks
(namely, APE and MQM analysis) we can con-
clude the following:

• With regards to APE, while there is still
promise in using LLMs for improving MT
outputs, as the COMET-QE scores from Ta-
ble 3 suggest, when taking into account the
compliance with a given reference segment,
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LLMs do not seem to be “quite there” yet
as other authors have previously pointed out
(Kocmi et al., 2023). In order to find out
whether LLMs did indeed improve the MT
translations and that results from COMET-
QE are not biased towards machine-generated
outputs, further research should be carried
out, for instance by obtaining pair-wise hu-
man preferences between translations.

• With regard to automatic MQM detection,
while error-detection metrics present some
promise, error-type categorization results are
still only at 36% accuracy. While this met-
ric is quite low, it is on par or slightly above
reported inter-rater agreement in human eval-
uations such as that carried out by Popovic et.
al (2014a).

• In addition to error analysis, our MQM
prompts also asked the models to produce
a fixed translation. Comparing the fixed
translations obtained in this way with those
from the MTPE prompt, we observed that re-
sults generally improved for all languages and
metrics, suggesting that the model benefits
from the additional information and chain-
of-thought style prompting. Further research
could be carried out as to how removing the
corrected translation from the examples given
to the MQM prompt would affect these re-
sults.

• When comparing the accuracy of models at
selecting segments for post-edition, we saw a
large difference in the number of post-edited
segments using the PE prompt vs. using the
MQM prompt. The former tended to correct
almost twice as much as the latter.

• Although, as we have mentioned, these mod-
els do not seem to be ready for production
just yet, if there is an interest in using these
models in completely independent workflow
to carry out MQM analysis and PE, the choice
as to which model to use should be made
taking into account not only the accuracy of
the edited content but the precision and re-
call metrics at selecting which segments in-
deed need to be post-edited as well, in order
to reduce efforts while ensuring good results.

• Finally, when considering the results broken
down by language, in general, we do not see

great variance across languages for any of the
tasks. While the reference-based metrics for
Japanese are often lower than for other lan-
guages, this is a common occurrence for this
language. The commensurate performance
across languages suggests that data contam-
ination has not overly biased the results, and
that the LLMs have strong priors for each of
the languages we studied.

7 Future Work

Among our future work plans we intend to explore
the fine-tuning of LLMs for the task of post-edition
and MQM and compare the performance and costs
with the approach proposed on this paper. Fine-
tuning an LLM for a certain task has been proven
to be a successful technique for achieving better
results in certain tasks while reducing costs due
to the shorter prompts that need to be sent to the
model.

Another item of interest would be studying the
integration of a style guide either by introducing it
into the prompt or during fine-tuning. This could
be useful for correction of stylistic errors for client
customization.

Moreover, taking into account that our base-
line models already achieve state-of-the-art per-
formance, it would be interesting to carry out the
same experiments on MT output which is objec-
tively of poorer quality and analyze whether LLM
post-edition and MQM analysis could significantly
improve the translation in those cases.

Finally, human evaluation of the quality of
LLM-post-edited content could be performed in
order to get a better understanding of the results
that were achieved with the automatic metrics pre-
sented on this paper.
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F. T. Martins, Graham Neubig, Ankush Garg,
Jonathan H. Clark, Markus Freitag, and Orhan
Firat. 2023. The devil is in the errors: Leveraging
large language models for fine-grained machine
translation evaluation.

[Freitag et al.2021a] Freitag, Markus, George Foster,
David Grangier, Viresh Ratnakar, Qijun Tan, and
Wolfgang Macherey. 2021a. Experts, Errors, and
Context: A Large-Scale Study of Human Evaluation
for Machine Translation. Transactions of the Asso-
ciation for Computational Linguistics, 9:1460–1474,
12.

[Freitag et al.2021b] Freitag, Markus, George Foster,
David Grangier, Viresh Ratnakar, Qijun Tan, and
Wolfgang Macherey. 2021b. Experts, errors, and
context: A large-scale study of human evaluation for
machine translation. Transactions of the Association
for Computational Linguistics, 9:1460–1474.

[Gao et al.2023] Gao, Yuan, Ruili Wang, and Feng Hou.
2023. How to design translation prompts for chatgpt:
An empirical study.

[Garcia et al.2023] Garcia, Xavier, Yamini Bansal,
Colin Cherry, George Foster, Maxim Krikun, Fangx-
iaoyu Feng, Melvin Johnson, and Orhan Firat. 2023.
The unreasonable effectiveness of few-shot learning
for machine translation.

[Hendy et al.2023] Hendy, Amr, Mohamed Abdelre-
him, Amr Sharaf, Vikas Raunak, Mohamed Gabr,
Hitokazu Matsushita, Young Jin Kim, Mohamed
Afify, and Hany Hassan Awadalla. 2023. How good
are gpt models at machine translation? a comprehen-
sive evaluation.

[Junczys-Dowmunt and Grundkiewicz2016] Junczys-
Dowmunt, Marcin and Roman Grundkiewicz.
2016. Log-linear combinations of monolingual
and bilingual neural machine translation models for
automatic post-editing. In Bojar, Ondřej, Christian
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8 Appendix A - Prompt Examples

8.1 GPT-MQM
”””Hello! Could you please tell me whether there
is an error in the translation below?. Please, think
it carefully before giving an answer:

If there is indeed an error or more than one
error, could you please categorize them according
to the error categories and subcategories below?

In order to carry out a proper analysis, first think
of the error category and once you have that clear,
subcategorize the error using the subcategories
from that error category.

<error category>Fluency: errors related
to the linguistic well-formedness of the text,
including problems with grammaticality,
spelling, punctuation, and mechanical cor-
rectness.<error category>
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<sub category>Domain Terminology: although
the translation might be correct, it is not suited for
the type of text.</sub category>
<sub category>Grammar: errors related to the
grammar of a language</sub category>
<sub category>Inconsistency: translation is not
consistent with previous words</sub category>
<sub category>Register: not using the right reg-
ister (formal, informal, neutral)</sub category>
<sub category>Spelling: a term was misspelt,
e.g., it contained to ss instead of one or a different
letter was used.¡/sub category¿
<sub category>Typography: typographic errors,
related to punctuation or tags</sub category>
<sub category>Unintelligible: it is a made-up
word or difficult to understand in normal lan-
guage</sub category>

<error category>Terminology: errors arising
when a term does not conform to normative
domain or organizational terminology standards
or when a term in the target text is not the correct,
normative equivalent of the corresponding term in
the source text.<error category>
<sub category>Domain Terminology: the error
is a terminology issue deriving from the domain,
the type of text: medical, tourism, daily life,
law...</sub category>

<error category>Accuracy: errors occurring
when the target text does not accurately corre-
spond to the propositional content of the source
text, introduced by distorting, omitting, or adding
to the message.</error category>
<sub category>Addition: Addition of con-
tent.</sub category>
<sub category>Mistranslation: when a
word has been translated differently that it
should</sub category>
<sub category>Omission: omission of con-
tent<sub category>
<sub category>Untranslated: term was not
translated<sub category>

<error category>Style: errors occurring in a
text that are grammatically acceptable but are
inappropriate because they deviate from orga-
nizational style guides or exhibit inappropriate
language style.</error category>

<error category>Locale convention: errors

occurring when the translation product violates
locale-specific content or formatting requirements
for data elements.</error category>

<error category>Design: Errors regarding
handling xml tags.</error category>

<error category>Source: There is an error on
the SOURCE segment</error category>.

Here are some examples that you can use as a
reference:

Translation pair: {example}

Translation pair: {example}

Translation pair: {example}

Translation pair:
{translation pair to analyze and post-edit}
Analysis:”””

8.2 Gemini-PE
””” As an expert linguist, your task is to perform
post-editing (Light post-edit or Full post-edit) on
machine-translated segments.
You will be working with {source language} as
the source language and {target language} as the
target language.
Below are three examples with human post-edits
on the translations:

{example with source segment, translation, and
post-edit}

{example with source segment, translation, and
post-edit}

{example with source segment, translation, and
post-edit}

Your task is to complete the following example
by post-editing the translation, applying gender
bias reduction if necessary. If no post-edit is
needed, the post-edited translation should remain
the same as the translation.

Example:
{example with source segment and translation}
”””
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9 Appendix B - Post-edition results using the MQM prompt

Post-edition accuracy metrics (MQM prompt)
metric human raw MT claude mqm GPT mqm gemini mqm

DE
BLEU N/A 86.6 85.0 85.1 82.8
MAD N/A N/A 6.05 6.79 10.21
WER N/A 11.87 13.30 13.56 37.40
COMET-REF N/A 92.71 93.24 93.10 91.21
COMET-QE 42.38 43.09 43.61 40.33 42.92

IT
BLEU N/A 84.6* 79.90 82.90 83.10
MAD N/A N/A 4.99 5.62 6.20
WER N/A 11.23 14.20 12.91 12.91
COMET-REF N/A 93.59 79.55 93.95 79.71
COMET-QE 36.43 37.52 38.14 37.58 38.15

PT
BLEU N/A 89.6 88.80 89.50 88.50
MAD N/A N/A 4.46 5.65 5.64
WER N/A 9.16 10.51 9.95 11.13
COMET-REF N/A 93.40 93.86 93.95* 93.42
COMET-QE 35.39 37.14 37.78 36.91 40.14*

JA
BLEU N/A 86.1 82.90 85.80 81.70
MAD N/A N/A 10.22 8.62 11.82
WER N/A 12.14 14.88 12.56 26.80
COMET-REF N/A 93.51 93.20 93.55 91.83
COMET-QE 31.65 31.02 33.2 29.12 31.49

Table 9: Metrics for each of the methods and raw MT, with reference to the human post-edit. * indicates scores with a
statistically significant difference from the second best score (p <0.05)
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10 Appendix C - Accuracy of models at choosing segments for post-edition

Claude mqm Claude pe GPT mqm GPT pe Gemini mqm Gemini pe
Needed Correction 197/400
TP+FP 193 323 155 304 159 267
TP 131 183 111 177 86 161
percentage TP 66.50 92.89 56.35 89.85 43.65 81.73
percentage TN 69.46 31.03 78.33 37.44 64.04 47.78
percentage FN 33.50 7.11 43.65 10.15 56.35 18.27
precision 67.88 56.66 71.61 58.22 54.09 60.30
recall 66.50 92.89 56.35 89.85 43.65 81.73
f1-score 67.18 70.38 63.07 70.66 48.31 69.40

Table 10: Accuracy of models at choosing which segments to post-edit. If a segment needed a correction and was post-edited
it is counted as a True Positive, while if a segment did not need a correction and was left untouched, it is counted as a True
Negative
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