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Abstract

Automatic speech synthesis has seen rapid
development and integration in domains as
diverse as accessibility services, translation,
or language learning platforms. We anal-
yse its integration in a post-editing machine
translation (PEMT) environment and the ef-
fect this has on quality, productivity, and
cognitive effort. We use Bayesian hierar-
chical modelling to analyse eye-tracking,
time-tracking, and error annotation data re-
sulting from an experiment involving 21
professional translators post-editing from
English into German in a customised cloud-
based CAT environment and listening to the
source and/or target texts via speech syn-
thesis. We find that using speech synthesis
in the PEMT task has a non-substantial pos-
itive effect on quality, a substantial nega-
tive effect on productivity, and a substantial
negative effect on the cognitive effort ex-
pended on the target text, signifying that
participants need to allocate less cognitive
effort to the target text.

1 Introduction

The growing adoption of data-driven approaches to
machine translation (MT) since the 2000s (Kenny,
2020) has brought ongoing change to the practice
of translation. While ‘standard’ human translation
still appears to be the dominant type of service,
industry surveys have repeatedly identified post-
editing of MT (PEMT) as the service with the high-
est growth potential, according to language service
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providers (ELIA et al., 2023). A wealth of previ-
ous research has addressed the implications of this
change, ranging from potential productivity gains
(Plitt and Masselot, 2010; Läubli et al., 2019) to
impacts on creativity (Guerberof-Arenas and Toral,
2022). A central theme in studies on PEMT is
the effort expended by translators (Krings, 2001)
and how it might be impacted by the tools they
use. Moreover, previous work has probed how well
PEMT is supported by the user interfaces used by
translators (Moorkens and O’Brien, 2017; Herbig
et al., 2020), indicating room for improvement.

A relatively novel approach to supporting PEMT
processes – and translation in general – is inte-
grating automatic text-to-speech synthesis (Taylor,
2009) in computer-assisted translation (CAT) tools.
The idea is for the translator to be able to trigger
an artificial voice that ‘reads’ to them the source
and/or target text, thus adding a new mode of text
reception to information processing approaches that
have traditionally relied heavily on reading. Only
little attention has thus far been given to this method
in related work, but initial findings point to poten-
tial benefits in revision (Ciobanu et al., 2019) and
PEMT (Wiesinger et al., 2022). This motivates our
present study into the impact of speech synthesis
on the PEMT process.

In this paper, we measure the effect of adding
text-to-speech into a translation workflow for
PEMT for the English-German language pair. We
focus on the the target text quality delivered, cog-
nitive effort expended, and productivity recorded,
with an emphasis on the statistical modelling ap-
proach. Eye-tracking output metrics, such as the
number or duration of fixations on both source and
target segments are used to measure the cognitive
effort during PEMT (Moorkens, 2018). Moreover,
linear models and linear mixed effect models are
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commonly used for the analysis of eye-tracking
studies (Kim et al., 2022; Silva et al., 2022), in-
cluding the use of linear models to investigate the
relation across text complexity of the source, cogni-
tive effort, and PEMT (Dai and Liu, 2024). Silva
et al. (2022) discuss the disadvantages of standard
statistical tests for eye-tracking data analysis in sub-
titling. For example, t-tests conflate the data by
averaging a participant into one outcome variable,
and ignore other variables (predictors) that may
affect the results of an experiment. Instead, they
use a linear mixed-effect model for the analysis
of cognitive effort (outcome variable) of reading
subtitles given the effect of subtitle speeds. How-
ever, linear models require large amounts of data
to achieve reliable learned estimates (Silva et al.,
2022). Bayesian hierarchical models cope with data
scarcity by adding information from the data struc-
ture, and prior expert knowledge that works as a
regulariser to avoid over-fitting to the available data
(Gelman et al., 2004). We use Bayesian hierarchi-
cal modelling to tackle the issue of data scarcity
that is common in eye-tracking studies (O’Brien,
2009). Our contributions are as follows:

• We report on a PEMT study including eye-
tracking, time-tracking, and quality evalua-
tion.

• We introduce a Bayesian hierarchical model
for PEMT data analysis.

• We measure how a speech-enabled mode of
working may support professional translators
post-editing within a CAT tool.

2 Methodology

2.1 Participants
The participants were recruited via the network
of the language service provider Translated, the
professional translator association UNIVERSITAS
Austria, the Austrian Economic Chambers (WKO),
and the website of the HAITrans research group1.
Prospective participants were asked to fill in a re-
cruitment questionnaire to determine whether they
fulfilled the participation requirements. In total,
we recruited 21 professional translators working
from English into German who have German as a
first language. All translators have at least three
years of professional translation experience, with
10 participants having over 11 years of experience.
1https://haitrans.univie.ac.at/

Most participants have at least one year of PEMT
experience, although five translators have little to
no PEMT experience. The experiment received
ethical approval from the Ethics Committee of the
University of Vienna. All participants were remu-
nerated for their time. After the conclusion of the
experiment, the participant data were anonymised,
and the participants were assigned an experiment
ID.

2.2 Materials

The source texts used in the experiment consisted of
four excerpts from two separate factsheets produced
by the International Federation of Red Cross and
Red Crescent Societies, UNICEF, and the World
Health Organisation about stigma, mistrust, and
denial in relation to COVID-19. Both factsheets
were published online on the British Red Cross’s
Community Engagement Hub2 in 2020.

The four English source text parts have a com-
bined total number of 1,423 words, with their re-
spective IDs being text 1 (t1), text 2 (t2), text 3 (t3),
and text 4 (t4). To counteract the impact of the text
parts on the results, we alternated text 2 and text
3 for every other participant. For this reason, we
ensured comparability of the four text parts in terms
of standard measurements of linguistic complexity
and lexical richness as shown in Table 1, as well as
readability as shown in Table 2. We use Textstat3

for the readability scores, and LexicalRichness4

for the linguistic complexity and lexical richness
scores. The Flesch–Kincaid Reading Ease scores
class all text IDs as fairly easy to read (between
80.0-70.0) and at 7th grade level. All text IDs have
a consistent low linguistic complexity expressed as
Type-Token Ratio (TTR).

Text Word
count

Number of
syllables

Standardised
TTR

Sentence
count

Average
sentence
length

t1 342 454 0.483 18 19.0
t2 374 498 0.475 18 20.8
t3 352 471 0.520 18 19.6
t4 355 477 0.532 19 18.7

Table 1: Linguistic complexity and lexical richness for each
text ID.

2https://communityengagementhub.org/
3https://github.com/textstat/textstat
4https://github.com/lsys/lexicalrichness
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Text Flesch Reading
Ease

Flesch-Kincaid
Grade Level

New Dale-Chall

t1 77.57 7.2 7.58
t2 75.74 7.9 7.92
t3 76.96 7.4 7.75
t4 77.87 7.0 7.90

Table 2: Readability scores for each text ID.

2.3 Design

Before coming to the eye-tracking lab, the partici-
pants received a translation brief in German5 with
information about the task scope, target audience
and style requirements, as well as the requirements
for PEMT. Those five participants with little to
no prior post-editing experience were also sent a
short training video on MT and PEMT to watch
ahead of the experiment. Upon arrival, participants
signed a declaration of consent, then filled in a pre-
experiment questionnaire designed to collect some
demographic information and to determine their
exposure to CAT tools.

The participants’ task in this experiment was to
post-edit the four source text parts from English
into German in a customised version of the CAT
tool Matecat6 enhanced by Translated7 with a pro-
prietary speech synthesis function. Participants
worked in two conditions: in silence, and in a sound
condition whereby they could trigger speech syn-
thesis for the source and target segments.

An EyeLink Portable Duo eye tracker8 was used
to record the participants’ gaze during the exper-
iment. Prior to performing these tasks, partici-
pants post-edited a short practice text using speech
synthesis to familiarise themselves with the task
setup and working environment. Each participant’s
computer screen and computer interactions were
recorded for later annotation and comparison with
other experiment participants. The total duration of
the experiment was up to 3 hours.

2.4 Data Collection

The screen recordings, overlayed with participants’
in-task gaze data captured with the eye tracker,
were manually annotated in the SR Research Data
Viewer software9. This included adding timestamps

5https://github.com/HAITrans-lab/
HAITrans-bayesian-multilevel-model
6https://www.matecat.com/
7https://imminent.translated.com/
8https://www.sr-research.com/
eyelink-portable-duo/
9https://www.sr-research.com/data-viewer/

for task start and end times and recording the num-
ber and type of exits from the Matecat environment
(e.g., to look up terms online or read the source
texts made available in Microsoft Word). Areas
of interest were defined around the source and tar-
get text areas in Matecat to allow for using in the
analysis only the gaze data that fell within these
areas.

Reports containing measures such as the total
number of fixations, dwell time, and mean fixa-
tion duration for the source and target sections of
the video recordings, as well as the start and end
timestamps of each trial, were then generated and
used for the analysis. The post-edited target texts
produced by the participants were exported from
Matecat for subsequent annotation and quality eval-
uation by multiple contributors.

When conducting eye-tracking experiments,
high participant attrition rates are to be expected
(O’Brien, 2009). We were able to obtain eye-
tracking measures for 19 out of the 21 participants.
Furthermore, due to data corruption, data from t1
is missing entirely for one of the participants. This
explains the differences in participant numbers that
can be seen in Tables 3, 5, 7, and 9.

2.5 Analysis

We use Bayesian hierarchical modelling for our
data analysis (Gelman et al., 2004). Hierarchical
models are also known as linear mixed effects mod-
els. The motivation to use Bayesian data analysis
is the data scarcity (few observations), improved
learned estimates, and uncertainty quantification of
the estimates. Linear regression models learn the re-
lation of a given measurement or outcome with one
or multiple predictor variables (Gelman and Hill,
2007). For example, the positive or negative effect
(linear relation) of the sound condition variable on
the measured quality of the produced translations.

A hierarchical model outlines a hierarchy over
the data where variables are considered related or
grouped under the structure of a given problem
(Gelman et al., 2004). Moreover, hierarchical mod-
els take advantage of their structure to improve the
learned estimates by reducing variance when the
data are limited. For example, we can define groups
with the produced translations by participant, condi-
tion, or type of text. A hierarchical model consists
of population-level effects (fixed) for variables that
describe all the observed data, and group-level ef-
fects (random) for clusters or variables that describe
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variability across groups (McElreath, 2016).
Bayesian linear models allow us to test the prob-

ability of our hypothesis given the observed data
by providing a posterior distribution, which con-
tains probable values of an effect. For uncertainty
quantification, Bayesian linear models produce the
credible interval (CI) that is a range containing a
percentage of probable values (e.g. 95%). With
the given data, the effect has 95% probability of
falling within this range. Moreover, Bayesian mod-
els provide a posterior distribution for the learned
estimates, instead of a point from standard regres-
sion models. The posterior distribution is used to
analyse the direction and size of the effect, as well
as the uncertainty.

The practical importance of an effect can be
decided based on the region of practical equiva-
lence (ROPE) (Kruschke, 2018). The ROPE is a
range with a small or practically no effect, which
is an area that encloses values that are equivalent
to the null. As a decision rule, if a large part of
an estimate 95% CI falls outside from the ROPE,
the effect is considered substantial or of prac-
tical importance (Kruschke, 2018). The ROPE
for linear models can be defined with the standard
deviation (sd) of an outcome variable as [−0.1 ∗
sd(outcome variable), 0.1 ∗ sd(outcome variable)].

We are interested in analysing the following out-
come variables Y : Quality score based on human
error annotation, Productivity with words per hour
(PEMT speed), Cognitive effort with the mean fixa-
tion duration on the source text (MFD-ST), and the
mean fixation duration on the target text (MFD-TT).

For the predictor variables X , we use: Condition
(no sound, and sound), ID of the text (t1, t2, t3, and
t4), Number of external searches, and PEMT expe-
rience (yes, no). Condition refers to whether the
participant used speech synthesis while post-editing
(sound) or not (no sound). The text ID identifies
the text part that was post-edited. The number of
external searches specifies how many times the par-
ticipant left the CAT tool interface to perform a web
search or consult other sources. PEMT experience
refers to a participant having (yes, y) or not (no, n)
previous PEMT experience.

We define a hierarchical model with random in-
tercepts and slopes. We use the participants as the
second level grouping variable to measure the ef-
fect of the sound condition on each person, and the
variability across them. The population-level ef-
fects are the X predictors, and intercept and slopes

for each condition and participant for group-level
effects. The description of the hierarchical model
is as follows:

yi ∼ N
(
µ, σ2

)

µ = αj[i] + β1j[i](condition)

+ β2(text) + β3(n_searches)

+ β4(PEMT_experience)
(

αj

β1j

)
∼ N

((
µαj

µβ1j

)
,

(
σ2
αj

ραjβ1j

ρβ1jαj
σ2
β1j

))

, for participant j = 1, . . . ,J

where yi is the outcome variable (e.g. quality
score, PEMT speed) predicted from a normal dis-
tribution (regression) with mean µ based on a hi-
erarchical linear model and variance σ2. For the
linear model: αi intercept and β1...4 slopes with a
uniform prior are population-level coefficients, αj

intercept and β1j slopes are group-level coefficients
with a normal prior for each participant j.

We use the brms package in R for our Bayesian
analyses (Bürkner, 2017). brms provides an in-
terface for Bayesian linear models, and hierarchi-
cal models using Stan10. We show the brms for-
mulas for our hierarchical model in the Appendix
A and the scripts for our experiments are avail-
able at: https://github.com/HAITrans-lab/

HAITrans-bayesian-multilevel-model.

3 Results

3.1 Quality
To assess quality, we scored the post-edited texts
using an error typology based on the Multidimen-
sional Quality Metrics (MQM) framework (Bur-
chardt, 2013). Two professional translators with
more than three years of experience annotated the
raw MT output for the four texts using the MQM
typology within the CATMA annotation tool (Gius
et al., 2023). These gold standard texts are labelled
with all MT errors that the participants are expected
to correct according to the translation brief. The
annotators first labelled the texts independently of
each other, and then combined their labels into the
final gold standard, asking a third annotator for ad-
vice whenever they disagreed. The MQM error
severities are defined with the following weights:
Minor (1), Major (5), and Critical (25). To produce
the quality score for each text, we counted the num-
ber of MT errors left uncorrected, as well as errors
10https://cran.rstudio.com/web/packages/
brms/
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newly introduced by our participants, and weighted
them according to their severity. This resulted in
a score between 0 and 100 for each text, where a
score of 100 would mean there were no errors in
the post-edited target texts.

Condition Text Variable n mean sd
nos t1 quality score 20 94.635 2.469
nos t2 quality score 10 81.311 8.054
nos t3 quality score 11 93.828 4.672
s t2 quality score 11 86.922 7.839
s t3 quality score 10 88.75 4.896
s t4 quality score 21 94.271 2.528

Table 3: Summary statistics of the quality score with mean
and standard deviation (sd).

Population-Level Effects

Predictors Estimate CI (95%) ROPE ↓
Intercept 96.85 [92.66, 101.20] 0.00%
condition [s] 0.36 [-2.12, 2.82] 41.00%
text [t2] -10.64 [-13.41, -7.89] 0.00%
text [t3] -3.51 [-6.22, -0.79] 0.00%
text [t4] -0.66 [-4.09, 2.76] 30.00%
n searches -0.13 [-0.51, 0.24] 100%
PEMT expe-
rience [y]

-2.16 [-6.55, 2.29] 15.00%

Group-Level Effects

sd CI (95%)
Intercept 3.85 [2.29, 5.85]
condition [s] 1.00 [0.04, 2.82]

Table 4: Summary of the fitted model for the quality score.
ROPE size ±0.66.

Table 3 shows summary statistics with the num-
ber of participants (n), the mean, and sd of the
quality score. We show the statistics grouped by
both condition no sound (nos) and sound (s), and
the ID of the text (t1, t2, t3, t4).

Table 4 shows the model summary for the quality
score. The predictors for the population-level ef-
fects are summarised with estimate (learned mean),
95% credible interval (CI), and percentage of the
estimate that overlaps with the ROPE. The linear
model takes a class or name of a variable in alpha-
betical order as the reference for the Intercept and
adds the value of the names left as the slopes. For
example, the intercept is the no sound condition
nos and the sound condition s is represented with
the slope condition (s).

The sound condition has a non-substantial posi-
tive effect on the quality score, because the estimate
95% CI has a large overlap with the ROPE (41%).

To visualise the overlap of the sound condition CI
with the ROPE, we refer the reader to Figure 6 in
the Appendix. The texts t2, t3 have the highest
substantial negative effect on the quality score. The
effect of the number of searches (n searches) and
having PEMT experience (y) are non-substantial.
The group-level effect indicates how the condition
(s) estimate varies from participant (group) to par-
ticipant based on the sd.

To visualise the learned estimates, we show the
conditional effects in Figure 1. The conditional
effect plot shows the effects of each categorical or
continuous predictor with the CI bar around the esti-
mate on the outcome variable. In Figure 1 a) there is
a large overlap between the CIs of the no-sound and
sound conditions that indicates high uncertainty,
and no difference between them. For Figure 1 b)
the overlap for t2 between texts is little and indi-
cates low uncertainty. Next, in Figure 1 c), a high
number of external searches decreases the quality,
but the uncertainty of the estimate is high. More-
over, in Figure 1 d), having PEMT experience (y)
decreases the quality, but the difference compared
to not having experience (n) is uncertain.

Figure 5 a) (Appendix) shows the fitted curve
with the data points across texts from the quality
score model. The posterior predictions plot shows
the posterior mean (fit curve) and 95% credible
interval (uncertainty bars) for each data point from
the model. In other words, it plots the relation
between each condition and the quality score. We
can observe a difference in quality for t2, and under
the sound condition, but it is small given the CI
overlap.

3.2 Productivity
PEMT speed captures the number of words post-
edited per hour as a measure of productivity. It was
obtained by dividing the words edited (length of the
respective text) by the time elapsed (task time) and
then converting the result to per-hour values. Table
5 shows the summary statistics of the PEMT speed.

Condition Text Variable n mean sd
nos t1 PEMT speed 20 940.853 282.471
nos t2 PEMT speed 10 1201.389 369.765
nos t3 PEMT speed 11 853.898 220.689
s t2 PEMT speed 11 729.944 188.497
s t3 PEMT speed 10 1040.567 393.146
s t4 PEMT speed 21 861.932 286.407

Table 5: Summary statistics of the PEMT speed with mean
and standard deviation (sd).
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(a) condition (b) text

(c) n searches (d) PEMT experience

Figure 1: Conditional effects of a) condition, b) text, c) n searches, and d) PEMT experience predictors on quality score.

Population-Level Effects

Predictors Estimate CI (95%) ROPE ↓
Intercept 776.34 [514.94, 1031.95] 0.00%
condition [s] -137.04 [-201.28, -66.16] 0.00%
text [t2] 88.21 [16.00, 159.16] 3.74%
text [t3] 64.27 [-5.62, 143.43] 15.83%
text [t4] 71.97 [-15.46, 159.45] 15.73%
n searches -13.01 [-24.74, -1.42] 100%
PEMT expe-
rience [y]

254.74 [-34.69, 547.15] 3.92%

Group-Level Effects

sd CI (95%)
Intercept 287.35 [205.61, 404.32]
condition [s] 53.27 [2.36, 129.99]

Table 6: Summary of the fitted model for the PEMT speed.
ROPE size ±31.39.

Table 6 shows the model summary for PEMT
speed with a substantial negative effect of the sound
condition on the PEMT speed. There are differ-
ences across the 4 texts, with a substantial effect

observed for t2. The PEMT experience has a sub-
stantial positive effect on productivity.

Figure 2 shows the conditional effects for the
PEMT speed. The sound condition decreases
PEMT speed in a), there is a large difference across
texts in b) with the highest in t2, and an increase in
the number of searches decreases the PEMT speed
with high uncertainty, in c). As shown in Figure
2 d) having PEMT experience (y) increases pro-
ductivity, where the difference from no experience
(n) has low uncertainty. Figure 5 b) (Appendix)
shows the fitted curve with the data points across
texts from the productivity model. For t2 the sound
condition decreases the PEMT speed, but with t3
there is an increase in speed.

3.3 Cognitive Effort

We define outcome variables for the cognitive effort
with the following eye-tracking measures: MFD-
ST and MFD-TT. These measures are used as a
secondary indicator of the cognitive resources ex-
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(a) condition (b) text

(c) n searches (d) PEMT experience

Figure 2: Conditional effects of a) condition, b) text, c) n searches, and d) PEMT experience predictors on PEMT speed.

pended by participants, based on the eye-mind as-
sumption (Just and Carpenter, 1980). Mean fixa-
tion duration is defined as the total time spent in
fixations (keeping the eye stable above a point of
focus), divided by the total number of fixations, and
is therefore an indication of how long elements of
the source and target text were fixated on average.
Longer fixations are assumed to indicate higher
cognitive effort (Holmqvist and Andersson, 2017).
When using a method based on visual allocation
of attention in an experiment including a listening
component, it is important to note that MFD does
not reflect how much time the participants spend
looking at the screen, which could be assumed to
be lower when adding speech synthesis to the pro-
cess. Rather, MFD reflects how long fixations last
on average and is therefore indicative of how effort-
ful processing the text was for participants when
they were reading it. Table 7 shows the summary
statistics of the MFD-ST.

Table 8 shows the model summary for the MFD-

Condition Text Variable n mean sd
nos t1 MFD_ST 19 298.216 51.833
nos t2 MFD_ST 9 319.582 61.672
nos t3 MFD_ST 10 308.829 57.052
s t2 MFD_ST 10 338.647 56.24
s t3 MFD_ST 9 315.406 57.277
s t4 MFD_ST 19 352.568 69.19

Table 7: Summary statistics of the MFD-ST with mean and
standard deviation (sd).

ST. The sound condition has a non-substantial pos-
itive effect on the MFD-ST. There are differences
across the texts, with t2 and t4 having the highest
effect on the MFD-ST.

Figure 3 shows the conditional effects for the
MFD-ST. The sound condition increases the MFD-
ST in a) with high uncertainty, there is no large
difference across texts in b), the number of searches
increases the MFD-ST with high uncertainty in
c), and having PEMT experience (y) increases the
MFD-ST with low uncertainty.
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(a) condition (b) text

(c) n searches (d) PEMT experience

Figure 3: Conditional effects of a) condition, b) text, c) n searches, and d) PEMT experience predictors on MFD-ST.

Population-Level Effects

Predictors Estimate CI (95%) ROPE ↓
Intercept 275.10 [223.84, 325.84] 0.00%
condition [s] 9.85 [-7.52, 27.04] 31.61%
text [t2] 25.49 [9.34, 41.36] 0.00%
text [t3] 11.24 [-4.63, 26.97] 25.37%
text [t4] 40.66 [20.76, 60.30] 0.00%
n searches 3.61 [0.94, 6.22] 99.63%
PEMT expe-
rience [y]

16.08 [-42.96, 75.15] 14.78%

Group-Level Effects

sd CI (95%)
Intercept 55.13 [38.11, 79.49]
condition [s] 20.45 [3.22, 38.36]

Table 8: Summary of the fitted model for the MFD-ST. ROPE
size ±6.14.

Table 9 shows the summary statistics of the MFD-
TT. Table 10 shows the model summary for the
MFD-TT. The sound condition has a substantial
negative effect on the MFD-TT. There are substan-

tial differences across the texts, with t4 having the
highest effect on the MFD-TT.

Condition Text Variable n mean sd
nos t1 MFD_TT 19 382.189 62.845
nos t2 MFD_TT 9 416.568 69.55
nos t3 MFD_TT 10 413.299 69.448
s t2 MFD_TT 10 415.418 77.357
s t3 MFD_TT 9 378.956 63.564
s t4 MFD_TT 19 421.6 76.602

Table 9: Summary statistics of the MFD-TT with mean and
standard deviation (sd).

Figure 4 shows the conditional effects for the
MFD-TT. The sound condition decreases the MFD-
TT in a) with high uncertainty, there is no large
difference across texts in b), the number of searches
is associated with a small increase in MFD-TT with
high uncertainty in c), and having PEMT experi-
ence (y) decreases the MFD-TT in d) with low un-
certainty but a large overlap with no experience (n).
Figure 5 (Appendix) shows the fitted curve with the
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(a) condition (b) text

(c) n searches (d) PEMT experience

Figure 4: Conditional effects of a) condition, b) text, c) n searches, and d) PEMT experience predictors on MFD-TT.

Population-Level Effects

Predictors Estimate CI (95%) ROPE ↓
Intercept 376.07 [313.86, 438.67] 0.00%
condition [s] -18.34 [-32.42, -4.19] 3.41%
text [t2] 43.28 [28.45, 58.14] 0.00%
text [t3] 23.96 [9.32, 38.68] 0.00%
text [t4] 56.95 [38.70, 75.45] 0.00%
n searches 0.73 [-1.74, 3.17] 100%
PEMT expe-
rience [y]

5.03 [-69.48, 79.38] 16.25%

Group-Level Effects

sd CI (95%)
Intercept 68.22 [48.20, 97.29]
condition [s] 9.74 [0.61, 22.42]

Table 10: Summary of the fitted model for the MFD-TT. ROPE
size ±7.02.

data points across texts from c) MFD-ST, and d)
MFD-TT. Figure c) shows that the sound condition
increases the MFD-ST for t2, but decreases it for
t3. The same pattern is observed for MFD-TT in

d), where the sound condition is associated with an
increase for t2, and a decrease for t3.

4 Discussion

The results of our experiment on using speech syn-
thesis for PEMT indicate that (1) differences in
quality between conditions were small; (2) partic-
ipants were slower when using speech synthesis;
and (3) participants expended less cognitive effort
in TT when using speech synthesis, as reflected
in their fixation data. More specifically, the pres-
ence of speech had a substantial negative effect
on the MFD-TT, meaning that overall the cogni-
tive effort spent by translators reading the target
text was reduced. This may mean that hearing the
target text was considered by translators to be a re-
liable source of information when checking PEMT.
We report a non-substantial positive effect on the
MFD-ST variable, indicating that the processing
of the source text does not change much and only
increases slightly. We do not believe this to be due
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to a lack of trust in the speech synthesis, given the
results for the MFD-TT, but that speech use may be
more worthwhile in the TT. This is also suggested
by the answer to the perception questionnaire we
distributed at the end of the experiment (Ciobanu
et al., forthcoming) where the most reported on
advantages of using speech were improved style
(11/21) and error detection (9/21). It may also be
that listening to the TT causes the translators to
expend more cognitive effort on the ST, but this
would require a separate analysis. The decrease
in productivity might reflect the fact that listening
to the text is an additional step to be carried out
in the workflow. Moreover, as all participants but
one were first-time users of speech synthesis in
PEMT, productivity losses can reasonably be ex-
pected to diminish as users become more familiar
with the tool. A longitudinal study would surely
provide useful data in this regard. Related to this
but apart from the effect of the sound condition, we
also found that PEMT experience has a substan-
tial positive effect on PEMT speed, indicating that
translators with previous PEMT experience work
faster than those without. The effect of the number
of searches is non-substantial for all outcome vari-
ables. We recorded no substantial change in quality,
but there is a perceived improvement in style and
error detection for some of the participants as re-
ported in (Ciobanu et al., forthcoming). The loss in
productivity may be reduced following longer ex-
posure to speech synthesis. This, coupled with the
substantial decrease in cognitive effort in the TT,
point to a potential support that a speech-enabled
mode of working can offer translators.

5 Conclusions and Future Work

We quantified the impact of text-to-speech on
PEMT for the English-German language pair. We
introduce a Bayesian hierarchical model to tackle
issues with data scarcity. The introduction of the
sound condition on the PEMT workflow has a non-
substantial positive effect on quality, a substan-
tial negative effect on PEMT speed, and a non-
substantial positive effect on MFD-ST and substan-
tial negative effect on the MFD-TT for cognitive
effort. The effect of the number of searches is non-
substantial for all outcome variables. The text ID
together with the sound condition has an effect on
all of the measurements, which may be explained
by the standard measurements of text complexity
we used, which do not take into account semantics

and might not sufficiently reflect textual differences,
especially regarding translation difficulty.

For future work, we will measure the relation
between text complexity evaluated with newer read-
ability formulas based on fine-grained linguistic fea-
tures and translation quality/productivity (Dai and
Liu, 2024), investigate in more detail the relation
between translation experience and translation qual-
ity/productivity, the relation between productivity
and the number of searches performed, and quantify
the observable changes in individual PEMT work-
flows created by our participants’ access to speech
synthesis.
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A Model Formulas

In this section, we show the brms formulas for each
outcome variable Y .

Quality score outcome: quality score, first level
predictors: condition, text, n searches, PEMT ex-
perience, and second level predictors: condition.
brms formula:

quality _score ~ 1 + condition + text + n_searches +
pemt_experience + (1 + condition | participant )
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PEMT speed productivity outcome: PEMT
speed,first level predictors: condition, text, n
searches, PEMT experience, and second level pre-
dictors: condition. brms formula:

pemt_speed ~ 1 + condition + text + n_searches + pemt_
experience + (1 + condition | participant )

MFD-ST outcome: MFD-ST, first level predic-
tors: condition, text, n searches, PEMT experience,
and second level predictors: condition. brms for-
mula:

MFD_ST ~ 1 + condition + text + n_searches + pemt_
experience + (1 + condition | participant )

MFD-TT outcome: MFD-TT, first level predic-
tors: condition, text, n searches, PEMT experience,
and second level predictors: condition. brms for-
mula:

MFD_TT ~ 1 + condition + text + n_searches + pemt_
experience + (1 + condition | participant )

B Fitted Models

C ROPE for the Sound Condition

466



(a) Quality (b) PEMT speed

(c) MFD-ST (d) MFD-TT

Figure 5: Fitted models across texts on each condition for: a) Quality, b) PEMT speed, c) MFD-ST, and d) MFD-TT. Fit curve
with posterior predictions from the model, uncertainty bars with 95% CI, and data points.
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(a) quality score (b) PEMT speed productivity

(c) MFD-ST (d) MFD-TT

Figure 6: Proportion of the sound condition effect that falls into the ROPE for each outcome variable: a) quality, b) PEMT
speed, c) MFD-ST, and d) MFD-TT. Point median value, thin bar 95% CI, and thick bar 66%CI.
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