@inproceedings{nunziatini-diego-2024-implementing,
title = "Implementing Gender-Inclusivity in {MT} Output using Automatic Post-Editing with {LLM}s",
author = "Nunziatini, Mara and
Diego, Sara",
editor = "Scarton, Carolina and
Prescott, Charlotte and
Bayliss, Chris and
Oakley, Chris and
Wright, Joanna and
Wrigley, Stuart and
Song, Xingyi and
Gow-Smith, Edward and
Bawden, Rachel and
S{\'a}nchez-Cartagena, V{\'\i}ctor M and
Cadwell, Patrick and
Lapshinova-Koltunski, Ekaterina and
Cabarr{\~a}o, Vera and
Chatzitheodorou, Konstantinos and
Nurminen, Mary and
Kanojia, Diptesh and
Moniz, Helena",
booktitle = "Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1)",
month = jun,
year = "2024",
address = "Sheffield, UK",
publisher = "European Association for Machine Translation (EAMT)",
url = "https://aclanthology.org/2024.eamt-1.48",
pages = "580--589",
abstract = "This paper investigates the effectiveness of combining machine translation (MT) systems and large language models (LLMs) to produce gender-inclusive translations from English to Spanish. The study uses a multi-step approach where a translation is first generated by an MT engine and then reviewed by an LLM. The results suggest that while LLMs, particularly GPT-4, are successful in generating gender-inclusive post-edited translations and show potential in enhancing fluency, they often introduce unnecessary changes and inconsistencies. The findings underscore the continued necessity for human review in the translation process, highlighting the current limitations of AI systems in handling nuanced tasks like gender-inclusive translation. Also, the study highlights that while the combined approach can improve translation fluency, the effectiveness and reliability of the post-edited translations can vary based on the language of the prompts used.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nunziatini-diego-2024-implementing">
<titleInfo>
<title>Implementing Gender-Inclusivity in MT Output using Automatic Post-Editing with LLMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mara</namePart>
<namePart type="family">Nunziatini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sara</namePart>
<namePart type="family">Diego</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Carolina</namePart>
<namePart type="family">Scarton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Charlotte</namePart>
<namePart type="family">Prescott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Bayliss</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Oakley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joanna</namePart>
<namePart type="family">Wright</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stuart</namePart>
<namePart type="family">Wrigley</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xingyi</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Edward</namePart>
<namePart type="family">Gow-Smith</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachel</namePart>
<namePart type="family">Bawden</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Víctor</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Sánchez-Cartagena</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Cadwell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Lapshinova-Koltunski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vera</namePart>
<namePart type="family">Cabarrão</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Konstantinos</namePart>
<namePart type="family">Chatzitheodorou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mary</namePart>
<namePart type="family">Nurminen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diptesh</namePart>
<namePart type="family">Kanojia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Moniz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>European Association for Machine Translation (EAMT)</publisher>
<place>
<placeTerm type="text">Sheffield, UK</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper investigates the effectiveness of combining machine translation (MT) systems and large language models (LLMs) to produce gender-inclusive translations from English to Spanish. The study uses a multi-step approach where a translation is first generated by an MT engine and then reviewed by an LLM. The results suggest that while LLMs, particularly GPT-4, are successful in generating gender-inclusive post-edited translations and show potential in enhancing fluency, they often introduce unnecessary changes and inconsistencies. The findings underscore the continued necessity for human review in the translation process, highlighting the current limitations of AI systems in handling nuanced tasks like gender-inclusive translation. Also, the study highlights that while the combined approach can improve translation fluency, the effectiveness and reliability of the post-edited translations can vary based on the language of the prompts used.</abstract>
<identifier type="citekey">nunziatini-diego-2024-implementing</identifier>
<location>
<url>https://aclanthology.org/2024.eamt-1.48</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>580</start>
<end>589</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Implementing Gender-Inclusivity in MT Output using Automatic Post-Editing with LLMs
%A Nunziatini, Mara
%A Diego, Sara
%Y Scarton, Carolina
%Y Prescott, Charlotte
%Y Bayliss, Chris
%Y Oakley, Chris
%Y Wright, Joanna
%Y Wrigley, Stuart
%Y Song, Xingyi
%Y Gow-Smith, Edward
%Y Bawden, Rachel
%Y Sánchez-Cartagena, Víctor M.
%Y Cadwell, Patrick
%Y Lapshinova-Koltunski, Ekaterina
%Y Cabarrão, Vera
%Y Chatzitheodorou, Konstantinos
%Y Nurminen, Mary
%Y Kanojia, Diptesh
%Y Moniz, Helena
%S Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1)
%D 2024
%8 June
%I European Association for Machine Translation (EAMT)
%C Sheffield, UK
%F nunziatini-diego-2024-implementing
%X This paper investigates the effectiveness of combining machine translation (MT) systems and large language models (LLMs) to produce gender-inclusive translations from English to Spanish. The study uses a multi-step approach where a translation is first generated by an MT engine and then reviewed by an LLM. The results suggest that while LLMs, particularly GPT-4, are successful in generating gender-inclusive post-edited translations and show potential in enhancing fluency, they often introduce unnecessary changes and inconsistencies. The findings underscore the continued necessity for human review in the translation process, highlighting the current limitations of AI systems in handling nuanced tasks like gender-inclusive translation. Also, the study highlights that while the combined approach can improve translation fluency, the effectiveness and reliability of the post-edited translations can vary based on the language of the prompts used.
%U https://aclanthology.org/2024.eamt-1.48
%P 580-589
Markdown (Informal)
[Implementing Gender-Inclusivity in MT Output using Automatic Post-Editing with LLMs](https://aclanthology.org/2024.eamt-1.48) (Nunziatini & Diego, EAMT 2024)
ACL