
Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1), pages 647–660
June 24-27, 2024 ©2024 European Association for Machine Translation

Estonian-Centric Machine Translation: Data, Models, and Challenges

Elizaveta Korotkova and Mark Fishel
Institute of Computer Science
University of Tartu, Estonia

{elizaveta.korotkova, mark.fisel}@ut.ee

Abstract
Machine translation (MT) research is most
typically English-centric. In recent years,
massively multilingual translation systems
have also been increasingly popular. How-
ever, efforts purposefully focused on less-
resourced languages are less widespread.
In this paper, we focus on MT from and
into the Estonian language. First, empha-
sizing the importance of data availability,
we generate and publicly release a back-
translation corpus of over 2 billion sen-
tence pairs. Second, using these novel
data, we create MT models covering 18
translation directions, all either from or
into Estonian. We re-use the encoder of the
NLLB multilingual model and train modu-
lar decoders separately for each language,
surpassing the original NLLB quality. Our
resulting MT models largely outperform
other open-source MT systems, including
previous Estonian-focused efforts, and are
released as part of this submission.

1 Introduction

The majority of work on neural machine transla-
tion (NMT) is nowadays primarily English-centric,
with some notable work on (massively) multilin-
gual MT (Fan et al., 2020; NLLB Team et al.,
2022; Kudugunta et al., 2023). In recent years,
some attention has been directed at translation di-
rections out of English (e.g. this is the primary fo-
cus of the WMT’2024 evaluation campaign1) or at

© 2024 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
1http://www2.statmt.org/wmt24/
translation-task.html

Figure 1: Model architecture. We reuse the multilingual
Transformer encoder of NLLB-1.3B and train a new Trans-
former decoder for each target language.

pairs that do not include English: for instance, re-
cent WMT and IWSLT shared tasks included one
or two such pairs (Kocmi et al., 2023; Kocmi et al.,
2022; Agarwal et al., 2023).

In this work, we present our recent efforts on ad-
vancing Estonian-centric machine translation. In a
broader scope the work is part of the Neurotõlge
project, which develops open machine translation
for Estonian.2 The name Neurotõlge means Neural
translation in Estonian and the work on its devel-
opment has started in 2017 and is ongoing.

The present contribution covers 18 new transla-
tion directions for Neurotõlge from and into Esto-
nian. We openly release a massive back-translation
corpus for these language pairs, extending the Syn-
thetic Corpus of Parallel Estonian (SynEst) (Ko-
rotkova et al., in press), and release translation
models trained using these data.

We employ a partially modular approach (Es-
colano et al., 2021; Lyu et al., 2020) in creating

2https://translate.ut.ee
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translation models. Specifically, we use the en-
coder of an existing massively multilingual trans-
lation system NLLB (NLLB Team et al., 2022)
and create the decoders for each target language
as separate modules (the architecture is shown in
Figure 1). This setup makes it possible to train the
decoders independently, and any subset of the de-
coders can be deployed afterwards. The achieved
translation quality is better than the original NLLB
system and also surpasses other open systems on
the included translation directions.

The main contributions of this paper are thus:

• we extend the SynEst corpus to cover 12 new
translation directions and 4 new data sources,
adding over 2 billion filtered sentence pairs to
the corpus, and make the full corpus publicly
available;3

• we create new MT systems for Estonian
translation, covering 6 translation directions
from Estonian and 12 translation directions
into Estonian. Our systems demonstrate
stronger translation performance than previ-
ous open-source efforts, including Estonian-
centric ones, on most language pairs when
translating from Estonian into other lan-
guages, and show especially noticeable and
consistent improvements for translation into
Estonian (up to 13 BLEU (Papineni et al.,
2002) depending on translation direction and
text domain). The models are released for
open use.4

2 Related Work

In our work, we focus on strengthening the capa-
bilities of open-source MT systems focused on the
Estonian language. This builds upon previous ef-
forts centered on Estonian public translation, most
recently, the MTEE governmental project (Tättar
et al., 2022), and, more generally, the Neurotõlge
project and online translation engine.2 MTEE cov-
ered translation between Estonian and three other
languages: English, German, and Russian, and
achieved state-of-the-art translation quality at the
time (Tättar et al., 2022). In this work, we train

3https://metashare.ut.ee/repository/
search/?q=SynEst, for direct DOI links to each
language pair, see Appendix B.
4https://huggingface.co/tartuNLP/
synest-models

Estonian-centric models for more language pairs,
outperforming the MTEE models in most cases.

Instead of training models from scratch, we use
the NLLB multilingual translation model (NLLB
Team et al., 2022) as a starting point for our sys-
tems. NLLB is a massive effort utilizing the multi-
lingual MT approach (Dong et al., 2015; Johnson
et al., 2017), and covering 200 languages, which
makes it a convenient base on which to build sys-
tems tailored to a smaller number of languages.

In this work, we mostly rely on creating large
amounts of new training data to improve Esto-
nian translation. Specifically, we use the back-
translation technique (Sennrich et al., 2016). Ex-
isting MT systems are used to generate translations
of monolingual corpora into desired languages.
The obtained parallel data is then reversed and
used to augment the training corpus. Thus, the
noisy, automatically translated text is on the source
side, and the target side contains the cleaner origi-
nal data, which allows the model to learn text gen-
eration based on genuine data. Specifically, we
use and extend the SynEst corpus (Korotkova et
al., in press), an Estonian-focused back-translation
dataset, to cover new translation directions and
source corpora.

In terms of model architecture, our systems are
inspired by modular approaches (Lyu et al., 2020;
Escolano et al., 2021), where multilingual MT
models share encoder and decoder modules for
each input and output language instead of hav-
ing one encoder and one decoder covering all lan-
guages. More specifically, we use an existing mul-
tilingual encoder module from NLLB and train a
new decoder for each target language from scratch,
somewhat similarly to concurrent work on ”mix-
and-match translation” by Purason et al. (2024),
where encoders and decoders from different mod-
els are unified to form a new model.

3 Extending the SynEst Corpus

Synthetic Corpus of Parallel Estonian, or SynEst
(Korotkova et al., in press), includes data from
the NewsCrawl monolingual corpus (Kocmi et al.,
2023) automatically translated into Estonian from
11 languages (Arabic, Chinese, English, Finnish,
French, German, Latvian, Lithuanian, Russian,
Spanish, and Ukrainian). The dataset can be used
as a back-translated corpus to facilitate training
MT models which include Estonian.

In this work, we significantly extend SynEst to
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code target language parallel
back-translated corpus

total
NewsCrawl ParaCrawl UNPC OpenSubtitles

DE German 9.3 332.6 159.3 – – 501.2
EN English 19.6 254.7 433.2 19.4 61.0 787.9
FI Finnish 15.0 23.5 19.1 – – 57.6
RU Russian 5.1 86.8 2.2 13.1 – 107.2
UK Ukrainian 2.6 1.8 6.7 – – 11.1
ZH Chinese 5.8 10.4 4.7 – – 20.9

Table 1: Sizes of training corpora for models translating from Estonian into other languages (filtered, in millions of sentence
pairs). Parallel shows the total size of all parallel corpora used for each language pair. For back-translated corpora, the source
side (Estonian) is the automatically translated data, while the target side is the original data. UNPC denotes the United Nations
Parallel Corpus.

code
source

parallel ENC total
language

AR Arabic 6.3 94.3 100.6
DE German 9.3 143.8 153.1
EN English 19.6 144.7 164.3
ES Spanish 19.5 126.8 146.3
FI Finnish 15.0 136.8 151.8
FR French 18.8 132.1 150.9
LT Lithuanian 10.5 132.7 143.2
LV Latvian 7.1 132.2 139.3
RU Russian 5.1 112.1 117.2
SV Swedish 13.4 127.8 141.2
UK Ukrainian 2.6 115.7 118.3
ZH Chinese 5.8 113.6 119.4

total 1,645.6

Table 2: Sizes of training corpora for models translating into
Estonian from other languages (filtered, in millions of sen-
tence pairs). Parallel shows the total size of all parallel cor-
pora used for each language pair. ENC denotes the Esto-
nian Parallel Corpus. The Estonian Parallel Corpus was back-
translated: the source side is the data automatically translated
from Estonian into other languages, while the target side is
the original Estonian data.

include more source corpora and translation di-
rections, most importantly, introducing translation
directions from Estonian. We make the updated
dataset publicly available for unrestricted use.3

3.1 Translation Directions into Estonian

For translation directions into Estonian, we extend
the corpus with three new data sources: ParaCrawl
(Bañón et al., 2020), the United Nations Parallel
Corpus (Ziemski et al., 2016), and OpenSubtitles
(Lison and Tiedemann, 2016).

In case of ParaCrawl, we use 10 language pairs
present in this parallel corpus: one side is al-

ways English, and the other one of German, Span-
ish, Finnish, French, Lithuanian, Latvian, Russian,
Swedish, Ukrainian, and Chinese. We automati-
cally translate both sides of the corpora into Esto-
nian. The sizes of the resulting corpora range from
5.4 million sentence pairs for Russian–Estonian to
a total of 878.4 million pairs for English–Estonian.
As both sides of the parallel corpus are trans-
lated into a third language (Estonian), this setup
opens the possibility of exploring triangular MT
approaches; however at present we treat the cor-
pora we translate as monolingual and leave inves-
tigation of this direction for future work.

For the United Nations Parallel Corpus, we
translate its English and Russian monolingual sub-
sets into Estonian, obtaining 33.4 million and
28.5 million sentence pairs before filtering, respec-
tively. Finally, we translate the English OpenSubti-
tles corpus into Estonian as well, resulting in 441.4
million sentence pairs before filtering.

The total sizes of the generated dataset for each
source corpus and translation direction are given in
Table 8 in Appendix A.

3.2 Translation Directions from Estonian

Most importantly, we focus on extending the
SynEst synthetic corpus to include translation di-
rections from Estonian. This will allow to use the
corpus to train models for translation into Esto-
nian. We translate the Estonian National Corpus
(Koppel and Kallas, 2022) into 12 languages: Ara-
bic, Chinese, English, Finnish, French, German,
Latvian, Lithuanian, Russian, Spanish, Swedish,
and Ukrainian. The resulting back-translation cor-
pus contains between 171.4 million and 196.6 mil-
lion sentence pairs per translation direction (see
Table 7 in Appendix A for approximate numbers

649



target language

DE EN FI RU UK ZH

NLLB-1.3B 24.4 36.7 15.5 22.4 18.7 25.0
MTEE 25.8 37.0 – 22.4 – –
MADLAD-3B 26.0 37.8 20.1 20.0 15.5 33.5
Ours 27.5 38.1 21.9 23.5 21.3 31.6

DeepL 30.9 39.9 24.4 26.7 25.6 40.5
Google 30.8 41.7 22.9 26.6 24.4 42.2

Table 3: BLEU scores on the FLORES-devtest benchmark for models translating from Estonian into other languages. The best
scores overall are shown in bold, and the best scores among open-source models are underlined. For our models, we report the
score of the checkpoint with the best validation BLEU. With MTEE, we use the general-domain model to translate the FLORES
benchmark.

for each translation direction).

3.3 Translation Models

For generating the synthetic side of the SynEst cor-
pus we translate from and into English, German,
and Russian with the MTee models (Tättar et al.,
2022), using the domain-specific engines MTee-
legal for the United Nations Parallel Corpus and
MTee-general for all other corpora. For transla-
tion directions not involving these languages we
use the M2M-100 1.2B-parameter model (Fan et
al., 2020). In all cases, we use beam search with
beam size 5.

4 Experiments

4.1 Models

We replicate the model setup used in previous ex-
ploratory experiments (Korotkova et al., in press).
We base our systems on the multilingual NLLB-
1.3B dense model (NLLB Team et al., 2022). We
freeze the NLLB encoder and train a new, ran-
domly initialized Transformer decoder (Vaswani et
al., 2017) for each target language. We keep the
dimensions of the decoder layers the same as in
the encoder, but use 6 decoder layers instead of
the encoder’s 24. Keeping the encoder parame-
ters fixed allows to reduce the training-time costs,
while reducing the size of the decoder lowers both
training- and inference-time costs compared to full
fine-tuning of the base model. Freezing the en-
coder parameters also maintains the multilingual
properties of the encoder, meaning that after fine-
tuning the model on a certain translation direction
it can still translate from any of the 200 languages
of NLLB. As all models share the same encoder
parameters, final models can be built in a modular

fashion, with a single decoder for all translation di-
rections, and one encoder per target language.

We focus on creating Estonian-centric MT mod-
els: all translation directions in our experiments
include Estonian as either the source or the tar-
get language. Specifically, for translation from Es-
tonian into other languages, we train models that
translate into German, English, Finnish, Russian,
Ukrainian, and Chinese. For translation into Esto-
nian, as the encoder is shared between all models
and Estonian is the common target language, we
train a single model on the concatenation of data
representing 12 language pairs (see Table 2).

We use FairSeq (Ott et al., 2019) to train our
models; details on model and training hyperparam-
eters can be found in Appendix D.

4.2 Training Data

To train our models, we use two types of data:
parallel corpora and the extended SynEst back-
translated corpus.

We use the concatenation of 10 parallel corpora:
CCMatrix (Schwenk et al., 2021b), WikiMatrix
(Schwenk et al., 2021a), MultiParaCrawl (Bañón
et al., 2020), Europarl (Koehn, 2005), OpenSub-
titles (Lison and Tiedemann, 2016), JRC-Acquis
(Steinberger et al., 2006), TED2020 (Reimers
and Gurevych, 2020), EMEA, infopankki, and
DGT (Tiedemann, 2012). For the Estonian–
English language pair, MultiParaCrawl is replaced
with ParaCrawl (Bañón et al., 2020). Not all of
these corpora exist for each language pair in our
experiments; we use each of the corpora whenever
it is available for a language pair.

For SynEst, we use all source corpora available
for a given translation direction. As the dataset is
used as additional back-translation data, the auto-
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ET–DE ET–EN ET–RU

News

NLLB-1.3B 25.8 25.6 22.8
MTEE 30.1 26.4 26.9
MADLAD-3B 26.3 28.7 19.7
Ours 30.5 25.9 26.5

DeepL 28.0 28.1 23.5
Google 26.0 30.0 21.2

Crisis

NLLB-1.3B 26.3 21.4 26.2
MTEE 29.8 33.8 33.8
MADLAD-3B 22.1 35.0 25.0
Ours 30.3 33.2 34.7

DeepL 28.1 34.1 27.3
Google 26.6 36.1 27.6

Military

NLLB-1.3B 21.0 31.1 30.1
MTEE 24.2 35.4 35.9
MADLAD-3B 19.6 33.2 28.8
Ours 25.4 32.9 35.7

DeepL 20.0 32.7 31.0
Google 20.3 34.2 34.5

Legal

NLLB-1.3B 27.1 48.9 35.5
MTEE 34.0 55.1 42.8
MADLAD-3B 32.1 47.8 39.9
Ours 34.7 53.7 43.0

DeepL 34.8 50.9 35.5
Google 39.1 50.9 37.8

Spoken

NLLB-1.3B 29.3 30.5 23.3
MTEE 33.0 34.3 28.1
MADLAD-3B 33.1 35.2 22.8
Ours 33.2 32.2 28.0

DeepL 29.9 34.4 23.5
Google 36.0 41.0 22.3

Table 4: BLEU scores on the MTEE domain benchmark sets
for models translating from Estonian into other languages.
The best scores overall are shown in bold, and the best scores
among open-source models are underlined. For our models,
we report the score of the checkpoint with the best validation
BLEU. With MTEE, we show the scores reported by Tättar et
al. (2022).

matically generated side of the corpus is always
used as the source and the cleaner original data as

the target during training.
We concatenate all corpora to create our full

training dataset. Approximate sizes of the full
training corpora and their components are shown
in Tables 1 and 2 for model translation direc-
tions from Estonian and into Estonian, respec-
tively. (The sizes are shown after filtering; details
on data filtering can be found in Appendix C).

The dev split of the FLORES dataset (Goyal et
al., 2022) is used as the validation set.

4.3 Evaluation

We compare the performance of our Estonian-
centric models to that of three other open-source
MT systems:

• the NLLB-1.3B (NLLB Team et al., 2022)
multilingual translation model, which also
serves as the starting model in our experi-
ments;

• the models trained within the MTEE project
(Tättar et al., 2022), which was the pre-
vious effort of public Estonian-centric MT.
These models cover the Estonian↔German,
Estonian↔English, and Estonian↔Russian
translation directions, and employ a fully
modular approach;

• the more recent MADLAD-400 3B
(Kudugunta et al., 2023).

For additional comparison, we also show the re-
sults of DeepL5 and Google Translate,6 two widely
used proprietary online translation engines.

The test sets we employ for evaluation are
the FLORES evaluation benchmark (Goyal et al.,
2022) (the devtest split), and the MTEE domain-
specific benchmark sets (Tättar et al., 2022).
FLORES is useful in providing a benchmark for
multilingual translation between many languages,
which is based on Wikipedia. MTEE, while
covering fewer language pairs (Estonian–English,
Estonian–German, and Estonian–Russian), is cen-
tered on language pairs which include Estonian,
and allows to estimate model performance on text
belonging to 5 distinct domains.

We use the sacreBLEU implementation (Post,
2018) of the BLEU score (Papineni et al., 2002) to

5https://www.deepl.com/translator
6https://translate.google.com
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source language

AR DE EN ES FI FR LT LV RU SV UK ZH

NLLB-1.3B 15.7 17.8 22.7 13.8 16.1 17.3 15.1 16.1 15.8 18.4 16.9 11.6
MTEE – 21.7 27.6 – – – – – 20.2 – – –
MADLAD-3B 20.3 21.7 26.2 16.3 19.2 19.9 19.3 22.8 17.7 21.3 16.2 15.4
Ours 20.0 23.0 29.4 16.7 20.9 23.3 19.3 21.0 20.1 24.0 21.4 14.6

DeepL 23.4 24.4 30.2 19.0 22.5 23.7 22.1 23.6 22.6 26.3 24.1 18.0
Google 23.2 25.3 30.7 18.5 22.4 24.5 21.5 23.6 22.6 25.7 23.3 18.8

Table 5: BLEU scores on the FLORES-devtest benchmark for models translating from other languages into Estonian. The best
scores overall are shown in bold, and the best scores among open-source models are underlined. For our model, we report the
score of the checkpoint with the best validation loss (the same checkpoint is used for all source languages). With MTEE, we
use the general-domain model to translate the FLORES benchmark.

measure the models’ performance.7 Additionally,
we report COMET scores (Rei et al., 2020) in Ap-
pendix E. For models translating from Estonian,
we choose the checkpoint which shows the best
BLEU score on FLORES-dev for the language pair
in question. For the models translating into Esto-
nian, we use the checkpoint showing the best loss
on the combined validation set; we do not choose
a best checkpoint for each source language sepa-
rately.

5 Results

BLEU scores of NLLB-1.3B, MTEE, MADLAD-
3B, our model, DeepL, and Google Translate on
FLORES-devtest for translation directions from Es-
tonian into other languages (our experiments cover
German, English, Finnish, Russian, Ukrainian,
and Chinese as target languages) are shown in Ta-
ble 3. In this setting, our model shows the strongest
results among the open-source systems for five out
of six language pairs, outperforming the next best
open-source models by 0.3 to 2.6 BLEU points.
On the MTEE domain benchmarks (Table 4), our
model consistently outperforms other open-source
ones on the Estonian–German language pair, while
for Estonian–English it shows lower scores than
the MTEE and, for most domains, MADLAD
models. For Estonian–Russian, results are more
mixed, with our models being the best among all
models on the crisis and legal domains (with a
small margin of 0.2 BLEU over MTEE for legal
and a more noticeable one of 0.9 BLEU for cri-
sis) and falling slightly behind MTEE on the news,
7sacreBLEU signature for all target languages except Chi-
nese: nrefs:1|case:mixed|eff:no|tok:13a|
smooth:exp|version:2.3.1. For Chinese: the same
with tok:zh.

military, and spoken domains (by up to 0.4 BLEU).
Table 5 shows results on FLORES-devtest for

translation into Estonian. Our model noticeably
improves upon the NLLB model for all translation
directions, while also outperforming all compared
open-source models on 7 out of 12 translation di-
rections. On three more directions, the difference
between our model and the best performing one
among open systems does not exceed 0.3 BLEU
points.

From Table 6 we see that our into-Estonian
model performs consistently well on different do-
mains. It outperforms all models, including pro-
prietary ones and the MTEE models fine-tuned to
these domains, on all language pairs and domains,
with the exception of EN–ET news, with margins
to the next best models ranging from 0.2 to 13
BLEU for different language pairs and domains.
This consistently strong performance can be at-
tributed to the fact that this single model has en-
countered a vast amount of training data, with 12
input languages and Estonian as the output lan-
guage, leading it to learn generating Estonian out-
put very well.

6 Deployment and Known Issues

The models are made publicly available on the
HuggingFace model hub4 and can be run using the
TartuNLP translation worker.8 The models are set
up in a modular fashion, with one encoder cover-
ing all input languages and a separate decoder for
each output language.

We have found that the models are not robust
to some inputs, such as single words; while full

8https://github.com/TartuNLP/
translation-worker/tree/nllb-based-est
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DE–ET EN–ET RU–ET

News

NLLB-1.3B 22.0 15.6 19.5
MTEE 29.7 18.0 27.2
MADLAD-3B 24.9 19.0 22.5
Ours 33.2 19.7 30.0

DeepL 29.5 21.4 23.0
Google 28.9 19.7 24.8

Crisis

NLLB-1.3B 27.4 24.3 20.1
MTEE 40.1 41.6 38.4
MADLAD-3B 36.2 31.1 27.2
Ours 53.1 45.8 40.8

DeepL 38.7 37.2 28.8
Google 39.6 41.2 32.3

Military

NLLB-1.3B 22.6 21.6 20.1
MTEE 31.9 30.2 30.8
MADLAD-3B 28.0 24.6 24.1
Ours 37.1 31.9 32.7

DeepL 31.2 31.7 26.2
Google 28.6 31.7 26.8

Legal

NLLB-1.3B 25.0 31.1 26.9
MTEE 32.4 50.8 47.1
MADLAD-3B 31.1 31.7 37.9
Ours 48.0 52.1 50.3

DeepL 39.2 47.8 37.0
Google 37.4 48.7 38.7

Spoken

NLLB-1.3B 23.0 18.0 16.9
MTEE 31.7 23.7 24.4
MADLAD-3B 27.5 22.2 19.5
Ours 37.5 26.1 27.3

DeepL 30.7 24.2 19.1
Google 27.9 23.6 19.2

Table 6: BLEU scores on the MTEE domain benchmark sets
for models translating from other languages into Estonian.
The best scores overall are shown in bold, and the best scores
among open-source models are underlined. For our model, we
report the score of the checkpoint with the best validation loss
(the same checkpoint is used for all source languages). With
MTEE, we show the scores reported by Tättar et al. (2022).

sentence translation works reasonably well, with
single-word or isolated phrase input the models

may start severely overgenerating.

7 Future Work

So far the efforts of the project have focused
on sentence-level NMT. The next iterations of
development and model training will likely fo-
cus on document-level MT, either with sequence-
to-sequence or decoder-only models. Moreover,
we are looking into instruction-tuned sequence-
to-sequence models: this approach should yield
translation-specific emergent abilities and would
thus enable the integration of terminologies, on-
the-fly domain adaptation, and other types of trans-
lation output control. We also plan to dedicate
more attention to the robustness of the devel-
oped translation engines, for instance, by includ-
ing upper-cased data in the training dataset for
smoother handling of headlines and other all-caps
segments, as well as including phrase and word
pairs to enhance translation performance when the
input is not a complete sentence.

8 Conclusion

In this work, we have made a contribution towards
open-source machine translation centered on the
Estonian language.

First, we presented an extended version of the
SynEst synthetic corpus. The new version intro-
duces 12 translation directions from Estonian, in
addition to previously present directions into Es-
tonian. In total, we have generated over 2 billion
filtered sentence pairs. We release the full corpus
for public use and hope that the availability of this
resource will facilitate further work on Estonian
translation.

Second, we created new MT models for transla-
tion from Estonian into 6 languages and from 12
languages into Estonian and made them publicly
available. Evaluation on two benchmarks covering
6 domains has shown that our models are compara-
ble to or outperform previous open efforts on trans-
lation from Estonian, depending on the language
pair and domain, and perform especially well on
translation into Estonian, outperforming not only
previous open-source but also proprietary systems
by up to 13 BLEU on some domains. These con-
sistent improvements are likely due to the use of
massive amounts of synthetic data we created.
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A Back-translated Dataset Sizes

The approximate number of sentence pairs in each
of our back-translated corpora before filtering are
shown in Table 7 (translated from Estonian into
other languages) and Table 8 (translated from other
languages into Estonian).

target
ENC

language

Arabic 183.7
German 196.6
English 196.4
Spanish 172.7
Finnish 177.7
French 173.7
Lithuanian 174.0
Latvian 174.3
Russian 196.3
Swedish 171.4
Ukrainian 175.5
Chinese 189.0

Table 7: Sizes of the back-translation corpora translated from
Estonian (unfiltered, in millions of sentence pairs). ENC
stands for the Estonian National Corpus.

corpus

source
NC PC UNPC OS

language

Arabic 42.3 – – –
German 427.1 278.3 – –
English 314.3 878.4 33.4 441.4
Spanish 72.1 208.4 – –
Finnish 28.8 31.3 – –
French 104.8 217.6 – –
Lithuanian 7.6 13.2 – –
Latvian 14.9 13.1 – –
Russian 126.6 5.4 28.5 –
Swedish – 49.1 – –
Ukrainian 2.3 13.2 – –
Chinese 13.9 14.2 – –

Table 8: Sizes of the back-translation corpora translated into
Estonian (unfiltered, in millions of sentence pairs). NC, PC,
UNPC, and OS denote the NewsCrawl, ParaCrawl, United
Nations Parallel Corpus, and OpenSubtitles corpora, respec-
tively.

B Digital Object Identifiers for the
Extended SynEst Corpus

The DOIs for each language pair of the extended
SynEst corpus are shown in Table 9.

C Data Filtering

The back-translation datasets are filtered based on
log probability of the generated translations. We
only keep the examples that where log probability
is higher than µ − 1.5σ where µ is the mean and
σ is the standard deviation over all translation log
probabilities for a given translation direction and
corpus.

All data, both synthetic and parallel, are normal-
ized with the MTee normalization script (Tättar et
al., 2022) and filtered with OpusFilter (Aulamo et
al., 2020). The following filters are used:

1. LongWordFilter: filter examples with
words longer than 40 characters (default).

2. LengthFilter: filter examples longer
than 1000 characters or shorter than 10 char-
acters.

3. LengthFilter: filter examples longer
than 100 words.

4. LengthRatioFilter: filter examples
where the source and target sentence lengths
differ more than 3 times in terms of number
of words.

5. CharacterScoreFilter with threshold
1 (default) for the respective scripts.

6. LanguageIDFilter with fastText (Bo-
janowski et al., 2017) language identification
model.

7. LanguageIDFilter with CLD2 language
identification.

8. TerminalPunctuationFilter with
the default parameters.

9. NonZeroNumeralsFilter with the de-
fault parameters.

This configuration is applied to all language
pairs with the following exceptions:

• Arabic–Estonian, which uses filters 1 – 6 and
uses minimal sentence length of 3 characters
in filter 2;
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language pair DOI

Arabic–Estonian doi.org/10.15155/y746-qa68
German–Estonian doi.org/10.15155/2fy2-2k14
English–Estonian doi.org/10.15155/5r1e-6r35
Spanish–Estonian doi.org/10.15155/sqk9-ze70
Finnish–Estonian doi.org/10.15155/hjw7-m565
French–Estonian doi.org/10.15155/4vb6-ab11
Lithuanian–Estonian doi.org/10.15155/7at2-jv07
Latvian–Estonian doi.org/10.15155/erkh-k466
Russian–Estonian doi.org/10.15155/4e20-vs27
Swedish–Estonian doi.org/10.15155/jfws-ed89
Ukrainian–Estonian doi.org/10.15155/xmpv-ft58
Chinese–Estonian doi.org/10.15155/m6ww-j693
Estonian–all doi.org/10.15155/ctz5-1d43

Table 9: DOIs for the extended SynEst corpus

• Chinese–Estonian, which only uses
LengthFilter with maximal sen-
tence length of 750 characters (no minimal
length), CharacterScoreFilter, and
LanguageIDFilter with fastText as
language identification model.

Duplicates and test set overlaps are removed
from the training dataset.

D Training Details

The models are trained with FairSeq (Ott et al.,
2019). The NLLB-1.3B encoder consists of
24 transformer layers with embedding dimension
1024, feed-forward dimension 8192, and 16 atten-
tion heads. The decoders are randomly initialized
and have 6 transformer layers; the dimensions of
the decoders are the same as those of the encoder.
The input and output embeddings of the decoder
are shared. The vocabulary size is 256,000 for
the encoder and 32,000 for the decoder (we train
a separate SentencePiece (Kudo and Richardson,
2018) model for each output language). Models
are trained on 8 GPUs (4 AMD MI250x 128GB
GPU modules, each acting as 2 GPUs) with batch
size 4,096 tokens per GPU. Models are trained for
2,000,000 updates, with checkpoints saved after
every 2,000 updates. We use the inverse square
root learning rate scheduler with 4,000 warm-up
updates from initial learning rate 1×10−7 to max-
imum learning rate 5 × 10−4. We use Adam opti-
mizer (Kingma and Ba, 2015) with β1 = 0.9 and
β2 = 0.999. Dropout probability (Srivastava et al.,
2014) is 0.1, attention dropout 0.1, and activation

dropout is not used. The loss function is cross-
entropy.

E COMET Scores

Tables 10, 11, and 12 show COMET scores (Rei et
al., 2020) for translation from and into Estonian on
the FLORES benchmark. Tables 13 and 14 contain
results of translating the MTEE test sets from and
into Estonian, respectively.

COMET scores were calculated with the default
wmt22-comet-da model (Rei et al., 2022).
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target language

DE EN FI RU UK ZH

NLLB-1.3B 84.19 88.33 86.65 86.71 85.90 80.01
MTEE 84.88 88.49 – 87.33 – –
MADLAD-3B 84.64 89.19 89.03 85.55 82.23 85.57
Ours 85.95 88.92 90.25 88.26 87.79 84.51

DeepL 87.08 89.54 91.44 89.67 90.07 87.69
Google 87.21 89.75 90.70 89.74 89.77 87.78

Table 10: COMET scores on the FLORES-devtest benchmark for models translating from Estonian into other languages. The
best scores overall are shown in bold, and the best scores among open-source models are underlined. For our models, we report
the score of the checkpoint with the best validation BLEU. With MTEE, we use the general-domain model to translate the
FLORES benchmark.

source language

AR DE EN ES FI FR

NLLB-1.3B 84.08 87.37 89.36 86.13 87.23 87.00
MTEE – 88.82 89.34 – – –
MADLAD-3B 87.65 88.86 90.65 87.78 88.84 88.01
Ours 87.34 90.42 91.60 88.67 90.58 89.76

DeepL 89.02 91.25 92.54 89.78 91.13 90.67
Google 88.35 90.34 91.77 89.29 90.72 90.17

Table 11: COMET scores on the FLORES-devtest benchmark for models translating from Arabic, German, English, Spanish,
Finnish, and French into Estonian. The best scores overall are shown in bold, and the best scores among open-source models
are underlined. For our model, we report the score of the checkpoint with the best validation loss (the same checkpoint is used
for all source languages). With MTEE, we use the general-domain model to translate the FLORES benchmark.

source language

LT LV RU SV UK ZH

NLLB-1.3B 85.36 85.78 86.27 87.50 85.69 84.03
MTEE – – 88.28 – – –
MADLAD-3B 87.82 90.27 86.07 88.54 83.44 88.48
Ours 88.72 89.92 89.37 90.57 89.08 88.18

DeepL 90.23 91.05 89.92 91.55 90.15 89.91
Google 89.68 90.46 89.42 90.77 89.24 89.55

Table 12: COMET scores on the FLORES-devtest benchmark for models translating from Lithuanian, Latvian, Russian,
Swedish, Ukrainian, and Chinese into Estonian. The best scores overall are shown in bold, and the best scores among open-
source models are underlined. For our model, we report the score of the checkpoint with the best validation loss (the same
checkpoint is used for all source languages). With MTEE, we use the general-domain model to translate the FLORES bench-
mark.
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ET–DE ET–EN ET–RU

News

NLLB-1.3B 83.35 83.64 85.15
MTEE 85.12 84.03 86.70
MADLAD-3B 83.74 85.07 82.41
Ours 85.41 84.19 87.36

DeepL 86.32 85.51 88.71
Google 86.64 85.25 88.70

Crisis

NLLB-1.3B 83.79 85.08 87.60
MTEE 85.62 86.76 90.18
MADLAD-3B 81.26 87.00 85.75
Ours 85.50 86.65 90.77

DeepL 86.18 87.88 90.62
Google 86.26 88.39 90.24

Military

NLLB-1.3B 83.05 86.35 88.72
MTEE 84.26 87.14 89.88
MADLAD-3B 80.62 87.34 85.85
Ours 85.54 87.04 90.53

DeepL 84.68 87.51 90.51
Google 85.12 88.12 90.60

Legal

NLLB-1.3B 84.51 87.12 90.84
MTEE 86.72 88.17 92.33
MADLAD-3B 85.01 88.01 90.85
Ours 87.04 88.14 92.39

DeepL 87.09 87.91 91.07
Google 86.68 87.62 91.32

Spoken

NLLB-1.3B 80.55 81.65 83.30
MTEE 82.22 82.19 84.04
MADLAD-3B 81.85 83.75 81.44
Ours 82.92 81.96 84.37

DeepL 83.21 83.94 86.08
Google 83.98 84.26 85.67

Table 13: COMET scores on the MTEE domain bench-
mark sets for models translating from Estonian into other lan-
guages. The best scores overall are shown in bold, and the
best scores among open-source models are underlined. For
our models, we report the score of the checkpoint with the
best validation BLEU. With MTEE, we calculate the scores
on the same model outputs as used by Tättar et al. (2022).

DE–ET EN–ET RU–ET

News

NLLB-1.3B 85.80 86.61 87.41
MTEE 87.83 85.85 89.34
MADLAD-3B 87.32 87.96 87.00
Ours 89.88 88.93 91.07

DeepL 90.45 89.93 90.53
Google 90.00 88.47 90.36

Crisis

NLLB-1.3B 89.55 91.08 87.75
MTEE 91.00 93.96 91.91
MADLAD-3B 91.48 93.02 88.86
Ours 93.83 94.51 92.44

DeepL 92.52 94.36 91.81
Google 92.25 94.07 91.49

Military

NLLB-1.3B 88.73 92.26 89.24
MTEE 90.81 93.40 92.00
MADLAD-3B 90.33 92.92 89.16
Ours 92.56 93.55 92.57

DeepL 92.19 94.28 91.81
Google 91.43 93.92 91.54

Legal

NLLB-1.3B 90.07 92.88 91.13
MTEE 91.96 95.50 94.23
MADLAD-3B 92.84 93.50 93.54
Ours 94.51 95.62 94.72

DeepL 93.49 95.45 93.49
Google 92.35 94.54 92.22

Spoken

NLLB-1.3B 86.59 88.31 84.26
MTEE 89.56 90.15 87.51
MADLAD-3B 89.11 90.13 84.33
Ours 90.88 90.75 88.47

DeepL 90.06 90.98 87.23
Google 89.58 90.72 87.30

Table 14: COMET scores on the MTEE domain benchmark
sets for models translating from other languages into Esto-
nian. The best scores overall are shown in bold, and the best
scores among open-source models are underlined. For our
model, we report the score of the checkpoint with the best
validation loss (the same checkpoint is used for all source lan-
guages). With MTEE, we calculate the scores on the same
model outputs as used by Tättar et al. (2022).
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