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Abstract
Product search is uniquely different from search for documents, Internet resources or vacancies, therefore it requires
the development of specialized search systems. The present work describes the H1 embdedding model, designed
for an offline term indexing of product descriptions at e-commerce platforms. The model is compared to other
state-of-the-art (SoTA) embedding models within a framework of hybrid product search system that incorporates
the advantages of lexical methods for product retrieval and semantic embedding-based methods. We propose
an approach to building semantically rich term vocabularies for search indexes. Compared to other production
semantic models, H1 paired with the proposed approach stands out due to its ability to process multi-word product
terms as one token. As an example, for search queries ”new balance shoes”, ”gloria jeans kids wear” brand entity
will be represented as one token - ”new balance”, ”gloria jeans”. This results in an increased precision of the system
without affecting the recall. The hybrid search system with proposed model scores mAP@12 = 56.1% and R@1k =
86.6% on the WANDS public dataset, beating other SoTA analogues.
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1. Introduction

Product search systems are required to operate
with both low latency and high recall, since they
scan the whole product catalog of billions of items.
Common product search methods initially used lex-
ical search models. These models calculate the
relevance metric based on heuristics that measure
exact word match between the search query and
textual product representations. Lexical search
models such as BM25 (Robertson and Walker,
1994) have been relevant for decades, and are
still widely used today. The recent alternatives,
neural extraction methods, demonstrate increased
search effectiveness metrics, but also possess
their own flaws (Zeng et al., 2022, 2023; Pan
et al., 2024; Hofstätter et al., 2020). Naturally,
the research gravitates towards the hybridization
of the two approaches, combining the advantages
of each.

The disadvantages of lexical models are well-
researched: (E1) a possible mismatch between
query and document vocabularies (Furnas et al.,
1987; Zhao and Callan, 2010) leads to search re-
call degradation; (E2) lack of semantic understand-
ing of queries and documents (Li and Xu, 2014)
decreases search precision. These described lim-
itations result in failures to retrieve relevant doc-
uments using lexical methods for information re-
trieval. To resolve these issues a number of exten-
sions to the lexical model have been introduced
in the past decades, including, but not limited to:
query expansion (Lavrenko and Croft, 2001; Lesk,
1969; Qiu and Frei, 1993; Xu and Croft, 2017),
document expansion (Efron et al., 2012; Liu and
Croft, 2004; Gao et al., 2004), term dependen-

cies model (Metzler and Croft, 2005; Xu et al.,
2010), topic modeling (Deerwester et al., 1990;
Wei and Croft, 2006), machine translation mod-
els for information retrieval (Berger and Lafferty,
1999; Karimzadehgan and Zhai, 2010). Despite
mentioned advances, the research in lexical mod-
els for information retrieval progresses relatively
slowly, since the majority of these methods work
with discrete, sparse lexical representations and
inevitably inherit their limitations.

With the development of representation learn-
ing in information retrieval, semantic search mod-
els at the offline information extraction stage of the
search have seen an increased research interest
in recent years. During this stage the indexes are
built for matching queries with the documents. The
Figure 1 schematically describes an example prod-
uct search system that uses indexes built during
the information extraction stage for fast responses
to queries.

Starting in 2013, the improvement of word em-
beddings (Bravo-Marquez et al., 2013; Mikolov
et al., 2013; Pennington et al., 2014) has led to
a number of studies using embeddings for the
extraction stage (Clinchant and Perronnin, 2013;
Ganguly et al., 2015; Vulić and Moens, 2015). Un-
like discrete lexical representation, word embed-
dings offer a continuous representation that can
help with the problem of query and document vo-
cabularies mismatch to some extent. After 2016,
a spike of research attention to the application of
deep learning methods to the information extrac-
tion stage is seen (Boytsov et al., 2016; Hender-
son et al., 2017). These methods are applied ei-
ther for improving document representation within
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Figure 1: The indexes and a tokenization model built during offline information extraction are used in
online setting to respond to queries with low latency. The quality of built index is detrimental to the
performance of the search system.

the framework of the traditional paradigm of dis-
crete lexical representation (Bai et al., 2020; Dai
and Callan, 2019; Nogueira et al., 2019), or directly
for forming novel semantic search models within
the sparse/dense representation paradigm (Gillick
et al., 2018a; Jean et al., 2015; Khattab and Za-
haria, 2020; Zamani et al., 2018).

While closely related to document information re-
trieval, the product search problem is uniquely dif-
ferent in a few aspects:

• Ranking mechanisms based on weighing tex-
tual features (TF/IDF, BM25) differ in product
search. For example, the token frequency in
the product title does not affect the query rel-
evancy.

• Products are multimodal. A product page in-
cludes a title, description, characteristics, im-
ages, videos, etc. The search system can
take into account multiple modalities of a
page.

• Search queries are motivated by an interest
in purchasing a product. Customer behavior
differs significantly from vacancy search or In-
ternet resource search behavior.

• Product search effectiveness is evaluated on
a modality-wise basis.

The primary research question of the present pa-
per is to evaluate the impact of the semantic model
and tokenization architectures on offline metrics of
a hybrid product search system.

In the following sections, we describe in de-
tail the research methodology, conducted experi-
ments and conclusions.

2. Related work

2.1. Neural Information Retrieval
Similar to document information retrieval trends,
the development of product search systems has
transitioned from lexical retrieval methods to neu-
ral retrieval methods (Li et al., 2021; Magnani et al.,
2022; Nigam et al., 2019). DSSM (Huang et al.,
2013), being one of the most popular neural net-
work architectures, is based on a Dual Encoder
paradigm (Gillick et al., 2018b; Yang et al., 2019;
Karpukhin et al., 2020). The two independent “tow-
ers” of encoders—one for search queries and the
other for product representation—embed queries
and products into a shared space of fixed dimen-
sionality. The shared space is used for similarity
search (Vanderkam et al., 2013; Johnson et al.,
2017) to retrieve products that are relevant to a
search query. Thus far, the most promising results
have been achieved by using the BERT model in
a Dual Encoder architecture (Chang et al., 2020;
Xiong et al., 2021; Lu et al., 2020). The general
operating principle of these models is described in
Eqs. (1) to (3).

−→q = AvgPool
[
BERT l

θ(q)
]

(1)
−→p = AvgPool [BERT r

θ (p)] (2)
sBERT (

−→q ,−→p ) = −→q T · −→p (3)



117

Where BERT t
θ and BERT r

θ are the “left” and
“right” encoders, respectively, transforming texts q
and p into a shared space θ. The similarity function
sBERT (·, ·) is implemented with a scalar product of
−→q and −→p . The bottleneck in this architecture lies
in the averaging of the token vectors.

The ColBERT (Khattab and Zaharia, 2020)
model represents a particular variant of the Dual
Encoder architecture, termed a Single Encoder.
Models based on this architecture use the same
encoder for both queries and products. However,
the novelty of ColBERT lies in computing the simi-
larity scores token-wise, instead of comparing the
mean vectors. Given a search query q comprising
m tokens and a product p comprising n tokens, the
similarity function sColBERT (·, ·) is:

sColBERT (q1:m, p1:n) =

m∑
1

max
1..n

(−→q T
1:m · −→p 1:n

)
(4)

The sum over maximum similarity scores for
each token of a query in Eq. (4) implies that n ·m
scalar products need to be calculated, compared
to one scalar product in sBERT (·, ·).

2.2. Hybridization
It is accepted to understand hybridization as mix-
ing the lexical and neural methods of information
retrieval within one product search system. Hy-
bridization can be applied at different stages of
the search. For instance, the authors of the study
Nigam et al. (2019) combined the search results
of several distinct models based on lexical, behav-
ioral, and semantic methods. Another hybridiza-
tion principle was applied in the study Gao et al.
(2021)—the lexical method was the primary re-
trieval mechanism, while a semantic model was
trained to correct the mistakes of the lexical model.

2.3. Tokenization
The progress in tokenization methods has led to
significant improvements in the offline metrics of
natural language processing models (Kudo and
Richardson, 2018; Sennrich et al., 2016). The
BPE (Byte-Pair-Encoding) tokenization method
was originally introduced as a data compression
method (Gage, 1994). In constructing the BPE
tokenizer, the initial vocabulary is sequentially ex-
tended until the preset limit is reached. The pri-
mary goal of applying BPE to natural text is to split
words into commonly occurring subwords. Usu-
ally, little care is given to the actual semantics of
the final tokens. However, unlike most applica-
tions, where semantic information can be repre-
sented by the combination of tokens, information
retrieval often requires semantically rich tokens in

order to use them as terms to construct effective
search indexes, see Fig 1.

The later proposed alternative, the unigram to-
kenization method (Kudo, 2018a), demonstrates
the opposite approach—the vocabulary size is se-
quentially pruned by removing rare tokens that can
be replaced by common tokens. The unigram
method was primarily introduced to provide multi-
ple possible tokenizations for a given text with the
use of a unigram language model. During vocab-
ulary construction, both methods aim to minimize
the length of text encoded in tokens and, in prac-
tice, produce similar tokenizations.

3. Methodology

3.1. H1
The H1 semantic model draws significant inspira-
tion from ColBERT but architecturally simplified. It
processes both queries and documents by tokeniz-
ing them and then passing them through a BERT-
based Dual Encoder. The resulting embeddings
are evaluated using the sColBERT (·, ·) similarity
function. We explore the impact of different tok-
enization techniques in Ablation Study Section 4.2.
A distinctive aspect of H1 is its approach to token-
level lexical hybridization, where we enhance the
tokenizer’s vocabulary with semantically rich terms
to improve the semantic independence of stan-
dalone terms. The Experiments Section 4 pro-
vides a comprehensive analysis of the H1 system’s
application in a product retrieval task. For this task
specifically, we augmented the tokenizer’s vocab-
ulary with a carefully selected list of brand names.

The rationale behind incorporating brand names
into the vocabulary is rooted in understanding user
search behavior, particularly when it comes to
specific brands. For instance, when a customer
searches for ”new balance shoes”, their intent is
not to explore products related to the terms ”new”
and ”balance” independently. Instead, they are
looking for items specifically associated with the
”New Balance” brand. However, these customers
may still be open to considering various types of
”shoes”.

H1 model is optimized on positive and negative
product-query pairs using the following loss func-
tion:

LH1 =
[
γ − sθ(q1:m, p+1:n) + sθ(q1:m, p−1:n)

]
+0

(5)

Where γ is a threshold and sθ is a similarity re-
lation parametrized by θ, applied to an m-token
query q with a positive p+ and a negative p− prod-
uct description example. Negative examples are
sampled by selecting a random product from the
current batch. The square brackets around the
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Figure 2: Token handling principle of H1 (a), compared to that of a FastText (b). H1 attributes scores to
each pair of query and document tokens, while the FastText-based system compares the mean vector
representations.

equation, []+0, denote that negative values are set
to 0.

3.2. Evaluation
Neural retrieval methods, given their computa-
tional intensity, are impractical for online prod-
uct searches within catalogs containing billions of
items. Instead, their utility shines in building in-
dexes for product descriptions, as schematically
outlined in the example in Figure 1. The actual
neural encoder is never utilized to generate the em-
beddings for user queries. Our evaluation method-
ology mirrors these practical limitations, ensuring
that our approaches are both realistic and aligned
with the constraints of large-scale product retrieval
systems.

For the query encoder Eq
θ , the product encoder

Ep
θ , the similarity measure s, and the tokenization

method T , the evaluation procedure employed in
the experiments (Section 4) is as follows:

1. The vocabulary of query tokens Vq is collected
using T .

2. For every token ti from the vocabulary Vq, its
embedding eqi = Eq

θ [ti] is produced.

3. The embeddings for the tokens in every prod-
uct description pj1:n are computed as:

(ej,k)
n
k=1 = Ep

θ [T (p
j
1:n)]

4. An index that maps every query term to rele-
vant products is built using query tokens as
terms:

I(ti) = {pj1:n | s(eqi , e
p
j,1:n) > γ}

where γ is a relevancy threshold.

5. For a query q1:m with tokens

T (q) = (t’1, ... , t’m)

a list of all relevant products according to the
index I,

R = I(t′1)| … |I(t′m)

is collected, and the metric is computed on R,
sorted with respect to the similarity of relevant
products to the query.

The described evaluation approach mimics the
product search implemented with a simple term
index-based hybrid search system. This system
combines the efficiency of fast lexical term lookup
in an index for high precision, with the computation
of similarity scores on only a subset of all prod-
uct descriptions, ensuring low latency responses.
The performance of the system is entirely depen-
dent on the similarity measure s within embedding
space defined by semantic model of choice.

The offline metrics for product search differ from
those of document information retrieval. The ob-
jective of product search is to identify several, or
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ideally, all products relevant to the query, includ-
ing identical items. This requirement stems from
the customer’s need to compare prices for iden-
tical products. Hence, the formulas for recall and
precision are adapted to include an equivalence re-
lation M . Precision metrics for product search are
defined as follows, with recall metrics being simi-
larly formulated.

P@k =
1

|Q|
∑
q∈Q

∣∣M(prq@k, pgq)
∣∣

k
(6)

mAP@k =
1

k

k∑
i=1

P@i (7)

Q – the set of all search queries.

pgq – all ground truth products for query q.

prq – the retrieved products for query q at rank k.

M(A,B) – the set of products in A that are equiv-
alent to any of the products in B.

4. Experiments

We evaluated the proposed H1 model against sev-
eral existing information retrieval models, specifi-
cally TCT-ColBERT (Lin et al., 2020), Single En-
coder (SE) (Nigam et al., 2019), and Dual Encoder
(DE) (Huang et al., 2013). Additionally, we ex-
perimented with three tokenization methods: Byte
Pair Encoding (BPE), unigram, and word tokeniza-
tions. For each tokenization method, we proposed
two variations: one enriched with a predefined set
of brand names as special tokens (referred to as
multi-token or mt variations), and a standard ver-
sion without added brand names (non-multi-token
or non-mt variations).

We employed the SentencePiece library for
all tokenization tasks, configuring it with the
split_by_whitespace=False option to ensure multi-
word brand names could be incorporated as spe-
cial tokens.

Following the evaluation methodology outlined
in Section 3.2, we calculated the metrics mean Av-
erage Precision at 12 items (mAP@12) and Re-
call at 1000 items (R@1k) for H1, SE, DE mod-
els combined with every tokenization method de-
scribed earlier. Two products are considered to be
equivalent if they share the same title.

We compare the performance of the best combi-
nation of the model type and tokenization method
against ColBERT implemented by Terrier (Mac-
donald et al., 2021) and trained with Tight Coupling
Teachers method (Lin et al., 2020).

4.1. Dataset
Our data source is the publicly available WANDS
dataset, chosen for its suitability in objectively
benchmarking retrieval systems in the context of e-
commerce. The dataset’s key characteristics are
as follows:

• 42,994 product candidates,

• 480 queries,

• 233,448 relevancy scores for query-product
pairings.

The relevancy of query-product pairs in the
WANDS dataset is annotated with three levels:
fully relevant (Exact), partially relevant (Partial),
and Irrelevant. For the purposes of training our
models, we utilized only two labels: Exact (labeled
as 1) and Irrelevant (labeled as -1), with class bal-
ancing implemented prior to training.

4.2. Ablation study
First, we ablate over the tokenization method and
model hyperparameter (embedding dimensions)
for each of the model types: H1, SE, DE. For Col-
BERT model, the pretrained version was used, so
it was not included in the ablation study. The re-
sults of the experiment are shown in Fig 3. The
best results, R@1k = 86.6% and mAP@12 =
56.1%, were achieved by the combination of H1
model with 768 embedding dimensions and BPE
tokenization with brand names added.

We note that for both BPE and unigram tokeniza-
tions, the variation with brand names added (mt)
produces consistently better results for any model
with any embedding dimensionality.

4.3. Best models comparison

Model Threshold Precision Recall

ColBERT

12 41% 26%
128 21% 61%
512 9% 78%
1024 5% 84%

Table 1: The ColBERT results on WANDS dataset.

The Table 1 presents the results of the evalua-
tion of the ColBERT model on the WANDS dataset
with varying thresholds. The H1 model demon-
strates better results, especially for Precision at 12
items.

To further demonstrate the superiority of the H1
model, we compare H1, SE, DE, and ColBERT
models with the best hyperparameters seen in the
Ablation Study Section 4.2 on a single query with
multiple thresholds k.
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Figure 3: Ablation study results over tokenization methods and model architectures.

Figure 4: An illustrative one-query example of how
Precision decreases and Recall increases for dif-
ferent semantic retrieval models with respect to
cut-off threshold k.

The dynamics of Precision and Recall metrics
for the H1 model with respect to the threshold k
are illustrated in Fig 4, clearly separating the H1
model from the rest. The Recall of the search re-
sults is higher with lower values of the threshold k,
and Precision declines more slowly as k increases,
compared to other models.

5. Conclusions and Future Work

This study introduced the H1 embedding model, a
cutting-edge approach designed to refine the land-
scape of e-commerce search systems by leverag-
ing multi-word term embeddings. Our extensive
evaluations demonstrate that H1, through its in-
novative use of semantically rich tokens and hy-
brid search methodologies, notably enhances the
accuracy and efficiency of product retrieval. By
achieving mAP@12 = 56.1% and R@1k = 86.6%
on the WANDS dataset, H1 has set a new bench-
mark, surpassing other state-of-the-art models in
terms of precision and recall.

Our research underscores the criticality of inte-
grating semantic understanding with traditional lex-
ical search techniques to address the inherent lim-
itations of each approach. The H1 model’s unique
ability to treat multi-word terms as singular entities
not only improves the search relevance but also
aligns with the natural language processing of user
queries, thereby significantly enhancing the user
experience in e-commerce platforms.

Future efforts will be dedicated to establishing
a definitive benchmark for semantic models oper-
ating within the framework of hybrid search sys-
tems. By exploring a broader range of system ar-
chitectures, the aim of our future work is to provide
a comprehensive and objective evaluation frame-
work that will not only assess the efficacy of current
models but also inspire the development of more
advanced and effective search solutions.
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