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Abstract
This paper presents a model architecture and training pipeline for attribute value extraction from search queries. The
model uses weak labels generated from customer interactions to train a transformer-based NER model. A two-stage
normalization process is then applied to deal with the problem of a large label space: first, the model output is
normalized onto common generic attribute values, then it is mapped onto a larger range of actual product attribute
values. This approach lets us successfully apply a transformer-based NER model to the extraction of a broad range
of attribute values in a real-time production environment for e-commerce applications, contrary to previous research.
In an online test, we demonstrate business value by integrating the model into a system for semantic product retrieval
and ranking.
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1. Introduction

E-commerce applications use a range of structured
information that describe their catalog of products
or services. This allows customers to browse via a
taxonomy of product categories and filters, using
the structured information directly to narrow down
their search. For example, a customer may click on
categories “Furniture”, then “Bedroom Furniture”,
then “Nightstands”, then the attribute “Color:Blue”,
to find an item they like.

However, when customers search using natural
language, a mapping of the query to relevant struc-
tured information must happen automatically. This
mapping can principally be used in two ways to im-
prove search engine performance: first, scores that
judge the relevance of a query to particular prod-
uct information can be used to inform a relevance-
based ranking (Liu et al., 2022b). Second, explicit
filters can be applied dynamically, restricting the
result set to products with attributes matching those
identified in the query, in particular where the query
interpretation has a high degree of confidence in
its prediction.

Attribute value extraction (AVE) in search can
be approached in different ways. While it is possi-
ble to e. g. use a multi-label classification task at
query level, we opted for a token-level classifica-
tion approach related to the more general problems
of slot filling and named-entity recognition (NER).
This yields a more intuitive mapping from spans
in the query to explicit filtering, providing a more
transparent user experience.

Two major challenges of a search application
are, first, that text input is short and contains non-
standard grammar and spelling; and, second, the
stringent latency requirements for model inference,
which needs to be computed online in real time.

Both of these make the use of transformers,1 the
current state of the art in NER, challenging since
they use contextual information typically only found
in longer strings, and they contain a high number
of model weights. In addition, there are challenges
with the large size of the label space and the fact
that NER training and evaluation requires token-
level labelling, which can be prohibitively expensive.
Indeed, Xu et al. (2019) claim the search problem
is not solvable with an NER-style model.

To the contrary, we demonstrate the feasibility
of a transformer-based NER-style model. Using
a lightweight transformer that meets the latency
requirements, we show that it performs almost as
well as a larger model, indicating data quality may
be more important than model size. We show a
way to create quality data via a regime of hierar-
chical normalization applicable to any e-commerce
catalog to deal with the problem of a large label
space. We use weak labeling to create abundant
inexpensive labeled data. We report model accu-
racy and nDCG gains and, lastly, demonstrate the
business value of this approach via an online A/B
test.

2. Related Work

In search systems, query understanding models
aim to decipher and interpret users’ search goals so
as to aid the downstream retrieval and ranking ap-
plications (Deng and Chang, 2020). In the general
web search domain, query understanding consists
of two dimensions: intent classification and topic
detection (Brenes et al., 2009). Query intent classi-

1Transformer-based models are among the state of
the art in NER tasks, e. g. the BERT-based model from Li
et al. (2020) for Ontonotes v5 (Weischedel et al., 2013).
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User query text mod bright red sofa
Query tokens mod bright red sofa

Identified text spans mod bright red sofa
NER label STYLE COLOR O

Intermediate attribute values Modern Red
Final attribute title Product Styles Upholstery Color

Final attribute value Modern & Contemporary Red

Table 1: An example user query with two attributes identified

fication determines users’ desired search actions,
such as informational, navigational and transac-
tional (Broder, 2002; Rose and Levinson, 2004).
Query topic detection maps users’ search queries
to a predefined taxonomy of topics, such as sports,
entertainment and so on (Li et al., 2005). Intent
classification and topic detection problems also ex-
ist in the e-commerce domain. Both intents and, in
particular, query topic categories in e-commerce
can differ greatly depending on industry vertical
(Tsagkias et al., 2021), but the the overarching prin-
ciples are applicable to any e-commerce domain.

E-commerce query topic detection maps user
search queries to the structured product catalog
taxonomy (Wen et al., 2019). For instance, the
search query “KitchenAid 4.5 Qt” maps to products
in the “Small Appliances/Mixers” category, with at-
tributes of “Brand: KitchenAid” and “Capacity: 4 -
5 Qt”. The query-to-product-type mapping part of
the problem (“KitchenAid 4.5 Qt” to “Small Appli-
ances/Mixers”) has been well studied as text clas-
sification (Hashemi et al., 2016; Kim et al., 2016;
Lin et al., 2020).

There has been less prior work focusing on the
query AVE and normalization part of the problem.
Following Luo et al. (2022), a distinction can be
made in AVE between explicit (e.g. Cowan et al.
2015; Kozareva et al. 2016; Wen et al. 2019; Cheng
et al. 2020; Zhang et al. 2021) and implicit or la-
tent attributes (e.g. Wu et al. 2017). Explicit at-
tributes are represented by a span of text in the user
query, whereas implicit attributes are not. Implicit
attributes can be use directly, whereas extracted
explicit attribute spans usually need to first be nor-
malized to match misspellings or non-canonical
forms against structured product data, as in the
current approach.

A major challenge for AVE in e-commerce
queries is the sparsity of available data (Cheng
et al., 2020; Wen et al., 2019), especially where the
number of product attributes is high with a long tail
distribution of rare attributes. Cheng et al. (2020)
address this via an iterative learning framework
that utilizes both synthetic data and human anno-
tated data to extract product categories and brands.
Wen et al. (2019) went without human annotated
data and leveraged only user behavior logs to build
a sequential tagging model for attribute detection.

Zhang et al. (2021) use a teacher-student network
to better exploit a combination of human annotated
labels and weak synthetic labels in their sequential
tagging model. We address this problem via weak
and synthetic labeling (Section 3.3) to generate
data; and reducing the label space via normaliza-
tion (Section 3.5).

Normalization is a challenge for explicit AVE and
some studies leave it out altogether despite its ne-
cessity in an e-commerce setting (Zhang et al.,
2021). Similarity measures are one possible ap-
proach per Putthividhya and Hu (2011), who use
n-gram sub-string similarity to normalize results
to match dictionary entries. Cowan et al. (2015)
use a gazetteer approach for matching identified
spans to attribute entities, as do Zhang et al. (2021)
after a frequency analysis of user behavior. We
propose a two-step normalization process using
gazetteers: first identified spans are mapped on
to a pre-defined schema of intermediate attribute
value concepts, before finally mapping them on to
product attribute data (Section 3.5). An example
search query with intermediate and final attributes
identified is given in Table 1.

An additional constraint in any business context
is that there must be enough monetary value to
justify the complexity of the system implemented.
Business applications of attribute extraction from
search queries include product retrieval (Cheng
et al., 2020), recall filtering (Wen et al., 2019) and
ranking (Cheng et al., 2020; Wen et al., 2019; Wu
et al., 2017). In an A/B test, the current system
brings value in ranking (Section 4) even on top of
a semantic search system per Liu et al. (2022b),
where no previous studies known to the current
authors have explicitly demonstrated this.

Outside of the search context, classic NER ap-
proaches inform the current work. NER is typically
defined as the identification of phrases that contain
the names of persons, organizations and locations
(Tjong Kim Sang and De Meulder, 2003). Although
many attribute values are not proper nouns, the
mechanics of the problem in regards to span iden-
tification in written text are similar, and the phrases
to be identified can be sorted into thematic groups
in a similar fashion to those in classic NER. Publicly
available, pre-trained, transformer-based models
like BERT (Devlin et al., 2019) that create context-
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Human Weak Test F1 F1 F1 F1
labels labels set COLOR STYLE BRAND overall

Human only 90 0 33 0.83 0.447 0.525 0.453
Weak only 0 82 33 0.686 0.504 0.656 0.56

Weak and synthetic only 0 146 33 0.687 0.516 0.662 0.568
Production model 90 146 33 0.818 0.625 0.71 0.654

Table 2: Sample model training & test set sizes & statistics (data size given in thousands)

sensitive word embeddings enable token classifica-
tion on top of these networks to be used as viable
alternative to traditional NER methods.

3. Problem Definition & Methodology

The problem at hand is thus to map explicit at-
tributes within a user search query string onto the
structured data of a set of products, within the prac-
tical constraints of the live production environments
of an e-commerce website. The structured data
targeted in particular here are attribute titles and
attribute values. Canonical examples of attribute
titles are “Upholstery Color” and “Product Styles”,
which can have attribute values like “Red” or “Mod-
ern & Contemporary”, and which are both distinct
from a product’s category, e. g. “Sofas”.

For explicit AVE, a number of studies use method-
ologies from NER, such as a conditional random
field (CRF) (Cowan et al., 2015), long short-term
memory network (LSTM) plus CRF (Kozareva et al.,
2016; Wen et al., 2019), bidirectional gated recur-
rent unit (GRU) network with a CRF layer plus
LSTM-based character embeddings (Cheng et al.,
2020) and, more recently, pre-trained transformer-
based language models (Zhang et al., 2021; Luo
et al., 2022). Other studies use a question answer-
ing approach (Shinzato et al., 2022; Xu et al., 2019).
The model presented here is an NER model, using
token classification on top of a distilled pre-trained
transformer-based language model. Distilled ver-
sions of larger language models (Sanh et al., 2019)
enable performance to be largely be maintained
without the drag on latency.

As this paper focuses on explicit AVE, normaliza-
tion is required, which we approach using an initial
gazetteer, plus a second layer of custom normal-
ization depending on the attribute type. Contrary
to Xu et al. (2019), who claim that an NER-based
model cannot deal with a large attribute space, we
demonstrate how this can indeed be done by using
this two-stage normalization approach.

The model training pipeline consists thus of mul-
tiple steps. First, human annotation using a prede-
fined attribute schema is conducted (Section 3.2).
The human annotation is supplemented by weak
and synthetic labels generated from the structured
data in the catalog (Section 3.3). The model itself

is a token-classification transformer network (Sec-
tion 3.4). The identified span is normalized before
use (Section 3.5). The model is evaluated via both
offline and online means (Section 4).

3.1. Production Environment & Baseline
The current system replaces the previous rules-
based system in production, which is applied to
around half of all search experiences, covering just
under 15% of the most common distinct search
queries in a given month. The other half of search
experiences are characterized by a long tail of di-
verse search queries, which previously had not had
attributes extracted at all. However, some attribute
information is implicitly used in the embedding-
based semantic search product retrieval model, to
the extent that this attribute information was avail-
able in the product information used to train the
model (product name, product category and so
forth). However, to use this information explicitly
for relevance scoring or dynamic filtering, individual
attributes need to be predicted and then mapped
to product data.

A challenge peculiar to the current production
system is that it is not set up to have consistent at-
tribute information across product categories. Prod-
uct attributes are specific to a given product cate-
gory. This means that the attributes of a product of
type “Chair” include “Upholstery Material” and “Leg
Material”, whereas a product of type “Saucepan”
includes “Lid Material”. In addition, attributes of dif-
ferent product categories may have distinct IDs and
values, even where the attribute title is the same or
similar, e.g. “Primary Material”. This puts the num-
ber of attributes at around 86,000 distinct attribute
ID-title pairs with 314,000 distinct attribute ID-value
pairs. This makes a direct classification difficult due
to data sparsity for the long tail of less-common at-
tributes; in the current paper we address this chal-
lenge via two-stage normalization (Section 3.5).

3.2. Human Annotation
Human annotators were provided with lists of his-
torical customer search queries to label with up to
three attributes. All queries were initially labeled
by two human annotators. If both annotators did
not exactly agree on an attribute, it was submit-
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F1 COLOR F1 STYLE F1 BRAND F1 overall
Production model 0.818 0.625 0.71 0.654
No noisy spelling 0.838 0.617 0.69 0.651

No synthetic subjects 0.76 0.614 0.702 0.65
No synthetic SKU IDs 0.754 0.654 0.704 0.649

No synthetic product categories 0.759 0.619 0.694 0.63

Table 3: Ablation study

ted to a third annotator to make a final decision.
Annotators were asked to label non-overlapping
sub-strings of the original query with attribute titles
and values from a pre-defined schema of interme-
diate attributes.

The schema of intermediate attributes was cre-
ated from a frequency analysis of commonly
searched attributes from historical user interactions.
This schema is used both for annotation and as
the intermediate attributes for the first stage of nor-
malization. Annotators could label attribute values
outside of the predefined schema by selecting an
umbrella “Other” option. Common attribute values
identified in this way were added to the predefined
schema when appropriate.

For model training, the human annotation is con-
verted to BIO (beginning-inside-outside) labels us-
ing the IOB2 schema (Krishnan and Ganapathy,
2005) for the attribute-type named entities E =
{BRAND, MATERIAL, COLOR, DIMENSION, SUB-
JECT, LIFE_STAGE, FEATURE, LOCATION, SIZE,
FINISH, PRICE, STYLE, SHAPE, PATTERN, NUM-
BER_ITEMS, NUMBER_COMPONENTS}.

The inter-annotator agreement (IAA) on entity
level is around 68% F1, calculated by holding one
annotator’s labels as ground truth and the other as
system output. Among the entities that the annota-
tors agreed on, the option normalization accuracy
is around 94%.

3.3. Weak Labels & Synthetic Data
To produce weak labels, a variety of attributes and
other structured product data (e.g. product cate-
gory for O labels per the BIO schema) from known
add-to-cart events were string-matched against the
preceding user query. As conflicting information
came from the various sources, an unweighted ma-
jority vote was then applied to the candidates per
Ratner et al. (2017). This allowed the use of the
available diverse structured data sources to reduce
noise. In the future, other methods for weak label
selection could be applied per Ratner et al. (2016).
The resultant weak labels were used together with
human-labeled data to train the NER model.

Zhang et al. (2021) use a similar system for get-
ting large amounts of weak labels, and report that
models trained with weakly labeled data alone (F1
0.6) are inferior to those trained with much less

human labeled data alone (F1 0.62). However, in
our system, the weak labels appear to be of higher
quality than the human data, at least for some la-
bels, as shown in Table 2, which may point to an
opportunity to improve task design.

Adding generative model predictions from Flan-
T5-XL (Chung et al., 2022) to the weak labels had a
neutral affect on the performance of the model. Fur-
ther experimentation with larger generative models
is planned.

In addition to weak labels from customer add-to-
cart events, synthetic search experiences and cor-
responding labels were created. Synthetic search
queries were created in a number of ways: ran-
dom distortions to create misspellings for existing
labeled data; various subjects, e.g. animal types,
from the structured product data with SUBJECT la-
bels; and using SKU IDs and product category
names as O labels. Adding additional O labels via
product categories had the greatest positive effect
as shown in the ablation study in Table 3.

3.4. Model Architecture

The training set {(x(i), y(i))}Ni=1 consists of N train-
ing examples where (x(i), y(i)) is the ith instance
consisting of a tuple of the input query x(i) and its
labels y(i). A single search query is symbolized
for the ith training example with a variable natural
number, M (i), of tokens by a vector

x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)

M(i)),

where each element, x(i)
j , is a natural language

token. The two-dimensional array y(i) represents
the labels for the ith training sample, such that

y(i) = (y
(i)
1 , y

(i)
2 , . . . , y

(i)

M(i)),

where there are M (i) label vectors and each y
(i)
j is

an NER label in the form of a one-hot vector of the
fixed size L of the label set.

The DistilBERT model (Sanh et al., 2019) from
Huggingface (Wolf et al., 2020) was used to gener-
ate a two-dimensional array of logits corresponding
to the labels as follows, where f is the DistilBERT
feed-forward transformer network consisting of an
embedding layer, five transformer block layers and
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a linear classifier:

ŷ(i) = f(x(i)).

The DistilBERT uncased pre-trained English
base model was fine-tuned using the Huggingface
NER pipeline with seqeval (Nakayama, 2018)
as the metric for evaluation and multi-class cross-
entropy loss, such that the loss function can be
expressed as

L(ŷ(i), y(i)) = −
M(i)∑
j

L∑
k

y
(i)
jk log

(
σ(ŷ

(i)
j )k

)
,

with σ, the softmax function, defined as follows:

σ(ŷ
(i)
j )k =

e(ŷ
(i)

jk
)∑L

l e(ŷ
(i)

jl
)
.

Missing token labels, i.e. tokens where no BIO
label could be identified during the weak labeling
process, were ignored for purposes of calculating
the model loss. The model was then fine-tuned
with the objective of minimizing the loss over the
training set using AdamW, i. e. Adam (Kingma and
Ba, 2014) with weight decay (Loshchilov and Hutter,
2017).

3.5. Attribute Value Normalization
For span-identification-based AVE, a normalization
step is required to translate the text span in the
customer query and its NER label onto an attribute
value and title respectively in the production sys-
tem. In the simplest case, a one-to-one mapping of
NER labels to attribute titles exists and only the text
spans need to be normalized to attribute values.
This is not the case in our system, where there
is a many-to-many mapping of NER labels to at-
tribute titles, which may have different names and
unique IDs across product categories even when
synonymous.

In the present study, we thus take a two-step
normalization approach. First, in the human anno-
tation, the spans identified by the annotators are
matched to both an intermediate attribute title and
an intermediate attribute value from a pre-defined
schema of frequently searched attributes. The in-
termediate attribute schema groups synonymous
and similar attribute titles and attribute values to-
gether, so “Uphostery Material” and “Leg Material”
become just MATERIAL. Likewise, in the search
query “crimson sofa”, the annotator would mark
up the string “crimson” with “COLOR: Red”, where
‘Red’ is the intermediate attribute value. At infer-
ence time, a gazetteer created from the human
annotation is used to normalize text spans onto the
intermediate attribute values. An exception is nu-
merical attributes and BRAND, which are mapped
onto an intermediate attribute title only.

The second normalization step occurs when
mapping the intermediate attribute titles and values
onto actual product attributes in the structured data,
where both the attribute title and value may have
forms different to the intermediate ones and the
number of attribute titles and values is much larger.
The strategy used for the second stage of normal-
ization varies, depending on the type of attribute
as described below.

In the second normalization step at the attribute
title level, some NER labels can easily be mapped
onto a small number of class-agnostic attribute ti-
tles, as is the case for BRAND, PRICE and STYLE;
all products have these attributes and they are ag-
nostic to the product category. For other NER la-
bels, such as MATERIAL, there are many different
attribute titles that these could map to, many of
which are dependent on the product category and
call out the material of the components of the prod-
uct, e. g. “Upholstery Material” and “Frame Mate-
rial” are prominent in the “Beds” category, but “Top
Material” and “Base Material” are used for “Dining
Tables”. In this case, a statistical methodology sim-
ilar to that used by Zhang et al. (2021) is required
to map NER labels onto attribute titles.

Different approaches are also used at the at-
tribute value level, depending on the type of at-
tribute. Some attribute titles have an open set of
attribute values. For DIMENSION and PRICE, there
is no restriction on the value it can take, except that
they are positive floating-point numbers. Likewise
for BRAND, new brands are added to the catalog
continuously, so these do not form a closed set.
Other attribute titles, e.g. STYLE, do have a small,
fixed set of attribute values, which do not change
much over time. These values are determined in a
curated way by domain-owners in the company.

For example, for BRAND, which has a large open
set of attribute values, the first stage of normaliza-
tion consists only of mapping the NER label onto its
intermediate attribute title. For the second stage of
normalization, the NER label is mapped onto one
of two actual brand name attribute titles in the prod-
uct data. The identified text spans can be mapped
onto attribute values per the methodology used
by Zhang et al. (2021). For the online experiment
(Section 4) using the BRAND span identified by this
model in the ranker, however, we did not use this
methodology as it added the complication of need-
ing the resulting mapping available in production.
Instead, for the second layer of normalization, we
used token-level Jaccard index as a measure of text
similarity between the actual brand name attribute
values and the span identified by the model. This
avoids having to update a mapping as new brands
are added to the catalog and is easy to implement
in production.

For STYLE, an example of an NER label with a
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F1 COLOR F1 STYLE F1 BRAND F1 overall
DistilBERT 0.818 0.625 0.71 0.654

RoBERTa base 0.797 0.619 0.682 0.632
RoBERTa large 0.793 0.601 0.683 0.623

SimCSE 0.821 0.591 0.677 0.626

Table 4: Change in performance by language model

BRAND MATERIAL COLOR DIMENSION SUBJECT FINISH
NER label 0.71 0.73 0.87 0.85 0.55 0.73
End to end - 0.66 0.82 - 0.50 0.73

SIZE LIFE_STAGE PRICE NUMBER_ITEMS SHAPE PATTERN
NER label 0.84 0.83 0.75 0.87 0.80 0.59
End to end 0.83 0.81 - 0.84 0.77 0.59

FEATURE LOCATION STYLE NUMBER_COMPONENTS
NER label 0.41 0.76 0.64 0.58
End to end 0.41 0.74 0.63 0.52

Table 5: F1 scores for NER labels (i.e. attribute titles) & micro-averaged end-to-end (i.e. attribute value)
F1 scores

closed set of intermediate attribute values, there is
a single final attribute title across classes. Human
annotation was initially used to create a mapping
from surface forms to normalized forms of the at-
tribute values. Per Zipf’s law, the most commonly
occurring 200 tokens cover the majority of token
instances, so the effort for doing this is low, as this
data is already annotated for training. Without any
additional annotation, it results in a first-stage nor-
malization accuracy of 0.985. Normalization accu-
racy is calculated as the sum of the end-to-end true
positives (true positive intermediate attribute value
and true positive NER label), divided by the true
positives for the NER label, as measured against
the human-annotated test set. An almost one-to-
one mapping of the intermediate attribute title and
values to structured data is then applied. In this
instance, more advanced mapping methodologies
would bring diminishing returns.

4. Evaluation

We used the seqeval package (Nakayama, 2018)
to evaluate the model against a hold-out set of the
human-annotated data. F1 scores at attribute title
(i.e. NER label) and attribute value (i.e. end-to-end)
level are reported in Table 5, with example experi-
ments on combinations of synthetic, weak and hu-
man labels shown in Table 2. BRAND, DIMENSION
and PRICE are not normalized to attribute values,
so performance is only recorded for these at the
attribute title level.

The current model meets the latency require-
ments, with an average speed in offline testing of 6

ms on GPU2 and 12 ms on CPU3 for a single query.
In online testing, there were small but significant
increases in the range of 0.5% to 2.6% in latency
for search queries overall, although these were
largely offset by preprocessing improvements after
launch. Other transformer models, e.g. RoBERTa
(Liu et al., 2019), SimCSE (Gao et al., 2021), were
tested (Table 4) but they did not meet the latency
requirements. In addition, the bigger transformer
models did not give a boost in performance as
shown Table 4; the hypothesis is that a larger model
quickly over-fits for short search queries and a sim-
pler model with fewer trainable parameters is prefer-
able.

Offline ranking experiments were conducted
where the brand name identified by the model
in user queries was compared against the brand
name and product name for products to be ranked.
Token-level Jaccard index between these was cal-
culated and used to boost relevant products. The
product ranking with boosted brand names was
then compared against existing product rankings.
When using the brand attribute value from the
model, an average lift of 4.65% was observed in
the normalized discounted cumulative gain at rank
48 (nDCG48).

The nDCG score was calculated in the typical
fashion with

DCGp =

p∑
i=1

rel i
log2(i+ 1)

,

2Run on a machine with a single NVIDIA® Tesla®
P100 GPU.

3Run on a machine with 16 CPUs of type Intel® Xeon®
Processor E5-2630.
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where the relevance value is calculated as

rel i = α ∗ view i + β ∗ atci + γ ∗ order i

and view i is a binary value 1 if the product page was
viewed and 0 if not. Analogously atci is whether an
add-to-cart event occurred and order i is whether
an order was placed. The weights α, β and γ are
heuristically determined by the relative frequency
of view, add-to-cart and order events respectively,
with the most weight placed on orders. The DCG
score is then normalized as follows:

nDCGp =
DCGp

IDCGp
,

where Ideal DCG (IDCG) is the maximum possible
DCG score with the products ordered according
to relevance value, with highest relevance values
first.

An A/B test was conducted to evaluate the
model’s impact, with the variation using the method-
ology and the weights determined in the offline test-
ing described above to rank a subset of products
retrieved by a semantic search system per Liu et al.
(2022b). This resulted in significant overall lifts in
product views (1.45%) and add-to-cart (3.45%) and
conversion rates (2.99%). The variant helped to
reduce friction during users’ search journey and
enabled users to find relevant products with less
effort, as we observed significant decreases in re-
formulation rate (-1.25%) and landing page exit rate
(-0.76%). Further A/B tests on other attributes and
use cases are planned.

5. Conclusion & Discussion

In this paper, we presented an NLP application in
the domain of e-commerce, focusing on identify-
ing explicit attributes in customer search queries
using weak labels and a transformer-based NER
approach. To overcome the challenge of a large
label space for attributes, we employed a two-stage
normalization process. For the first stage, we lever-
aged human annotation to create a normalization
gazetteer, while the second stage of normalization
varied depending on the specific attribute under
consideration.

The model met the strict latency requirements of
an e-commerce website and was put into produc-
tion. It showed significant business value via an
initial A/B test using the BRAND output, and more
tests are planned for additional attributes and use
cases going forward, including dynamic filtering of
products.

We showed that an increase model size and
complexity did not necessarily increase the perfor-
mance of the model, although further experiments
with larger language models are planned. A signifi-
cant boost was gained by adding product category

as a separate O label, as well as by adding synthetic
data. Contrary to previous studies, our human data
did not outperform our weak and synthetic data
on most labels, indicating a possible opportunity
to improve both task design and the intermediate
attribute schema.

Also left to explore are implicit attributes per Luo
et al. (2022); using more powerful generative AI
models to generate labels; and a multilingual ver-
sion of the model for non-English catalogs.

Overall, this study demonstrates the successful
application of weak labels and transformer-based
NER for explicit attribute identification. The deploy-
ment of our model in a real-world setting, along with
the observed business value, highlights its practical
significance. Our proposed future directions open
up exciting opportunities for further advancements
in this domain.
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