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Abstract
Pool-based active learning techniques have had success producing multi-class classifiers that achieve high accuracy
with fewer labels compared to random labeling. However, in an industrial setting where we often have class-level
business targets to achieve (e.g., 95% recall at 95% precision for each class), active learning techniques continue to
acquire labels for classes that have already met their targets, thus consuming unnecessary manual annotations.
We address this problem by proposing a framework called Target-Aware Active Learning that converts any active
learning query strategy into its target-aware variant by leveraging the gap between each class’ current estimated
accuracy and its corresponding business target. We show empirically that target-aware variants of state-of-the-art
active learning techniques achieve business targets faster on 2 open-source image classification datasets and 2
proprietary product classification datasets.
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1. Introduction

Active learning is a popular approach used to re-
duce the manual labeling effort required to train a
classifier. In active learning, we iteratively acquire
labels from annotators and use them to (re)-train
a classifier. Previous research (Lewis and Gale,
1994; Settles, 2009; Gal et al., 2017; Lin and Parikh,
2017) has demonstrated that choosing a batch of
instances with small batch sizes offers a good trade-
off between user interactivity and number of labels
required to create a classifier. In each active learn-
ing iteration, we perform two operations: (i) use a
query strategy to judiciously select a fixed-sized
subset (a batch) of unlabeled instances and send
them to the annotators, and, (ii) train a classifier
using new and previously labeled instances. To
pick the next set of unlabeled instances for annota-
tion, we rank all instances in unlabeled data based
on scores such as margin, entropy, expected loss
reduction, or sub-modular information measures
like mutual information, conditional gain etc., and
select the instances which are most likely to benefit
the classifier.

Imagine using the active learning paradigm to
improve a 3-class classifier with 4 labels: pens,
pencils, erasers, and not-in-k (i.e., the background
class which does not contain pens, pencils, or
erasers). In an industrial setting, annotators of-
ten work backwards from achieving class-level
business-specified accuracy targets, where accu-
racy refers to any measure of a classifier’s ability
to discriminate between classes, e.g., precision,
recall, classification accuracy, false positive rate.
E.g., the task could be to achieve 90% recall at 85%
precision for each class-of-interest. Vanilla active
learning algorithms are sub-optimal for such appli-
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Figure 1: TAAL computes relative priority weights
for each class taking into account its current es-
timated accuracy (solid flag) and target accuracy
(checkered flag). Here, the expected priority is pen-
cil > pen > eraser.

cations because they ignore business targets. In
other words, they continue to select unlabeled data
that improves the accuracy of a class even if its esti-
mated accuracy exceeds the business targets; this
annotation budget could instead be used to improve
other classes that are yet to meet their targets. To
this end, we propose a framework Target-Aware
Active Learning (TAAL) that can be applied on top
of any active learning strategy to create its target-
aware variant. If the classification task has class-
level business targets defined, TAAL increases the
likelihood of achieving the targets on all classes-of-
interest given a fixed labeling budget, by leveraging
the gap between each class’ target and estimated
accuracy. Note that TAAL will not help achieve
global business targets (e.g. micro-recall) faster
than baseline query strategies.

2. Target-Aware Active Learning

Consider an active learning setup employing an ar-
bitrary query strategy that generates a query Q, i.e.,
a queue of instances to be labeled. We make this
query strategy target-aware under the TAAL frame-
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work shown in Fig. 2. We first quantify the relative
attention each class requires to achieve its accu-
racy targets; this is handled by the Class Priority
Weight Computer (Sec. 2.1). We then use a Class
Priority Aware Query Adapter (Sec. 2.3) to select a
subset of instances from Q and reorder them into a
queue Qp prioritizing classes that require the most
attention. This process necessitates identification
of the subset of classes whose accuracy is likely
to improve if a given instance is labeled. This is
accomplished by the Candidate Labels Generator
(Sec. 2.2). Thus, the TAAL framework can be ap-
plied to an arbitrary query strategy to convert its
output query Q into a target-aware version Qp. The
following sections discuss the three components
of TAAL.

2.1. Class Priority Weight Computer
Let Y = {y1, y2, ..., yk} be the set of classes in a
multi-class classifier. In TAAL, at any active learn-
ing iteration ℓ, a Class Priority Weight Computer
quantifies the ‘priority weights’ (i.e., relative atten-
tion) that each class needs to attain its accuracy
target. We update these class priority weights at
every active learning iteration. Fig. 1 shows an ex-
ample to motivate class priority weights where the
‘pencil’ class gets the highest priority because its
estimated accuracy is farthest away from its target.
For a class yi at iteration ℓ, let ρi,ℓ represent the
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Figure 2: TAAL transforms a queue of unlabeled
instances Q (left) generated by an arbitrary query
strategy, into queue Qp (right) by prioritizing classes
based on the relative gaps between their estimated
accuracy and business target. TAAL uses a Class
Priority Weight Computer to quantify the attention
each class needs. Candidate Labels Generator
identifies classes that are likely to see accuracy
improvement if an unlabeled instance is labeled.
Class Priority Aware Query Adapter reorders Q into
Qp by prioritizing instances that are likely to improve
accuracy over classes that need attention. With
a labeling budget of 2 documents, vanilla query
strategies would have surfaced documents d1 and
d2 to the annotator. TAAL prioritizes d3 in Qp as d3
will likely improve the pencil class which requires
the most attention.

target value of an accuracy metric of interest and
ρ̂i,ℓ be its estimated value. Then, any realization of
the Class Priority Weight Computer must generate
a weight wi,ℓ for class yi at iteration ℓ such that

wi,ℓ ∝ max(ρi,ℓ − ρ̂i,ℓ, 0) (1)
If the goal is to decrease a target metric e.g., false

positive rate, it should be expressed as its negative
in Eq. (1) e.g., negative false positive rate. In this
paper, we implement a realization of Class Priority
Weight Computer based on a class-level accuracy
metric ρ such that, at each active learning iteration
ℓ, it computes a priority weight wi,ℓ for class yi as

wi,ℓ =


max(δi,ℓ, 0) if

k∑
j=1

max(δj,ℓ, 0) > 0,

1 otherwise.

(2)

where δi,ℓ = ρi,ℓ − ρ̂i,ℓ, with ρi,ℓ and ρ̂i,ℓ being the
target and estimated values of the accuracy metric
respectively.

2.2. Candidate Labels Generator
The Candidate Labels Generator identifies the sub-
set of classes whose accuracy is likely to improve if
a particular instance from the unlabeled data pool
is labeled. Let Yx be the subset of classes with a
high likelihood of containing the true class of an
unlabeled instance x. We construct Yx using any
information available on x; e.g., it can leverage the
classifier’s scores across classes to identify candi-
date classes. We hypothesize that retraining the
classifier after labeling x is likely to improve its ac-
curacy over all classes in Yx. Any realization of the
Candidate Label Generator should generate a can-
didate labels set Yx for x such that the true class
of x has a high probability of being a member of
Yx, while keeping |Yx| as small as possible. In this
paper we implement a realization of the Candidate
Labels Generator that produces a candidate class
labels set for an input instance x given by

Yx =

{
y ∈ Y

∣∣∣∣ P (y | x)
maxz∈Y P (z | x)

≥ tc

}
(3)

where P (y | x) ∈ [0, 1] is the probability score
assigned to class y by the active learning classifier
given instance x, and tc is a configurable cutoff
threshold. We set tc to 0.5. This means all classes
with score≥ 50% of the maximum score are treated
as candidate class labels for each instance.

2.3. Class Priority Aware Query Adapter
Class Priority Aware Query Adapter reorders the
input queue of unlabeled instances to reflect class
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priority weights. Consider the example in Fig. 2
in which instance d3 has rank 3 in the queue of
instances Q from an active learning query strat-
egy (non-target-aware). One of d3’s candidate la-
bels, Pencil, has the highest priority weight. So,
the Class Priority Aware Query Adapter pushes d3
ahead of d1 and d2 in its reordered output queue
Qp. Our implementation of the Class Priority Aware
Query Adapter is in Algorithm 1. In each active
learning iteration, we start with a ranked queue of
unlabeled instances Q from the underlying query
strategy. Then, we invoke Class Priority Weight
Computer to update priority weights W . Class Pri-
ority Aware Query Adapter starts with sampling a
class yselected from Y with priority weights W as
sampling probability (Line 3). Then it traverses Q
from top to bottom, selecting the first instance d
which has yselected in its candidate labels set (Lines
5 to 16), and enqueues d in Qp if it is not present
in Qp already (Line 8). Finally, it removes class
yselected from the candidate labels set of d so that
instance d is not picked for yselected again (Line 9).
If a class is not a candidate label for any instance
in Q, its priority weight is reset to 0 since it cannot
be prioritized in the current learning iteration. The
process is repeated until |Qp| reaches Nq or no
classes can be prioritized (Lines 2 to 17). The com-
putational complexity of Class Priority Weight Com-
puter (Eq. 2) and Candidate Labels Generator (Eq.
3) is O(k). Hence, the computational complexity of
the Class Priority Aware Query Adapter (Algorithm
1) is O(|Q| · |Qp| · k). In practice, k << |Q| and
|Qp| << |Q|; hence, the overall computational com-
plexity of a TAAL-enabled query strategy is O(|Q|).

3. Experiments

We use pool-based active learning setup (Lewis
and Gale, 1994; Settles, 2009; Gal et al., 2017;
Lin and Parikh, 2017) consisting of a modelM, a
seed set of randomly sampled labeled instances
(xi, yi) ∈ Dseed (|Dseed| = 500) to initializeM in the
first iteration, an unlabeled data pool Dpool, and a
query strategy R. We run active learning over a
series of iterations until a budget of L (L = 6000)
labeled instances. At each iteration ℓ, we acquire
a batch of B (B = 500) new instances from Dpool
governed by R, and re-train model M. We con-
duct experiments on 2 image-based and 2 text-
based datasets (Sec. 3.2) which are fully-labeled
(including “unlabeled” data Dpool) and multi-class.
We use a labeling bot to simulate a human-in-the-
loop active learning setup (Gal et al., 2017; Lin
and Parikh, 2017; Siddhant and Lipton, 2018) us-
ing the fully-labeled datasets. The bot provides
labels for the data instances selected by the query
strategy R. We compare the baseline query strate-
gies listed in Sec. 3.1 against their Target-Aware

Algorithm 1: Class Priority Aware Query
Adapter
Inputs : (i) Queue Q of instances from a

query strategy, (ii) Class priority
weights array W as [w1, w2, ..., wk]
where wj is the priority weight for
class yj from Eq. (1), (iii) No. of
output instances Nq ≤ |Q|

Output
:

Class priority aware queue Qp of

instances.
1 Initialize: (i) Empty queue Qp, (ii) Candidate

labels map F mapping each instance x in
Q to F [x], with F [x]← Yx computed using
Eq. (3).

2 while |Qp| < Nq and max(W ) ̸= 0 do
3 Randomly sample 1 class yselected ∈ Y

per weights W .
4 i← 1
5 while i ≤ |Q| do
6 d← instance at index i in Q
7 if yselected ∈ F [d] then
8 if d /∈ Qp then Qp.enqueue(d) ;
9 F [d]← F [d] \ {yselected}

10 Exit inner while loop.
11 else
12 i← i+ 1
13 if i > |Q| then reset weight for

yselected in W to 0 ;
14 end
15 end
16 end
17 return Qp

(TA-) variants created by applying TAAL on top
of each query strategy. For image datasets we
use ENTROPY, BADGE, CORESET, and SIMILAR
as baseline query strategies because they have
produced SOTA results on several benchmarks
(Citovsky et al., 2021). SIMILAR is an interesting
baseline because it gives high accuracy for rare
classes in the dataset. For product classification
datasets, we use E3G as the baseline query strat-
egy to mimic our internal active learning setup.

3.1. Baseline Active Learning Query
Strategies

We discuss active learning strategies in detail under
related work (section 5). Below we describe the
specific query strategies used in experiments.
ENTROPY (Settles, 2009) sampling queries the la-
bels of instances for which the prediction of the
classifier is maximally uncertain in terms of en-
tropy of confidence scores. It selects a batch
of B instances from Dpool with highest entropy in
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model’s output, where the entropy Hx for each
instance x is measured over say k classes as
−
∑k

i=1 P (yi|x) logP (yi|x). BADGE (Ash et al.,
2019a) samples a batch of B instances from Dpool
that are disparate and high magnitude when repre-
sented in a hallucinated gradient space, a strategy
designed to incorporate both predictive uncertainty
and sample diversity into every selected batch.
BADGE uses the k-Means++ seeding algorithm
on {gx : x ∈ Dpool} where gx is the gradient embed-
ding of an instance x using current model weights w.
CORESET (Sener and Savarese, 2017) addresses
the problem of selecting diverse examples in a
batch by posing active learning as coreset selec-
tion, i.e. choosing a set of points such that a model
learned over the selected subset is competitive for
the remaining data points. It samples a batch of B
instances from Dpool by solving the k-center prob-
lem on {zx : x ∈ Dpool}, where zx is the embedding
of an instance x derived from the penultimate layer
of the model. SIMILAR (Kothawade et al., 2021) is
a unified active learning framework that employs dif-
ferent sub-modular information measures, namely,
Submodular Mutual Information, Submodular Con-
ditional Gain, Submodular Conditional Mutual In-
formation as query acquisition functions. SIMILAR
not only works in standard active learning setup
but also easily extends to more realistic settings
such as having class imbalance in the data distri-
bution, and provides the SOTA solution for active
learning. E3G (Slivkins, 2019) (Explore-Exploit-
EGreedy) uses the ϵ-greedy algorithm to choose
between Exploration and Exploitation. The explo-
ration strategy performs k-means clustering-based
stratified random sampling, whereas the exploita-
tion strategy is entropy-based uncertainty sampling.
To form a batch of B instances per active learn-
ing iteration, each instance x ∈ Dpool is chosen
independently by E3G with probability ϵ from the
exploration strategy, and with probability 1− ϵ from
the exploitation strategy. During the early iterations
of active learning, E3G focuses on the exploration
strategy, whereas later it emphasizes the exploita-
tion strategy. It does this by varying ϵ across iter-
ations following f(Nℓ) = max(e−γNℓ , ϵmin), where
γ is the decay rate, ϵmin is the minimum probability
of choosing an instance per exploration strategy,
and Nℓ is the total number of labeled instances at
iteration ℓ.

3.2. Datasets

We use 2 public image-based datasets, CIFAR-10
(Krizhevsky et al., 2009) and SVHN (Netzer et al.,
2011). CIFAR-10 has 60k images uniformly across
10 classes. The training subset of the dataset has
50k images, and the remaining 10k images form
the test set. SVHN has images spread across 10

classes, with 73257 images for training, and 26032
images for testing. To evaluate TAAL, we induce
class imbalance and form a long-tailed distribu-
tion over class sizes (see Dc in Table 2). For both
datasets, we carve out a 20% class-stratified ran-
dom subset from the imbalanced training set to cre-
ate a held-out validation set. We also use 2 propri-
etary fully-labeled text-based product classification
datasets HS and FEE derived from 2 different e-
commerce product taxonomies. HS has 9 classes-
of-interest and 1.15M products, while FEE has 7
classes-of-interest and 740k products. Additionally,
both datasets have one special class called ‘not-in-
k’ representing instances in the dataset that do not
belong to any classes-of-interest. Both datasets
have an intrinsic long-tailed distribution in terms of
class sizes (see Dc in Table 2).

3.3. Active Learning Classifier
We use a common training procedure and hyper-
parameters to ensure that all query strategies are
given fair treatment across all experiments. For
image classification datasets, we follow the setup
described in (Kothawade et al., 2021). We use
ResNet-18 (He et al., 2016) as our classifier M
and train it using a stochastic gradient descent op-
timizer with an initial learning rate of 0.01 and mo-
mentum of 0.9. During inference, we take the class
corresponding to the highest score from the final
layer of the trained model as the prediction for an
instance. For product classification datasets, we
choose fastText (Joulin et al., 2016) as our active
learning classifierM since it provides an attractive
trade-off between accuracy and latency. We tune
thresholds for each class to achieve the desired
precision target of 90% using out-of-fold prediction
scores in a one vs. rest setting (number of folds
is 10). During inference, we treat an instance as
member of a class if its output class probability is
higher than its corresponding threshold.

3.4. Accuracy Estimation During Active
Learning

For image datasets, we compute class priority
weights using class-level F1 score as the accuracy
metric in Eq. (2), with the per-class F1 score target
being 90%. At every active learning iteration, we
estimate class-level F1 score on the held-out valida-
tion set which is an unbiased sample from the entire
dataset. For product classification datasets, we
compute class priority weights using class-level
‘recall at precision’ (R@P) as the accuracy met-
ric in Eq. (2), with the per-class R@P target being
90R@90P. At every active learning iteration, we es-
timate class-level R@P using out-of-fold prediction
scores over exploration-sourced labeled data from
the E3G query strategy. This provides an unbiased
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performance estimate since it avoids the sampling
bias induced by the exploitation strategy. We also
set the priority weight for the ‘not-in-k’ class to 0
for all active learning iterations because our use
case necessitates improving accuracy over the k
classes-of-interest only.
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Figure 3: Progression of macro-recall across all
classes and tail classes for E3G and its target-
aware variant TA-E3G on HS and FEE datasets.
Axes’ labels are identical for both plots. Metrics
are averaged across 3 experiments, with error bars
showing min and max values. Legends report area
under each macro-recall curve (AUC) summariz-
ing macro-recall across label counts. TA-E3G has
greater AUC for all-class macro-recall and tail-class
macro-recall than E3G.

3.5. Metrics for Comparison of Query
Strategies

For experiments on image datasets, we report
class-level F1 on a held-out test set to replicate
the setup in (Kothawade et al., 2021) to compare
each query strategy against its target-aware vari-
ant. For experiments on product classification
datasets, we report class-level recall computed on
the full dataset to mimic our internal product clas-
sification setup where customers want to achieve
target accuracy for each class-of-interest on the
entire domain. We summarize class-level metrics

by reporting macro-recall and macro-F1 score. We
choose macro over micro averaging because ac-
curacy of each class is equally important for our
use-case.

4. Results

Figs. 3 and 4 show the progression of macro-F1

and macro-recall with increasing number of train-
ing examples over product classification and image
classification datasets, respectively. Plot legends
report Area Under the Curve (AUC) for each query
strategy, summarizing its accuracy metric values
across all label counts (higher the better). Aver-
aged across all 10 dataset + query strategy com-
binations, TAAL increases AUC by 1.6 percentage
points (from 63.3% to 64.9%). For 8 out of the 10
dataset + query strategy combinations, we see an
increase in AUC with TAAL, indicating that TAAL
performs better than the baseline strategies mea-
sured across all label counts. For SVHN dataset,
the target-aware variants of BADGE and ENTROPY
have the same AUC as their baseline strategies
indicating that TAAL offers no improvement. We
hypothesize that this is because SVHN is easy to
classify as we get high (> 0.8) macro-F1 scores
across tail classes with baseline query strategies.
Impact on tail classes: Tail classes are the small-
est classes-of-interest comprising ≤ 5% of the full
dataset. Achieving business targets on tail classes
is important because they represent rare, but strate-
gically important classes-of-interest. Averaged
across all 10 dataset + query strategy combina-
tions, TAAL increases tail-class AUC by 4.2 per-
centage points (from 45.4% to 49.6%), explained
by a corresponding increase in the proportion of
tail class labels by 11.3 percentage points (from
14.2% to 25.5%) at 6k labels. Tail classes have
a lower likelihood of getting labeled compared to
head classes. With fewer training instances, the
classifier performs poorly over them. This is seen
in Figs. 3 and 4, where tail-class AUC is lower than
all-class AUC. As labeling progresses, all baseline
strategies except SIMILAR continue to focus on all
classes equally. In contrast, TAAL assigns greater
importance to tail classes through weights gener-
ated by Class Priority Weight Computer (Sec. 2.1).
As depicted in Fig. 2, TAAL then prioritizes exam-
ples for labeling deemed optimal per the underlying
query strategy, but at the same time relatively more
likely to benefit tail classes. This is reflected in
Table 2 where the class distribution of training in-
stances Lc is less skewed for TAAL compared to
the corresponding baseline strategies. E.g., at 6k
labels, HS-4 (a tail class) constitutes 6.2% of total
labels with TA-E3G vs. 1.8% with E3G, an increase
by a factor of 3.4.
Impact on head classes: Head classes are the
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Figure 4: Progression of macro-F1 across all classes and tail classes for 4 query strategies and their
target-aware variants (TA-*) on CIFAR-10 test set (top) and SVHN test set (bottom). Axes’ labels are
identical for all plots. Legends report area under each macro-F1 curve (AUC) summarizing macro-F1

across all label counts. Each query strategy’s target-aware variant provides greater or similar AUC for
all-class macro-F1 and greater AUC for tail-class macro-F1.

Table 1: Area under the accuracy metric curve (AUC) for all dataset + query strategy combinations
at 6k labels. The accuracy metric summarized by AUC is F1 score for image datasets and recall for
product classification datasets. We report AUC for each query strategy (‘Baseline’ columns) against its
target-aware variant (‘TAAL’ columns) over all classes, head classes, and tail classes.

Dataset Query
Strategy

Baseline AUC (%) TAAL AUC (%)
All Head Tail All Head Tail

SVHN
CORESET 75.25 82.43 64.48 76.30 81.94 67.86
SIMILAR 73.87 79.99 64.68 74.61 80.40 65.92

ENTROPY 75.60 82.34 65.49 76.16 81.76 67.78
BADGE 76.48 83.49 65.96 76.39 82.27 67.57

CIFAR-10
CORESET 58.35 72.16 37.63 60.84 72.50 43.34
SIMILAR 59.31 70.62 42.34 60.38 71.40 43.84

ENTROPY 59.54 73.29 38.91 61.41 73.07 43.93
BADGE 59.36 74.13 37.22 61.91 73.19 44.98

FEE E3G 53.03 76.35 21.95 54.64 75.63 26.65
HS E3G 42.06 75.64 15.19 46.69 74.54 24.40

largest classes-of-interest comprising ≥ 95% of the
full dataset. Averaged over all 10 dataset + query
strategy combinations, TAAL reduces the propor-
tion of head class labels by 11.3 percentage points
(from 84.5% to 73.2%, Table 2) at 6k labels, while
only reducing head-class AUC by 0.4 percentage
points (from 77.0% to 76.7%, Table 1).

Comparison of SIMILAR and TA-SIMILAR: Ex-
periments show that TA-SIMILAR gives only a mi-
nor improvement over SIMILAR (+0.7 percentage
points all-class AUC, +1.2 percentage points tail-
class AUC). This is expected because SIMILAR is
designed to focus on tail classes, and the same
tail classes also get prioritized by TAAL since they

lag in class-level accuracy during active learning.
SIMILAR is different from TAAL in that (a) SIMILAR
needs specification of the explicit set of rare classes
in the dataset (unlike TAAL), which is not always
known a priori and, (b) SIMILAR, like any other
non-TAAL query strategy, will continue to improve
the accuracy of a class even if it has already met
its target, thus consuming unnecessary manual
annotations.

5. RELATED WORK

We refer readers to survey papers (Settles, 2009;
Ren et al., 2020) for a comprehensive overview of
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Table 2: Comparison of relative size of each class in the full dataset (Dc) and in labeled data (Lc) at 6k
labels. For Lc, we compare each baseline active learning strategy against its target-aware variant (‘TA-’).
Asterisk indicates tail classes.

Text-based product taxonomy dataset FEE (Data represented in %)
Class F-0 F-2 F-3 F-1 F-5* F-4* F-6* F-not-in-k - -

Dc 50.6 30.8 10.7 6.4 0.6 0.5 0.3 0.12 - -
E3G Lc 34.3 31.1 13.3 10.6 3.6 2.3 2.2 2.5 - -

TA-E3G Lc 28.5 21.5 7.7 4.9 9.3 8.8 17.8 1.4 - -
Text-based product taxonomy dataset HS (Data represented in %)

Class HS-2 HS-3 HS-8 HS-7 HS-6* HS-0* HS-5* HS-1* HS-4* HS-not-in-k
Dc 41.9 25.8 14.7 11.1 2.4 0.5 0.4 0.4 0.3 2.6

E3G Lc 34.1 16.4 13.4 11.5 3.3 1.8 4.5 2.4 1.8 10.8
TA-E3G Lc 32.9 14.9 10.2 7.9 2.8 2.6 5.7 5.0 6.2 11.9

Image-based dataset SVHN (Data represented in %)
Class S-1 S-3 S-5 S-6 S-7 S-0 S-2* S-4* S-8* S-9*

Dc 28.9 17.7 14.4 12.0 11.7 10.3 1.3 1.3 1.3 1.3
SIMILAR Lc 16.6 17.1 7.1 10.4 12.5 6.3 7.6 7.6 7.4 7.6

TA-SIMILAR Lc 13.8 17.2 10.4 12.3 11.5 4.7 7.6 7.6 7.4 7.6
ENTROPY Lc 19.4 20.6 13.2 14.0 11.1 8.7 3.2 3.5 3.1 3.3

TA-ENTROPY Lc 14.0 17.1 11.3 11.3 8.3 7.0 7.8 7.7 7.7 7.9
BADGE Lc 19.7 19.1 14.5 13.9 11.1 9.0 3.1 3.3 3.3 3.2

TA-BADGE Lc 15.0 16.9 11.1 11.2 8.2 6.9 7.7 7.7 7.6 7.8
CORESET Lc 22.9 18.1 12.7 12.4 10.9 9.4 3.5 4.0 2.6 3.5

TA-CORESET Lc 17.2 15.7 9.0 10.8 8.8 7.8 7.7 7.7 7.5 7.8
Image-based dataset CIFAR-10 (Data represented in %)

Class C-0 C-1 C-3 C-5 C-6 C-7 C-2 C-4* C-8* C-9*
Dc 15.8 15.8 15.8 15.8 15.8 15.8 1.3 1.3 1.3 1.3

SIMILAR Lc 16.2 17.2 10.9 10.4 10.2 18.0 3.7 4.2 4.8 4.6
TA-SIMILAR Lc 13.3 8.7 20.4 18.4 9.6 11.0 4.5 4.6 4.9 4.7

ENTROPY Lc 13.1 9.2 21.5 17.2 12.8 14.6 3.4 3.4 2.3 2.5
TA-ENTROPY Lc 13.8 8.2 20.2 15.7 10.9 12.5 4.5 4.5 4.9 4.7

BADGE Lc 14.2 9.3 21.2 18.3 13.0 13.5 2.9 2.7 2.6 2.5
TA-BADGE Lc 13.3 7.9 20.6 16.6 10.5 12.6 4.5 4.5 4.9 4.7
CORESET Lc 19.8 16.8 15.2 12.6 11.2 13.6 2.3 2.5 3.2 2.9

TA-CORESET Lc 13.5 8.8 20.2 16.4 10.1 12.9 4.3 4.4 4.8 4.7

active learning. In this section, we discuss the core
ideas we have borrowed from prior-art in Active
Learning.

Active learning query strategies determine
what unlabeled data should be annotated next.
The most popular query strategies are uncertainty-
based (Settles, 2009; Holub et al., 2008; Beluch
et al., 2018; Wu et al., 2020; Lewis and Gale,
1994), diversity-based (Bilgic and Getoor, 2009;
Guo, 2010; Dasgupta and Hsu, 2008; Sener and
Savarese, 2017; Jiang and Qing-Yu, 2015), and
expected-model-change based (Freytag et al.,
2014; Roy and Mccallum, 2001). Sec. 3.1 de-
scribes the specific query strategies we used in
experiments.

We use batch-mode active learning in this paper.
Previous research (Lewis and Gale, 1994; Settles,
2009; Gal et al., 2017; Lin and Parikh, 2017) has
demonstrated that choosing a batch of instances
with small batch sizes offers a good trade-off be-
tween user interactivity and number of labels re-
quired to create a classifier.

Hybrid query strategies (Ash et al., 2019b; Shui

et al., 2019) deal with controlling the classical explo-
ration vs. exploitation trade-off. Exploitation aims
to find data with highest uncertainty that is likely
to help the model learn fast (Bloodgood and Vijay-
Shanker, 2009), and exploration aims to find data
that is representative of the unlabeled data. One of
our baseline strategies E3G (Sec. 3.1)) falls under
this umbrella of hybrid approaches.

Stopping the active learning loop involves
defining exit criteria that help annotators decide
when to stop labeling. The most common stop-
ping method is to use a predefined criterion (Budd
et al., 2019; Liu et al., 2016; Schröder and Niekler,
2020) such as maximum number of active learn-
ing iterations, maximum annotation budget/time, or
minimum classification accuracy to be achieved.
Recent papers on stopping criteria have argued for
checking if predictions on unlabeled data have sta-
bilized (Bloodgood and Vijay-Shanker, 2014; Vla-
chos, 2008; Budd et al., 2019; Zhu et al., 2010).
We use maximum labeling budget as the sole stop-
ping criterion in this paper for a fair comparison of
baseline query strategies and their target-aware
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variants.

6. Conclusions and Future Work

We introduce a framework called Target-Aware Ac-
tive Learning (TAAL) that converts any arbitrary
active learning query strategy into its target-aware
variant by leveraging the gap between each class’
current estimated accuracy and its correspond-
ing business target. We perform extensive ex-
periments comparing 5 baseline query strategies
and their target-aware variants on 2 image clas-
sification and 2 text-based product classification
datasets. Our results indicate that TAAL improves
the likelihood of achieving business targets on 8
out of 10 dataset + query strategy combinations,
and matches the baseline performance of BADGE
and ENTROPY strategies on the SVHN dataset. In
addition, the run-time complexity of TAAL scales lin-
early with the size of the input query, making it prac-
tical for large-scale active learning. In the future,
we plan to test TAAL with classifiers like PECOS
(Yu et al., 2022) which further improve the accu-
racy of tail classes, especially for high-cardinality
classification problems.
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