
The Seventh Workshop on e-Commerce and NLP (ECNLP 7), pages 8–18
21 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

8

Towards Multi-Modal Co-Reference Resolution in Conversational
Shopping Agents

Samuel Osebe∗1, Prashan Wanigasekara∗2, Thomas Gueudre2, Thanh Tran2,
Rahul Sharma2, Fan Yang2, Qian Hu2, Weitong Ruan2, Emre Barut2, Chengwei Su2

1University of Massachusetts Amherst, 2 Amazon AGI Foundations
sosebe@umass.edu,

{wprasha, tgueudre, tdt, zarahuls, fyaamz, huqia, weiton, ebarut, chengwes}@amazon.com

Abstract
The context of modern smart voice assistants is often multi-modal, where images, audio and video content are
consumed by users simultaneously. In such a setup, co-reference resolution is especially challenging, and runs
across modalities and dialogue turns. We explore the problem of multi-modal co-reference resolution in multi-turn
dialogues and quantify the performance of multi-modal LLMs on a specially curated dataset of long, image-interleaved
conversations between a voice assistant and human in a shopping use case. We propose a custom architecture
for multi-modal embedding alignment using a novel parameter augmentation technique. Our proposed Parameter
Augmented LLM approach shows a 4.9% absolute F1 improvement above a cross-attention baseline while reducing
the number of parameters being trained by 4×.
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1. Introduction

Recent advancements in multi-modal large lan-
guage models (MLLMS) have pushed the capa-
bilities of conversational agents, extending beyond
processing and generating human-like text to in-
clude understanding and integrating multiple modal-
ities such as images and audio. These advance-
ments have led to substantial progress in tasks like
image captioning (Lin et al., 2014), image classifica-
tion (Russakovsky et al., 2015) and visual question
answering (Goyal et al., 2017). However, these
tasks often have a clear division between the text
and images, not fully reflecting the complex, inter-
woven nature of the inputs encountered by conver-
sational agents. This intertwining of visual and tex-
tual inputs is more pronounced in the environments
like online shopping, where users seamlessly shift
between textual and visual references.

Addressing this gap, Multi-modal Co-reference
Resolution (MCR) emerges as a critical challenge,
aiming to connect language and visual content by
mapping textual references to their corresponding
spatial regions in images. In this work we focus on
MCR within the context of conversational agents in
the shopping domain where the challenge is am-
plified by the vast diversity of products and the
ambiguity of natural language descriptions, mark-
ing a stark contrast to areas like visual question
answering (VQA) and image captioning. Efforts
to address MCR for conversational agents have
been relatively limited, further compounded by the
fact that most multi-modal dialogue datasets (Zang
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et al., 2021; Kottur et al., 2021), contain very few
images among the dialogues. In contrast, a typical
dialogue in the shopping context can involve 5− 66
utterances, with an average of 32 images, highlight-
ing the need for specialized attention to MCR in this
domain. Figure 1 shows a sample dialogue for the
shopping use case.

Figure 1: An example of a multi-turn dialogue with
multi-modal co-referencing. The co-references are
color coded and shown by arrows.
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Among the recent efforts (Lee et al., 2022; Guo
et al., 2022; Chen et al., 2023) to address MCR
for conversational agents, an encompassing strat-
egy has been the end-to-end training of multi-modal
transformer architectures. While effective, this strat-
egy demands significant computational resources,
manifesting in both a high number of parameters
and extensive training time. To mitigate these
challenges, we propose a novel technique that
leverages existing unimodal large language models
(LLMs) and adapt them for multi-modal inputs and
outputs. Our approach augments the weights of
pre-trained unimodal LLMs to learn an alignment
with the pre-trained visual encoder’s embeddings,
thereby converting them into multi-modal system.
This method significantly reduces the number of
parameters to be trained along with a notable im-
provement in the MCR performance.

To evaluate the effectiveness of our methodology
in practical conversational tasks within the shop-
ping domain, we focus on two key areas: i) image
selection and ii) image retrieval. The image se-
lection task leverages textual and visual attributes
to identify and select the most relevant product
from a list of options; e.g., the utterance "show
me the bag with brown handles" in Figure 1. For
this, we employ the Multi-Modal Context Carryover
(MMCC) (Wanigasekara et al., 2022) dataset to as-
sess our model’s performance in accurately select-
ing the correct product based on the given criteria.
In the image retrieval task, the objective is to iden-
tify relevant products at the final turn of a multi-turn,
multi-modal dialogue.

We use the Multi-Modal Domain Aware (MMDA)
dataset (Saha et al., 2018), which is rich in image-
inclusive dialogues, for evaluating our model’s per-
formance for an image retrieval task. Our results
demonstrate a significant improvement over exist-
ing models, including the pretrained multi-modal
cross-attention model, OpenFlamingo (Awadalla
et al., 2023). We achieve an increase of approxi-
mately 5 points in F1 score, while training 4x fewer
parameters. This underscores the efficiency of our
proposed parameter augmentation methodology
for multi-modal co-reference resolution.

2. Related Work

There have been several elaborate image-text mod-
els over the years, such as CLIP (Radford et al.,
2021) and BLIP models (Li et al., 2022, 2023). The
goal of this work is aligning the embeddings of
such visual models with embeddings of pretrained
language models efficiently. Alignment can be clas-
sified as either natural language alignment or em-
bedding alignment.

2.1. Multi-Modal Alignment Approaches
Natural language alignment between vision and
language foundation models consists of first repre-
senting the vision input as text using an image-text
model (such as CLIP, BLIP, and BLIP-2) then pro-
cessing the unified text using a language model
(Guo et al., 2023; Wu et al., 2023). This has shown
to have zero-shot capabilities, but can be limited
because of its discrete nature. To overcome this, Vi-
sual ChatGPT (Wu et al., 2023) combines 22 vision
foundation models for different vision tasks and a
prompt manager that determines how the vision
foundation models are used. This is a complex and
resource-intensive setup.

Embedding alignment employs neural ap-
proaches to translate the embeddings of the vi-
sion foundation model to the embedding space of
the language model. This approach can be ro-
bust, but does not have zero-shot capabilities un-
less pretrained on a multi-modal dataset first. To
achieve such an alignment, Flamingo(Alayrac et al.,
2022), Open-Flamingo (Awadalla et al., 2023) and
BLIP (Li et al., 2022) use cross attention and con-
trastive learning objectives. BLIP2 (Li et al., 2023)
proposes a querying transformer to learn queries
for the visual embeddings. Mini-GPT4 (Zhu et al.,
2023) proposes to only train a linear projection layer
to project visual embeddings to text space. Alter-
natively, one can use convolution and linear layer
(Koh et al., 2023a; Lyu et al., 2023) with or without a
separate modality encoder (Lyu et al., 2023; Moon
et al., 2023; Koh et al., 2023b) for a similar projec-
tion. Most recently, GILL(Koh et al., 2023a) uses a
linear projection and a learnable query embeddings
module.

Currently. there are closed-source pipelines such
as GPT-4 (OpenAI, 2023; Yang et al., 2023) and
GEMINI (Team et al., 2023) that perform a similar
multi-modal co-reference resolution task as ours.
Given that they are closed-source and have the
possibility of using a multi-modal mixture of experts
setup, we do not compare our work with them.

2.2. Multi-Modal Co-Reference
Resolution

MCR bridges the gap between language and im-
ages by mapping the text to spatial regions being
referred. A closely related field, Visual Grounding
(VG) seeks to align text queries with their corre-
sponding locations in images. In the VG domain,
JR-net (Jain and Gandhi, 2022) is one of the SOTA
methods; it separately encodes images and queries
and then employs a sophisticated joint reasoning
and fusion method to generate results. VLT (Ding
et al., 2023) is another method that transforms the
image data into the same space as language to-
ken embeddings and uses a masked decoder to
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locate targets. Several datasets have also been in-
troduced to support the research in the direction of
MCR which includes CIN (Goel et al., 2022) which
is rich in co-reference chains and grounding an-
notations, and others (Parcalabescu et al., 2022;
Ramanathan et al., 2014; Cui et al., 2021; Hong
et al., 2023) that link textual mentions of people
with their images.

More recently, SIMMC2.0 and SIMMC2.1
datasets are introduced as challenges in DSTC.
These datasets encompass 11,000 task-oriented
dialogues for shopping scenarios with photore-
alistic scenes, spurring the development of nu-
merous multi-modal methods tailored to conver-
sational agents. In (Lee et al., 2022) proposes a
multi-modal encoder-decoder model that offers a
unified solution for various tasks associated with
situated conversational agents, including MCR.
GraVL (Guo et al., 2022) introduce an innovative
approach to merge Graph Neural Networks with
VL BERT capturing visual relationships alongside
dialogue and metadata for nuanced understanding.
SHIKRA (Chen et al., 2023) stands out by propos-
ing a multi-modal model capable of engaging in
referential dialogue, enabling users to input spe-
cific image regions and responding by referencing
the pertinent areas if required.

3. Our Approach

3.1. Motivation
In the techniques discussed previously (Alayrac
et al., 2022; Awadalla et al., 2023; Zhu et al., 2023;
Lyu et al., 2023; Koh et al., 2023a), there is a logi-
cal separation of input based on modalities, even
though the model may accept interleaved multi-
modal inputs. For instance, cross attention uses
one modality as attention query and another modal-
ity as attention key, whereas the querying trans-
former learns queries from one modality then feeds
it through self and cross attention layers to the other
modality. We argue that such a logical separation,
though sufficient for types of tasks where modal-
ities are separate e.g. VQA, Image Captioning
etc., is suboptimal for a multi-modal co-reference
resolution. This is in line with findings from (Koh
et al., 2023b) who observe poor performance when
performing an image retrieval task over multiple
co-referenced images. We test this hypothesis us-
ing our proposed approach, which preserves the
sequence of the multi-modal information during pro-
cessing. We use OpenFlamingo as baseline for
our experiments.

3.2. Problem Formulation
In our setup, a multi-modal dialogue D :=
{(Ui, Si, Ii)}si=1 contains s turns, each of them com-

posed of a user textual utterance Ui, the system
answer Si, and the images Ii.

Due to the nature of the chosen datasets (i.e.
shopping context), at each turn, the images Ii are
interleaved within the system utterance, while the
user utterance is fully uni-modal. Note however
that both the user and the system can reference
textual or image entities from past turns, requiring
multi-modal co-reference resolution. An example
of such an interaction is shown in Figure 1.

In what follows, we refer to token and image em-
beddings as xt and xv. Our approach relies on
augmenting a pre-trained LLM hθ(x

t) with frozen
parameters θ and hidden dimension dllm. We de-
note their augmented counterparts with a hat su-
perscript: the augmented LLM is noted hθ,θ̂(x

t),
with the set of additional parameters θ̂ and the final
augmented hidden dimension d̂llm. The difference
∆d̂ = d̂llm − dllm > 0 measures the amount of
parameters augmentation.

3.3. Architecture

3.3.1. Prompting

To aid the LLM to perform multi-modal co-
referencing, we introduce special tokens to delin-
eate the beginning and end of dialogues, as well
as the beginning and end of images. We also intro-
duce a special token (< im >) to mark the positions
of images in the text. This will then be used by the
Multi-Modal Interleaver shown in Figure 2 to insert
the image embeddings into the text embeddings
at the same position the image was in the input,
i.e, fusing the special token embeddings with the
respective image embeddings.

<dialogue>
...
<image><im></image>
...

</dialogue>

3.3.2. Linear Layer

Image embeddings are obtained from a frozen im-
age encoder vϕ that maps the collection of p im-
ages to vectors xvm ∈ Rp×dvm (e.g., CLIP (Radford
et al., 2021)). These visual embeddings need to be
aligned with text embeddings coming from the LLM
hθ(x

t) ∈ Rdllm (which also includes the placeholder
< im > tokens).

To achieve this, we simply apply a linear transfor-
mation by multipling with Wl ∈ Rdvm×dllm similar to
(Lyu et al., 2023; Koh et al., 2023b):

xv = WT
l xvm , xv ∈ Rp×dllm . (1)
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<dialogue> System: Ok – Showing Lacdo 360 Laptop Bag 
<image> </image> </dialogue>

<dialogue> User: Show me shoes that go with the bag </dialogue>

Image 
Encoder

Cross RMS Norm

Catalogue

<dialogue>System: Sure, let me just quickly browse the catalogue
<image> </image><image> </image> </dialogue>

System: Ok – Showing Lacdo 360 Laptop Bag 
User: Show me shoes that go with the bag

Linear Layer
𝑥t

Pretrained and Frozen

Trained from Scratch
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Figure 2: LLM-Agnostic Architecture for Parameter Augmentation. Boxes with t and v refers to text and
image embeddings, respectively. We optimize the linear layer, cross RMS normalization module, and
the augmented parameters, the rest of the LLM remains frozen. The Multi-Modal Interleaver looks up
the position of the images in the input sequence and inserts the image embeddings in their respective
positions.

3.3.3. Cross-modality Normalization

Previous works have demonstrated neural archi-
tectures to be especially sensitive to the statistics
of their activations, exemplified by popular layer
normalization blocks such as LayerNorm or RMS
(Zhang and Sennrich, 2019) used in LLM architec-
tures. This problem is accentuated in a multi-modal
setup; indeed, differences in activations distribu-
tions for visual and textual inputs require different
normalizations (BatchNorm in Vision vs LayerNorm
in NLP) (Shen et al., 2020). As we wish to fuse
both the image embeddings xv onto LLM token
representations xt, we compute the magnitude of
xt, averaged across the interleaved sequence, and
use them to rescale xv component-wise. More
precisely, considering a sequence of n textual em-
beddings xt ∈ Rn×dllm :

σt =

√
1

dllm × n

∑
i,j

(
xt
ij − µ(xt)

)2
, (2)

xv ← xv/σt, (3)

with 0 < i < n indexing the tokens sequence, 0 <
j < dllm indexing the features and µ(·) the mean
over both sequence and feature dimensions.

3.3.4. Multi-Modal Interleaver

The role of the Multi-Modal Interleaver (shown in
Figure 2, right-hand side) is to preserve the integrity
of the sequence of multi-modal input. Since the
images are separated from the text so that they can
be processed by the image encoder, it is possible
to lose the original order of the multi-modal input.
Recent works (Lyu et al., 2023) concatenate the
multi-modal aligned embeddings, but this changes
the sequence of the inputs that will be processed
by the model. We replace the removed images
with the special token < im > which marks the
position of the images. These special tokens will
be replaced with cross-modalities normalized em-
beddings by the Multi-Modal Interleaver. We fuse
the embeddings of the special token < im > with
the respective aligned image embeddings by a sim-
ple elementwise addition operation. The resulting
multi-modal embeddings are then passed on to the
rest of the LLM Layers as interleaved text and im-
age embeddings, as seen in Figure 2. This has
the advantage of performing the essential cross
attention operation as shown in Figure 3 without
the use of a separate module. It also preserves
the distances between tokens and images in the
dialogue, which is likely helpful for co-reference
resolution.
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Figure 3: Multi-modal Attention has the advantage
of implying both self and cross attention using the
same parameters, while preserving the original or-
der of the interleaved image-text sequence.

3.3.5. Parameter Augmentation

LLMs have been shown to exhibit the catastrophic
forgetting phenomena after being fine-tuned on
data with a different underlying distribution (Zhai
et al., 2023). A straightforward mitigation is to
freeze the LLM (Zhai et al., 2023). This is the foun-
dation principle behind Parameter Augmentation,
i.e., we freeze the uni-modal LLM parameters θ and
introduce separate parameters θ̂ to map separate
modalities together as seen in Figures 2 and 4. We
argue that this preserves the robustness of LLMs,
allowing the transfer of their high-quality represen-
tations to other modalities. To upcycle the LLM hθ(·)

Figure 4: LLM parameters are depicted with the ice
icon, showing they are frozen. The Parameter Aug-
mented LLM weights are obtained by concatenating
the frozen weights of the LLM and the augmented
parameters.

to hθ,θ̂(·), we augment the modules at each layer
by extending the hidden dimension dllm through
concatenation of additional weights: for each ex-
isting LLM weight matrix Wllm ∈ Rr×dllm , we cre-
ate Ŵllm = (Wllm|Waug), with trainable weights
where Waug ∈ Rr×∆d̂. All subsequent operations
(attention, normalization, feed forward) are there-
fore between inputs and augmented weights Ŵllm.
We demonstrate that even a small increase ∆d̂

along the hidden dimension is sufficient for the aug-
mented LLM to learn complex relationships such
as those in Figure 1. By only optimizing Waug (and
freezing Wllm), our approach reaps computation
and memory benefits. As a comparison, the base-
line (Awadalla et al., 2023) increases the LLM pa-
rameters by 18.7% while our approach increases it
by 5.3%.

After the multi-model interleaver, the sequence
of n fused image and token vectors x ∈ Rn×dllm

are still of the dimension of the original LLM dllm.
To map them to x̂ ∈ Rn×d̂llm , we add an additional
linear adapter Wc ∈ Rdllm×∆d̂:

x̂ = (x|xWc) , x̂ ∈ Rn×d̂llm . (4)

By concatenating the augmented dimensions with
the original embedding themselves, we hope to
keep intact the spatial information encoded in pre-
trained LLM embeddings (also see illustration in
Figure 4).

We can now optimize the negative log likelihood
Lθ̂ of the augmented LLM, with respect to θ̂. Ele-
ment xi at any position i below can be either image
or text, their order determined by the interleaved
sequence:

Lθ̂ = − 1

B

B∑
j=0

n∑
i=1

log
(
hθ,θ̂(xi|x0, · · · , xi−1)

)
,

(5)
where j indexes the dataset of size B.

4. Experiment Set Up

We experiment on an image selection (Wani-
gasekara et al., 2022, 2023) and a specially curated
image retrieval dataset adapted from (Saha et al.,
2018). We measure performance for image se-
lection using accuracy while we use classification
metrics (accuracy, precision, recall, F1) for the im-
age retrieval task. For both datasets, we fine-tune
the models for only 1 epoch.

4.1. Datasets
The Multi-Modal Context Carryover (MMCC)
dataset (Wanigasekara et al., 2022, 2023) is similar
to datasets used in VQA and Image Captioning, i.e.
images can be logically separated from text. The
Multi-Modal Domain Aware (MMDA) (Saha et al.,
2018) contains an average of 32 images per dia-
logue, logically separating the images from text can
impede performance. Also, in the MMDA dataset
multiple images can be correct, unlike the MMCC
dataset which has only one correct image.

The Image Selection task is performed on the
Multi-Modal Context Carryover (MMCC) dataset
(Wanigasekara et al., 2022, 2023). This dataset
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Train Valid Test
# Dialogues 38,843 8,373 8,478
Avg # Tokens 717.5 713.7 707.9
Avg # Images 32.2 32.2 31.9
Avg # Utterances 13.3 13.1 13.1
Ratio P:N 1:6 1:6 1:6

Table 1: Dataset Statistics for the curated MMDA
dataset. The ratio P:N is the ratio of the positively
annotated images against negatively annotated im-
ages at the terminal utterance. A label is consid-
ered positive if it is relevant to the user’s query that
involves co-reference resolution.

has 33k entries, each containing 3 product images,
their descriptions and selection criteria. Given the
list of products images, product descriptions and
selection criteria, the task is to select the product
which has the highest probability to match the cri-
teria. We model this as a generation rather than a
classification task, where the LLM generates the in-
dex of the product image. We prompt this as shown
below:
Image <position><image><im><image>
<description>
Action: Given the list of images,
determine the position of the image
that satisfies the criteria
Criteria: <criteria>
Position: <MASK>

The Image Retrieval task is performed on the
Multi-Modal Domain-Aware (MMDA) (Saha et al.,
2018) dataset. We require that contexts have at
least 1 multi-modal utterance and that the last ut-
terance (where inference happens) have both pos-
itive and negative labelled data. We discard all
dialogues that do not meet this criteria. During in-
ference, we shuffle the list of positive and negative
images and predict whether each one belongs to
the last utterance or not.
User: ...
System: ...
Question: Is <image><im></image>
a good match?
Answer: <MASK>
...

4.2. Pretrained vision encoders and
multi-modal LLMs

Pretrained vision encoders: We are able to di-
rectly use pretrained vision encoders like CLIP and
BLIP as simple baselines for the image selection
task in a zero-shot manner. We extract product
image and product description text embeddings
separately. The image with the highest cosine sim-
ilarity with the textual referring utterance is chosen

as the selected image. For the image retrieval task
in a dialogue setting, the dialogue contexts are too
long for the direct use of CLIP and BLIP encoders
(717±410 tokens) so we use OpenFlamingo as our
baseline.

Pretrained multi-modal LLMs: OpenFlamingo
(Awadalla et al., 2023) is the publicly available ver-
sion of the Flamingo (Alayrac et al., 2022) LLM.
The 9B variant of OpenFlamingo is made up of a
7B MPT LLM (Team, 2023) with CLIP as the image
encoder. It is pretrained on the LAION multi-modal
dataset and so has some zero-shot capabilities. In
the image selection task, we prompt the model to
generate the index of the relevant image while for
the image retrieval task, we prompt the model to
generate a binary answer (Yes / No) for each image
in the candidates.

4.3. Augmented LLM
The parameter augmentation technique we pro-
pose is LLM-agnostic. In our experiments, we aug-
ment the parameters of the Open LLaMA (Touvron
et al., 2023a) 7B model. This model has a hidden
dimension size of 4096, we explore augmentations
in the range ∆d̂ = 0 to ∆d̂ = 256.

We prompt the augmented LLaMA similarly as
OpenFlamingo and perform ablation experiments
for both image selection and retrieval tasks, treat-
ing ∆d̂ as a hyperparameter. This augmented
LLaMA model is at a disadvantage when compared
to the OpenFlamingo model because the Open-
Flamingo model has been further fine-tuned on
multi-modal tasks using 2B image-text pairs from
the LAION (Schuhmann et al., 2022) dataset. Thus,
augmented LLaMA is not directly comparable with
OpenFlamingo in zero-shot or in-context learning
and is disadvantaged for fine-tuning. However, we
see that it out-performs pretrained OpenFlamingo
as shown in table 3

5. Results

The multi-modal multi-turn setting adds complexity
to the co-referencing problem since each user ut-
terance can reference any system utterance in the
previous turns as seen in Figures 6 and 7. In this
paper, we use image retrieval metrics as a proxy to
measure multi-modal co-referencing.

5.1. Image Selection Results
Figure 5 shows ablation experiment results on the
MMCC dataset (Wanigasekara et al., 2022, 2023).
The “linear layer" only includes the linear module
shown in Figure 2 and the “linear layer & norm"
has the linear module and the cross RMS norm
module. We sweep the hyperparameter ∆d̂ from
0 to 256 where 0 indicates no augmentation. We
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Figure 5: Ablation results of Parameter-Augmented
LLM on image selection task, showing accuracy as
a function of ∆d̂.

Figure 6: Sample Image Retrieval result for Pa-
rameter Augmented LLaMA on a dialogue with 5
utterances and 5 images before the final utterance.
In this case, F1=1.0. The green box indicates that
the image is relevant, and the red box indicates that
the image is not relevant to the user query.

observe parameter augmentation range 8− 64 to
be the best setting for both “linear layer" and “linear
layer & norm".

Table 2 shows the results using different Visual
Language models on MMCC dataset. We ob-
tain the LSTM results from previous SOTA (Wani-
gasekara et al., 2022) for the image selection task.
For the image encoders, we observe that CLIP
(Radford et al., 2021) has better performance com-
pared to BLIP (Li et al., 2022). Prompting and
fine-tuning OpenFlamingo resulted in the best per-
formance overall. Parameter Augmented LLaMA
with ∆d̂ = 32 performed better than OpenFlamingo
in zero-shot but was outperformed in in-context and
fine-tuned settings. We see that a uni-modal LLM
such as LLaMA can transfer its capabilities to the
multi-modal setting through parameter augmenta-
tion and approach the performance of a pretrained

Figure 7: Sample Image Retrieval result for Pa-
rameter Augmented LLaMA on a dialogue with 16
utterances and 6 images before the final utterance.
In this case, F1=0.8. The green box indicates that
the image is relevant, and the red box indicates that
the image is not relevant to the user query. The
orange dashed box refers to the image the user is
currently using as an example.

Model Set Up Accuracy
BLIP zero-shot 44.17%
CLIP zero-shot 77.40%
LSTM + CLIP Fine-Tuning 84.84%
LSTM + ALBEF Fine-Tuning 86.17%

OpenFlamingo
zero-shot 32.40%
In Context 38.48%
Fine-Tuning 90.12%

Parameter
Augmented
LLaMA ∆d̂ = 32

zero-shot 34.51%
In Context 34.92%
Fine-Tuning 85.95%

Table 2: Showing results of image-text models, en-
semble, OpenFlamingo and Parameter-Augmented
LLM on image selection task. LSTM results are
from previous state of the art (Wanigasekara et al.,
2022)

.

model.

5.2. Image Retrieval Results
In Table 3, we show the performance of multi-modal
LLMs on the MMDA dataset. We observe poor
zero-shot and in-context performance using Open
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Model Experiment Set Up Accuracy Precision Recall F1

OpenFlamingo
zero-shot 35.67% 0.3472 0.9635 0.4621
In-Context 36.14% 0.3486 0.9651 0.4648
Fine-Tuning 76.70% 0.6953 0.8235 0.7240

Linear Layer Fine-Tuning 66.77% 0.5583 0.8334 0.5995

Parameter Augmented
LLaMA Fine-Tuning

Linear Layer ∆d̂ = 64 77.89% 0.7118 0.9334 0.7727
Linear Layer & Norm ∆d̂ = 64 70.93% 0.6519 0.9096 0.7135
Linear Layer ∆d̂ = 128 77.84% 0.6702 0.6510 0.6228
Linear Layer & Norm ∆d̂ = 128 70.64% 0.5997 0.9213 0.6851
Linear Layer ∆d̂ = 256 78.73% 0.6373 0.5090 0.5323
Linear Layer & Norm ∆d̂ = 256 79.05% 0.6595 0.8437 0.7122

Table 3: Showing results of a OpenFlamingo and our Parameter-Augmented LLM for image retrieval task
applied on the MMDA dataset.

Flamingo, highlighting the difficulty of the task. Af-
ter fine-tuning, the Parameter Augmented LLaMA
(∆d̂ = 64) outperforms fine-tuned OpenFlamingo.
This highlights the robustness of parameter aug-
mentation over cross-attention.

5.3. Qualitative Analysis
Figure 6 and 7 show sample result of Parameter
Augmented LLaMA on the image retrieval MMDA
dataset with F1 score of 1.0 and 0.8 respectively.
A red box around an image refers to a negatively
labelled image, while a green box refers to a pos-
itively labelled image. The dashed box refers to
the image the user is currently using as an exam-
ple. The models then predict Y es/No given a list
of images.

Our approach is able to differentiate between
styles of similar images as we show in Figure 6
where the candidate products are both sandles but
different styles, this is more granular than differ-
entiating unrelated objects e.g., sandles vs chair.
In Figure 7, we see similar capabilities over more
utterances. We attribute the false negative result
(prediction No but the box is green) in Figure 7 as
a mis-annotation because the shoe is not similar
to co-referenced shoe (shoe with orange dashed
border) and is not made of strap material nor a high
top as specified by user utterance.

In the OpenFlamingo architecture, 1.3B of the 9B
parameters are optimized, this accounts for 18.6%
with respect to its uni-modal LLM (7B). In the pa-
rameter augmented setting with ∆d̂ = 64, we op-
timize 370M parameters (5.3% of uni-modal LLM)
which is a more resource efficient setup. Thus,
our model optimizes 13.3% fewer parameters with
respect to the uni-modal LLM (in both cases, the
uni-modal LLM is 7B).

In the image selection results in Figure 5, we see
a significant drop in performance for ∆d̂ = 128 and
∆d̂ = 256. This is because it introduces more than

1.5× more parameters compared to the other aug-
mentations. The image selection dataset is com-
paratively smaller and has a total of approximately
3M tokens, and training on one epoch is insufficient
given the higher number of parameters. For image
retrieval results (Table 3), the dataset is compar-
atively larger and has approximately 30M tokens,
and so we see steady performance improvements
with higher augmentations.

The augmented LLM variant also resulted in the
best performance for the image retrieval dataset,
exceeding that of a model with 1.2× parameters,
trained on 20k× more data while optimizing 3.5×
fewer parameters. We see more gains for the
MMDA dataset than the MMCC dataset, where the
co-reference is simpler. This is in line with our hy-
pothesis - we reap more benefits from using param-
eter augmentation when the degree of multi-modal
co-referencing increases.

For the image selection task based on Figure
5, for augmentation ∆d̂ = 128 and ∆d̂ = 256, the
Cross Normalization is significantly outperformed
by the normalization ablation. Overall, variants
with cross normalization are outperformed by the
variants without normalization. We observe a dif-
ferent trend for image retrieval in that the ∆d̂ = 256
augmented LLaMA, with normalization performing
better than without normalization, setting the best
accuracy result (see Table 3). However, we ob-
serve more over-fitting to the data when normaliza-
tion is used, creating the need for a better design
for multi-modal normalization. We will explore this
in our future work.

6. Conclusion

We explore the possibility to leverage existing pre-
trained LLM capabilities and offer a simple and ro-
bust parameter augmentation technique that does
not require additional multi-modal pre-training tasks.
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We demonstrate competitive results in image selec-
tion and best results in the image retrieval dataset
compared to a cross-attention baseline pre-trained
on billions of multi-modal examples.
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