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Abstract
E-commerce faces persistent challenges with data quality issue of product listings. Recent advances in Large
Language Models (LLMs) offer a promising avenue for automated product listing enrichment. However, LLMs are
prone to hallucinations, which we define as the generation of content that is unfaithful to the source input. This
poses significant risks in customer-facing applications. Hallucination detection is particularly challenging in the vast
e-commerce domain, where billions of products are sold. In this paper, we propose a two-phase approach for detecting
hallucinations in LLM-enriched product listings. The first phase prioritizes recall through cost-effective unsupervised
techniques. The second phase maximizes precision by leveraging LLMs to validate candidate hallucinations detected
in phase one. The first phase significantly reduces the inference space and enables the resource-intensive methods
in the second phase to scale effectively. Experiments on two real-world datasets demonstrated that our approach
achieved satisfactory recall on unstructured product attributes with suboptimal precision, primarily due to the inherent
ambiguity of unstructured attributes and the presence of common sense reasoning. This highlights the necessity for
a refined approach to distinguish between common sense and hallucination. On structured attributes with clearly de-
fined hallucinations, our approach effectively detected hallucinations with precision and recall surpassing targeted level.
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1. Introduction

In e-commerce, the significance of comprehensive
product listings cannot be overstated, as it plays
a pivotal role in facilitating informed purchase de-
cisions by customers. However, real-world prod-
uct listings often suffer from diverse quality issues,
such as data incompleteness, information redun-
dancy, and misinformation. These challenges im-
pact customers’ shopping experiences. Therefore,
product listing enrichment is a critical task in e-
commerce to generate compelling product listings.

The product listing enrichment task aims to cre-
ate concise yet informative product listings given
the source product data. Figure 1 illustrates this
process. In the initial listing, several essential prod-
uct attribute values are missing, and the product
name contains redundant details. After enrichment,
the product name is more succinct and user-friendly,
and a correct value was populated for the attribute
Material. Such enriched listings can help customer
reduce cognitive load during product evaluation and
improve sales conversion (Purnomo, 2023).

Product listing enrichment involves generating
structured data and free text from the source in-
put, which is an essential task in various natural
language generation applications, such as sum-
marization (Nenkova et al., 2011) and data-to-text
generation (Wiseman et al., 2017). Traditional
template-based approaches (Gatt and Reiter, 2009;
Reiter et al., 2005) rely on manually crafted rules
and lack scalability. Transformers and language
models (Vaswani et al., 2017; Devlin et al., 2018;

Figure 1: Example of product listing enrichment
and hallucination.

Yang et al., 2019; Liu et al., 2019; Radford et al.,
2019) have demonstrated exceptional capabilities
of generating fluent text. Recently, Large Language
Models (LLMs) (Brown et al., 2020; Ouyang et al.,
2022; Achiam et al., 2023; Touvron et al., 2023;
Chowdhery et al., 2023) have pushed the bound-
aries of natural language generation to new heights
(Bubeck et al., 2023). The remarkable language
comprehension of LLMs offers an opportunity for
automating the generation and enhancement of
product listings (Westmoreland, 2023).

However, a concerning drawback of LLMs is its
tendency to hallucinate, when LLMs generate texts
that appear fluent and coherent but are nonfactual
or unsupported by the input data (Varshney et al.,
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2023). In Figure 1, the LLM successfully improved
the product Name and accurately generated value
for Material. Conversely, the reliability of the gener-
ated values for Color and Size is questionable when
examining the source data alone without additional
information. Such hallucinations pose risks by po-
tentially leading to negative user experiences and,
more critically, misinformation-induced purchases.
In safety-critical scenarios, such as the failure to
generate warnings on toy choking hazards, halluci-
nations may result in legal consequences.

In this work, we address the hallucination prob-
lem in LLM-enriched product listings. We define hal-
lucination as the generation of text that is unfaithful
to the provided source input (Ji et al., 2023). Some
works also consider factual inaccuracies in their def-
inition (Varshney et al., 2023; Zhang et al., 2023).
The primary function of product listings is to com-
municate descriptive details about the items. For
example, the value of Material is product-specific,
inherently contingent upon the source product infor-
mation. Here, factual accuracy depends on faith-
fully reflecting the source input for each unique
product, assuming the provided product informa-
tion accurately describes the products. The source
input data serves as the definitive reference for
truth in this context.

Previous studies have employed the hidden layer
activations or logit values of LLMs to detect halluci-
nated content (Azaria and Mitchell, 2023; Varshney
et al., 2023). Yet, such methods require access to
the internal states of LLMs, which is typically not
available in state-of-the-art black-box LLMs (e.g.
ChatGPT). Some have integrated external knowl-
edge bases with LLMs (Guo et al., 2022; Martino
et al., 2023; Peng et al., 2023a; Lee et al., 2022), but
this introduces additional cost and complexities. Al-
ternatively, LLMs have been used to autonomously
verify their outputs (Wang et al., 2023; Manakul
et al., 2023) or have been fine-tuned for specific
tasks (Cao et al., 2021; Yu et al., 2023), though
LLM-based methods can be costly without in-house
models. In-house LLMs, while circumventing some
expenses, still demand extensive training data and
substantial resources for model development.

While akin to detecting hallucinations in summa-
rization (Cao et al., 2021) or data-to-text genera-
tion (Tian et al., 2019), our task involves unique
challenges due to the mixture of free text and struc-
tured data in both source input and generated text.
The former is often noisy and poor-formatted, par-
ticularly when sourced from third-party sellers in
e-commerce. Furthermore, LLM-generated val-
ues may be embedded in various product attribute
fields, necessitating a comprehensive examination
of all product information for potential evidence.
Given that an e-commerce website can sell billions
of products, addressing hallucination detection at

such a scale requires careful consideration of both
performance and cost factors.

In this paper, we present an approach for halluci-
nation detection in LLM-enriched product listings
without accessing internal LLM states or relying
on external data sources. We propose to detect
hallucinations in a two-phase fashion, prioritizing
recall in the initial phase and enhancing precision in
the subsequent phase. The motivation stems from
the high cost associated with LLM-only approaches
in massive-scale e-commerce applications. In the
initial phase, which we call Lexical and Semantic
Screening (LSS), we apply cost-effective unsuper-
vised techniques to detect a broad range of hallu-
cinations. While these methods are efficient, their
accuracy may be compromised due to limitations
in text comprehension. The second phase, LLM
validation, utilizes LLMs to confirm potential hallu-
cinations detected in the first phase. Leveraging
the robust language understanding capabilities of
LLMs, we optimize precision in the second phase.
The initial LSS phase significantly reduces the infer-
ence space, allowing the more resource-intensive
LLM validation to scale effectively. Experiments
on two real-world e-commerce datasets demon-
strate the effectiveness of our proposed approach.
In addition, we discovered that our approach per-
forms better on structured attributes with concise,
deterministic values, as opposed to unstructured
attributes presented in long-form free text. We iden-
tified directions for future work through analysis of
the experimental results.

2. Related Work

2.1. Definition of Hallucination

Varshney et al. (2023) defined hallucination as the
generation of text or responses that seem syntac-
tically sound, fluent, and natural but are factually
incorrect, nonsensical, or unfaithful to the provided
source input. This definition aligns with the taxon-
omy proposed by Zhang et al. (2023). However,
studies on hallucination in various natural language
generation tasks (Tian et al., 2019; Maynez et al.,
2020; Weng et al., 2023) may emphasize distinct
aspects of the phenomenon. Consequently, the def-
inition of hallucination may exhibit variability across
tasks. In the product listing enrichment task, prod-
uct listings primarily convey descriptive information
about the products, and factual accuracy is con-
tingent on faithfully representing the source input
for each individual product. In this sense, our per-
ception of hallucination aligns more closely with Ji
et al. (2023)’s definition, which refers to the gener-
ation of text that is nonsensical, or unfaithful to the
provided source input. It is further categorized into
intrinsic and extrinsic hallucination. Intrinsic hallu-
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cination involves output contradicting the source,
while extrinsic hallucination refers to output unveri-
fiable against the source. We are concerned with
both types, encompassing content that either con-
tradicts or lacks support in the source input, empha-
sizing the unfaithfulness aspect. After we identify
unfaithful hallucinations, we need to further deter-
mine the factual accuracy to serve the end business
goal. However, we focus this work on the faithful-
ness aspect and leave the factual part for future
work.

2.2. Hallucination Detection
Many recent studies have been focused on miti-
gating hallucinations in LLMs. Depending on the
accessibility of LLM models, there are white-box,
grey-box and black-box approaches. A white-box
method (Azaria and Mitchell, 2023) used the LLM’s
hidden layer activations to train a classifier that
predicts the probability of a statement being true.
Grey-box approaches detect the parts of the output
sequence that the LLM is least confident about by
examining the logit output values in the response
(Varshney et al., 2023). Both white-box and grey-
box approaches require access to internal states
or token probabilities that may not necessarily be
available, e.g. when LLMs are accessed through
limited API calls. Black-box approaches (Manakul
et al., 2023) are suitable for a wider range of appli-
cations when only LLMs responses are available.

Approaches for mitigating hallucination can also
be grouped into zero-resource and external knowl-
edge based approaches depending on if an exter-
nal knowledge base is involved. External knowl-
edge based approaches try to mitigate hallucina-
tion through information augmentation from exter-
nal knowledge sources (Guo et al., 2022; Moiseev
et al., 2022; Martino et al., 2023; Peng et al., 2023a).
However, knowledge augmented approaches usu-
ally come with the cost of additional complexity and
resource overhead (Lee et al., 2022).

Zero-resource approaches do not rely on exter-
nal knowledge to detect hallucinated responses.
One line of studies leverage unsupervised met-
rics scores (Celikyilmaz et al., 2020; Forbes et al.,
2023) such as ROUGE (Lin, 2004), BLEU (Pap-
ineni et al., 2002), and METEOR (Banerjee and
Lavie, 2005) to measure the consistency between
the generated text and the source text. While these
metrics offer simplicity, they frequently fall short in
accurately aligning texts. This leads to sub-optimal
performance when semantically relevant text di-
verges from the reference’s surface form. Addi-
tionally, these metrics struggle to capture distant
dependencies and tend to penalize changes in se-
mantic ordering. BERTScore (Zhang et al., 2019)
leverages the pre-trained contextual embeddings
from BERT (Devlin et al., 2018) and matches words

in candidate and reference sentences by cosine
similarity. BERTScore has been shown to corre-
late well with human judgments. Another approach
is converting hallucination detection to classifica-
tion problem (Chen et al., 2023). Recent studies
showed that LLMs can be good evaluators them-
selves (Wang et al., 2023) and many studies lever-
age LLMs to detect hallucinations (Mündler et al.,
2023; Manakul et al., 2023; Weng et al., 2023; Fu
et al., 2023). Another way to mitigate hallucina-
tion is fine-tuning LLMs on task-specific data (Cao
et al., 2021; Yu et al., 2023). Some of these ap-
proaches can complement each other. For exam-
ple, Guan et al. (2023) combined LLM verification,
instruction tuning and retrieval augmentation to ver-
ify facts for LLMs outputs. LLM-based approaches
can entail significant expenses when utilizing com-
mercially available LLMs, especially on large-scale
e-commerce applications. Alternatively, the devel-
opment of proprietary LLMs within an organization
introduces a different set of costs.

In this work, we present a method for detect-
ing hallucinations in LLMs-enriched product list-
ings. Our approach utilizes zero-resource black-
box hallucination detection techniques, eliminating
the need for external knowledge base or access to
LLMs’ internal states. This independence allows
our system to be agnostic of upstream LLMs and
be generalizable to a wider range of LLMs applica-
tions. Moreover, our method enhances scalability
compared to LLM-only approaches by markedly re-
ducing the inference space prior to LLM validation.

3. Methodology

We propose a two-phase approach for hallucina-
tion detection (Figure 2), emphasizing recall in the
initial phase and enhancing precision in the sub-
sequent phase. In the first phase, termed Lexi-
cal and Semantic Screening (LSS), cost-effective
unsupervised techniques are applied to detect a
broad spectrum of hallucinations. Although these
methods are efficient, their performance may be
compromised by text comprehension limitations. In
the second phase, LLM validation, we utilize LLMs
to validate the candidate hallucinations identified
in the first phase. We optimize precision in the
second phase by leveraging the robust language
understanding capabilities of LLMs. Given the crit-
ical need for scalability in hallucination detection,
particularly in the context of e-commerce with a
vast product inventory, the initial LSS phase signif-
icantly reduces the inference space. This reduc-
tion enables the more resource-intensive approach
to scale effectively in the second phase, address-
ing the challenge of processing billions of prod-
ucts for product listing enrichment in e-commerce.
Figure 3 depicts LLM-generated attribute values,
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Brand: Lilly Pulitzer and Size: 12inchx10inch, for
the given source product listing. Using LSS, we
confirmed the legitimacy of Brand: Lilly Pulitzer by
cross-referencing it with information in the source
product name. Subsequently, we evaluated the
Size: 12inchx10inch attribute and determined it to
be hallucinated content employing LLM validation.

Figure 2: Two-phase hallucination detection.

Figure 3: Example of hallucination detection.

3.1. Lexical and Semantic Screening
(LSS)

In the initial phase, we employ unsupervised meth-
ods to flag all potential hallucinations by detect-
ing information lacking supporting evidence in the
source input. This support is traced through exact
keywords or similar content, examined at either the
token or the entire generated value level. We inves-
tigated techniques for locating supporting evidence
from the source input:

3.1.1. Token-level LSS

Rebuffel et al. (2022) advocated addressing hal-
lucinations at the word level rather than the in-
stance level. They employed word-level alignment
between candidate and inference text to control hal-
lucinations. Their experiments demonstrated that
word-level signals improved the fluency, factual ac-
curacy, and relevance of LLM outputs. In our study,
we similarly employ token-level alignment between

the source input and LLM-enriched values to detect
hallucinations.

Exact match. A direct method involves examining
the presence of generated content in the source in-
put. In Figure 2, the explicit mention of Lilly Pulitzer
in the source input rules out hallucination. This
method, denoted as Texact, exhibits high recall but
low precision in identifying hallucinations.

Exact matching often results in a large number
false positive hallucinations, as LLMs may produce
semantically similar but distinct words in enriched
product listings. Fuzzy matching provides more
flexibility, allowing LLMs to generate product in-
formation with enhanced fluency and coherence,
leveraging advanced vocabulary. We assessed
three fuzzy matching techniques:

Edit-distance. Token-level edit-distance (Leven-
shtein et al., 1966) between the source text and
hallucinated text was used in generating synthetic
data for hallucination detection and it was found
that this approach provided sufficiently high quality
training data in practice (Zhou et al., 2020). In our
work, we adopt a similar approach by calculating
the token-level edit distance between each token in
the generated and source texts to pinpoint potential
supporting evidence within the source data. This
method is denoted as Tedit.

N-gram overlap metrics. N-gram matching met-
rics are commonly used for evaluating text genera-
tion by counting the number of n-grams that occur
in the reference and candidate text. ROUGE (Lin,
2004) is often used for summarization evaluation,
while BLEU is the most widely used metric in ma-
chine translation (Papineni et al., 2002). METEOR
(Banerjee and Lavie, 2005) introduces flexibility by
permitting a transition from strict unigram matching
to encompassing word stems, synonyms, and para-
phrases. These metrics provide a way to find the
evidence for supporting the LLM-generated content
from the source input. Therefore, we utilize three
metrics: Trouge, Tbleu, and Tmeteor.

Embedding similarity. Token embeddings cap-
ture nuanced semantic and syntactic word rela-
tionships (Mikolov et al., 2013; Pennington et al.,
2014; Bojanowski et al., 2016), and allow for a soft
measure of similarity instead of strict string match-
ing between the generated and source text. In
this work, we experimented with three embedding
models provided in Gensim (Rehurek and Sojka,
2011): word2vec-google-news-300 (Mikolov et al.,
2013) (Tword2vec), glove-wiki-gigaword-300 (Pen-
nington et al., 2014) (Tglove), and fasttext-wiki-news-
subwords-300 (Bojanowski et al., 2016) (Tfasttext).
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3.1.2. Value-level LSS

Instead of checking evidence at the token level, we
can evaluate the semantic similarity between the
generated text and the source input as a whole.
Significant deviations from the source text in the
generated content can signal hallucination.

Sentence embedding. Sentence transformers
convert sentences into semantically meaningful
embeddings that can be compared using cosine-
similarity (Reimers and Gurevych, 2019). In
this work, we used four sentence-transformers
(Reimers and Gurevych, 2019) models from Hug-
gingFace (Wolf et al., 2019): all-MiniLM-L6-v2, all-
mpnet-base-v2, gtr-t5-large (Ni et al., 2021), and
multi-qa-mpnet-base-dot-v1, denoted as VminiLM ,
Vmpnet, Vgtr, and Vqa respectively.

BERTScore. BERTScore has been shown to cor-
relate well with human judgments for evaluating
natural language generation tasks (Zhang et al.,
2019). BERTScore calculates a similarity score
between the candidate and reference text by aggre-
gating the cosine similarities of their token embed-
dings. Unlike traditional metrics such as ROUGE,
BLEU and METEOR that rely on string matching or
heuristics, BERTScore uses contextualized token
embeddings. It demonstrates a stronger capability
of accommodating instances where semantically
correct phrases deviate from the surface form of the
reference. We abbreviate this approach as Vbert.

ALIGNSCORE. ALIGNSCORE (Zha et al., 2023)
evaluates the factual consistency of generated text
against a model input. It is applicable to various
factual inconsistency scenarios, as it employs a
unified training framework of the alignment function
by integrating diverse data sources from seven well-
established tasks. We denote this as Valign.

3.2. LLM Validation

Recent studies have explored the use of LLMs
for evaluating their own generated text (Varshney
et al., 2023), showing promising results. However,
LLM validation typically incurs a significant expense
due to associated API fees, presenting a challenge
that impedes the scalability of LLM validation for
e-commerce product listing enrichment. This chal-
lenge underscores the need to initially filter out a
substantial portion of non-hallucinated content in
the LSS step, which allows the subsequent LLM
validation step to focus on a more manageable num-
ber of candidates. In this work, we used Claude 2
(Anthropic, 2023) from Anthropic for LLM validation.

Zero-shot. LLMs have shown great potential in
evaluating the factual consistency between a docu-
ment and its summary in the zero-shot setting (Luo
et al., 2023). Thus, we directly prompt an LLM to
verify the hallucinations detected in the LSS step.

Chain-of-thought (CoT). Chain-of-thought (CoT)
prompting significantly enhances LLMs’ complex
reasoning abilities (Wei et al., 2022). CoT prompt-
ing, involving the presentation of intermediate rea-
soning steps, prove effective in both zero-shot (Ko-
jima et al., 2022) or in-context learning (Wei et al.,
2022) settings. Kojima et al. showed that LLMs
demonstrated decent zero-shot reasoning capabil-
ity by instructing them to think step by step (Kojima
et al., 2022). In this work, we adopt a similar ap-
proach, instructing LLMs to provide step-by-step
reasoning and identify supporting evidence when
available. We only use the final decision from LLM
as the prediction. Nonetheless, prompting the LLM
to seek evidence initiates an underlying reasoning
process, which can potentially improve the overall
performance (Kojima et al., 2022).

In-context learning. LLMs demonstrate impres-
sive ability to do in-context learning (Brown et al.,
2020). They can generalize to unseen data by
leveraging a limited set of training examples in the
prompt, without explicit pre-training for the specific
task (Xie et al., 2021). We asked domain experts
to select examples of product listings with and with-
out hallucinations and include them in prompts. By
augmenting the context with these selected exam-
ples, it is anticipated that the LLM will discern the
underlying pattern present in the demonstrations,
thus enabling accurate predictions.

Many studies have investigated instruction-
tuning for LLMs to enhance alignment with specific
tasks (Ouyang et al., 2022; Peng et al., 2023b). In
contrast to in-context learning, wherein examples
are presented during inference without updating
the LLMs’ parameters, instruction tuning involves
utilizing a set of examples to adjust the parame-
ters during training. However, no demonstrations
are employed during inference in instruction tun-
ing (Duan et al., 2023). Although instruction tuning
has shown promising results, it requires human-
annotated prompts and feedback on a specific task.
In our work, we do not experiment with instruction-
tuning but consider it a potential future direction.

4. Experiments

In this section, we first introduce the dataset em-
ployed for evaluating hallucination detection in LLM-
enriched product listings. We then compare the
performance of different approaches, demonstrat-
ing the effectiveness of our proposed approach.
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Finally, we discuss our findings, providing insights
that guide our future research.

4.1. Dataset

We conducted experiments on two sets of human-
annotated LLM-enriched product listings as de-
scribed in Table 1. DS exclusively contains struc-
tured product attributes, whereas DU comprises
only unstructured attributes. Structured attributes
typically encompass product features characterized
by enumerated, categorical, numerical, or keyword
values, whereas unstructured attributes comprise
long-form free-text values. In Table 1, we provide
a summary of word counts for both structured and
unstructured attributes. Given that the majority of
product attributes are structured, we consolidate
these into a single total count rather than listing
each attribute individually. Conversely, we detail
the three most prevalent unstructured attributes.
Structured attributes normally contain 1-2 words,
while unstructured attributes can include more than
one hundred words. Additionally, attributes in DS

exhibits deterministic values, enabling annotators
to identify hallucinations through a direct examina-
tion of the source input. In contrast, DU introduces
greater ambiguity. For instance, DS primarily in-
cludes attributes such as Color, making it straight-
forward to assess the faithfulness of generated val-
ues to the source. On the contrary, DU contains
descriptive attributes, where values are less de-
terministic. Annotators’ perceptions play a critical
role in human judgments, contributing to increased
uncertainty in hallucination detection.

Dataset Attribute type #Listings #Entries
DS Structured 200 2,765
DU Unstructured 4,042 12,126

Table 1: Dataset description.

Type Attribute #Words
Avg. 50p 75p

Structured - 2 1 2

Unstructured
U-Attribute 1 17 16 21
U-Attribute 2 91 81 102
U-Attribute 3 138 130 160

Table 2: Number of words by attribute type.

The datasets include original product listing
alongside LLM-enriched values for one or multi-
ple attributes in that listing. Our approach focuses
on detecting hallucination at the attribute level. For
instance, Figure 3 displays a listing with 2 LLM-
enriched attributes: Brand and Size. We make
independent decisions for each attribute. Domain

experts audited the dataset to pinpoint hallucina-
tions in LLM-generated values, and we use these
human labels as the gold standard to evaluate our
proposed approaches.

4.2. Experimental results
We utilize precision, recall, and F1 score to assess
model performance. In e-commerce, distributing
hallucinated product listings may lead to negative
user experiences or legal issues in critical scenar-
ios. Nevertheless, rejecting LLM-enriched product
listings based on mistakenly identified hallucina-
tions carries substantial costs. The precision-recall
trade-off allows optimizing the balance between the
consequences of false positive and false negative
predictions in practice.

4.2.1. LSS

Table 3 and 4 detail the performance of various
LSS models on DS and DU . In the results, P , R,
and F1 represent precision, recall, and F1 score,
respectively. Precision and recall targets, estab-
lished by domain experts, are denoted as p and r.
The target f1 is calculated with p and r. We present
the performance of various approaches compared
against the targets. As we optimize recall in the
LSS phase to maximize the coverage of halluci-
nations, we choose the optimal model from each
method with recall >= min(recallmax, r).

LSS Model P/p R/r F1/f1 %Inf

Texact 1.05 1.09 1.07 7.4
Tedit 1.05 1.09 1.07 7.4
Trouge 0.88 1.06 0.95 9.0
Tbleu 1.05 1.07 1.06 6.8
Tmeteor 0.68 1.06 0.82 11.6
Tword2vec 1.09 1.04 1.06 6.4
Tglove 1.09 1.03 1.06 6.4
Tfasttext 1.09 1.04 1.07 6.4
VminiLM 0.85 1.06 0.94 9.8
Vmpnet 0.81 1.07 0.91 116
Vgtr 0.84 1.06 0.93 9.5
Vqa 0.81 1.06 0.91 10.6
Vbert 0.40 1.08 0.57 48.5
Valign 0.80 1.07 0.91 10.6

Table 3: Performances of LSS models on DS .

The results indicate that LSS models exhibited
promising abilities in detecting hallucinations within
DS . Texact, Tedit and Tfasttext yielded the high-
est F1 score at 1.07f1. While other LSS models
demonstrated slightly lower performance, the ma-
jority maintained recall rates above 1.05r and pre-
cision within the range of 0.8p-1.05p. In contrast,
these models exhibited a significant drop in perfor-
mance when applied to DU . While most maintained
over 1.05r recall, precision struggled, falling below
0.25p. In e-commerce, ensuring high recall in hal-
lucination detection is crucial, as false negatives
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LSS Model P/p R/r F1/f1 %Inf

Texact 0.23 1.11 0.36 12.5
Tedit 0.23 1.11 0.36 12.5
Trouge 0.23 1.11 0.37 13.2
Tbleu 0.23 1.11 0.36 12.5
Tmeteor 0.26 1.08 0.41 7.2
Tword2vec 0.23 1.11 0.36 12.4
Tglove 0.23 1.11 0.36 12.4
Tfasttext 0.23 1.11 0.36 12.4
VminiLM 0.27 0.96 0.41 2.9
Vmpnet 0.20 0.90 0.31 2.5
Vgtr 0.17 0.74 0.27 1.7
Vqa 0.24 1.06 0.37 6.0
Vbert 0.25 0.34 0.29 0.3
Valign 0.22 1.05 0.35 6.8

Table 4: Performances of LSS models on DU .

directly affect customer experiences and can hurt
brand reputation.

The%Inf column denotes the portion of the infer-
ence space identified by LSS as hallucination can-
didates, serving as input for LLM validation. LSS
models effectively reduced the inference space to
less than 12.5%, and some models further nar-
rowed this down to below 10% for LLM validation.
Vbert is an anomalous case among the models

for DS , with a performance of only 0.4p. Our obser-
vations indicate that Vbert tends to give lower scores
to generated values significantly shorter than the
reference text, causing an increase in false posi-
tives. Conversely, it assigns high similarity scores
to unstructured attribute values compared to the
source text, which substantially reduces recall.

The primary difference between the datasets is
their attribute types. The unstructured attributes
in DU contain substantial free-text content, differ-
ing significantly from the concise nature of struc-
tured attribute values in DS . Detecting hallucination
from unstructured attribute values poses a greater
challenge compared to structured ones. Also, the
difference between token-level and value-level ap-
proaches is larger on structured attributes than that
on unstructured attributes. This indicates that word-
to-word comparison approaches are more suitable
when the LLM-generated values are a bag of key-
words, rather than coherent paragraphs.

Combining LSS models improves performance
on DS through an AND operation on their predic-
tions. We explored every possible pairing of two
models, and Table 5 displays the top three com-
bined LSS models for DS , demonstrating notable
enhancements. Intuitively, the combined models
generated enhance precision but decreased recall.
All the optimal combined models consist of a token-
level and a text-level model. ALIGNSCORE signifi-
cantly contributed to the top combined models DS .
On the contrary, combined LSS models demon-
strated inferior performance compared to individual
models on dataset DU , as evidenced in Table 5.

Notably, this combination led to a significant reduc-
tion in recall without improving precision, resulting
in a decreased F1 score.

Dataset Combined model P/p R/r F1/f1

DS

Texact+Valign 1.12 1.06 1.09
Tedit+Valign 1.12 1.06 1.09
Tbleu+Valign 1.12 1.05 1.09

DU Tbleu+Vbert 0.23 0.31 0.26
Tedit+Vbert 0.22 0.31 0.26
Texact+Vbert 0.22 0.31 0.26

Table 5: Combination of LSS models.

4.2.2. LLM validation

Table 6 presents the F1 scores of applying LLM
validation to hallucination candidates identified by
LSS models. Overall, LLM validation enhanced
the performance on DS , while yielding marginal
improvement on DU . On DS , solely employing
zero-shot LLM validation improved the performance
for each LSS model. The CoT approach gener-
ally achieved higher F1 scores, with the excep-
tions of Tbleu, Tfasttext and Vbert, where the zero-
shot approach outperformed. For DU , LLM valida-
tion with in-context examples consistently outper-
formed zero-shot and CoT. Optimal performance
was achieved by combining LSS models with sub-
sequent LLM validation for DS , all models demon-
strated comparable F1 scores for DU post-LLM val-
idation. Selection of models can be tailored based
on specific business requirements for precision and
recall.

It is known that LLM in-context learning faces a
robustness challenge (Liu et al., 2021), with out-
comes highly depend on the chosen in-context ex-
amples. We observed this dependence in our ex-
periments. We asked domain experts to select
examples of product listings with and without hallu-
cinations. The selected examples aim to represent
different situations where hallucinations may oc-
cur. Despite efforts to cover various scenarios, it
remains challenging to encompass all possibilities
within a limited set of examples. Our observation
indicates that the LLM model tends to replicate the
behavior of the provided examples during valida-
tion response generation. Consequently, it pre-
dominantly identifies semantically-close samples
as hallucinations. A future direction would be strate-
gically select examples based on their similarity to
the query instance.

4.3. Discussions
Next, we discuss some key findings during the ex-
periments and talk about a few open questions not
covered by this work. This sheds lights on direc-
tions for future work.
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Model
DS DU

Z C I Z C I

Texact 1.08 1.09 1.08 0.37 0.36 0.37
Tedit 1.08 1.09 1.08 0.37 0.36 0.37
Trouge 1.01 1.05 1.00 0.36 0.36 0.37
Tbleu 1.08 1.07 1.05 0.36 0.36 0.37
Tmeteor 0.97 0.99 0.99 0.36 0.35 0.39
Tword2vec 1.07 1.07 1.01 0.37 0.37 0.37
Tglove 1.07 1.07 1.01 0.37 0.37 0.37
Tfasttext 1.08 1.07 1.03 0.37 0.37 0.37
VminiLM 1.01 1.01 1.02 0.37 0.37 0.37
Vmpnet 1.01 1.04 1.00 0.37 0.36 0.37
Vgtr 1.01 1.04 1.00 0.37 0.36 0.37
Vqa 1.00 1.04 1.00 0.37 0.36 0.37
Vbert 1.02 1.00 1.00 0.32 0.33 0.34
Valign 1.07 1.04 1.01 0.37 0.36 0.36
Texact+Valign 1.10 1.07 1.04 - - -

Table 6: LLM validation performance. Z denotes
zero-shot, C denotes CoT, and I denotes in-context
learning.

Factual hallucination. This study focuses on
identifying hallucinated product information that
lack support from the source input. However, not
all detected hallucinations are necessarily incor-
rect; some may align with factual information (Cao
et al., 2021). As illustrated in Figure 4(a), the LLM-
generated Color value lacks support in the source
input, but aligns with the product image. It is worth
noting that the product image was not part of the
source input but included here for illustrative pur-
poses. Conversely, the generated value of Number
of pocket for the tote bag in Figure 4(b) is both un-
supported and non-factual. In this study, we aim
to identify hallucinated content based on the given
source product listings. Distinguishing between fac-
tual and non-factual hallucinations could facilitate
taking follow-up actions on the detected hallucina-
tions. However, verifying the correctness of halluci-
nations necessitates external knowledge sources,
like supplementary product details or images. We
leave this for future work.

Figure 4: Factual and non-factual hallucination.

Common sense. We observed that annotators
relied on common sense to evaluate hallucination in
some cases. In Figure 5, LLM suggested Walking
as the Recommended use for the sandal. Human

annotators considered this non-hallucinatory, given
the common understanding that sandals are suit-
able for walking rather than activities like running
or jumping. However, our method flagged this as
hallucination because there was no corresponding
information in the source input supporting Walk-
ing, and the LLM validation step failed to capture
it. Unlike the factual hallucination in Figure 4(a),
which is clearly unfaithful to the source input even
if factual, determining hallucination becomes chal-
lenging when common sense is a factor.

Figure 5: Common sense.

Common sense is a subjective and evolving con-
cept, varying among individuals based on their
experiences and knowledge. For instance, what
is common knowledge today, such as Apple be-
ing the manufacturer of the iPhone, may not have
been widely known several years ago. To distin-
guish common sense from hallucination in LLMs,
we can leverage their hidden knowledge or external
sources. However, a precise definition of common
sense versus hallucination for different use cases
is essential for effective hallucination detection.

Hallucination in LLM validation. The LLM vali-
dation phase, like other LLM applications, is prone
to hallucinations. Instead of developing a new hal-
lucination detection solution, a potential strategy to
address this issue is to utilize multiple responses
from one or more models. However, cost is a crucial
consideration in real-world industrial applications,
particularly in large-scale e-commerce settings. An-
other alternative is fine-tuning a task-specific LLM,
but this necessitates high-quality training labels.

5. Conclusions

This paper introduces an effective approach for
identifying hallucinations from LLM-enriched prod-
uct listings. We proposed a two-phase approach,
prioritizing recall in the initial phase and enhanc-
ing precision in the subsequent phase. Our ex-
periments on two real-world e-commerce datasets
demonstrate the efficacy of our proposed approach,
with better performance observed on structured
attributes compared to unstructured ones. We
also highlight the challenge introduced by common
sense when human annotators label the data, pro-
viding valuable insights for future work.
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