@inproceedings{azov-etal-2024-self,
title = "Self-Improving Customer Review Response Generation Based on {LLM}s",
author = "Azov, Guy and
Pelc, Tatiana and
Fledel Alon, Adi and
Kamhi, Gila",
editor = "Malmasi, Shervin and
Fetahu, Besnik and
Ueffing, Nicola and
Rokhlenko, Oleg and
Agichtein, Eugene and
Guy, Ido",
booktitle = "Proceedings of the Seventh Workshop on e-Commerce and NLP @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.ecnlp-1.5",
pages = "40--57",
abstract = "Previous studies have demonstrated that proactive interaction with user reviews has a positive impact on the perception of app users and encourages them to submit revised ratings. Nevertheless, developers encounter challenges in managing a high volume of reviews, particularly in the case of popular apps with a substantial influx of daily reviews. Consequently, there is a demand for automated solutions aimed at streamlining the process of responding to user reviews. To address this, we have developed a new system for generating automatic responses by leveraging user-contributed documents with the help of retrieval-augmented generation (RAG) and advanced Large Language Models (LLMs). Our solution, named SCRABLE, represents an adaptive customer review response automation that enhances itself with self-optimizing prompts and a judging mechanism based on LLMs. Additionally, we introduce an automatic scoring mechanism that mimics the role of a human evaluator to assess the quality of responses generated in customer review domains. Extensive experiments and analyses conducted on real-world datasets reveal that our method is effective in producing high-quality responses, yielding improvement of more than 8.5{\%} compared to the baseline. Further validation through manual examination of the generated responses underscores the efficacy our proposed system.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="azov-etal-2024-self">
<titleInfo>
<title>Self-Improving Customer Review Response Generation Based on LLMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Azov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatiana</namePart>
<namePart type="family">Pelc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adi</namePart>
<namePart type="family">Fledel Alon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gila</namePart>
<namePart type="family">Kamhi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Seventh Workshop on e-Commerce and NLP @ LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shervin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Besnik</namePart>
<namePart type="family">Fetahu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicola</namePart>
<namePart type="family">Ueffing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oleg</namePart>
<namePart type="family">Rokhlenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eugene</namePart>
<namePart type="family">Agichtein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ido</namePart>
<namePart type="family">Guy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Previous studies have demonstrated that proactive interaction with user reviews has a positive impact on the perception of app users and encourages them to submit revised ratings. Nevertheless, developers encounter challenges in managing a high volume of reviews, particularly in the case of popular apps with a substantial influx of daily reviews. Consequently, there is a demand for automated solutions aimed at streamlining the process of responding to user reviews. To address this, we have developed a new system for generating automatic responses by leveraging user-contributed documents with the help of retrieval-augmented generation (RAG) and advanced Large Language Models (LLMs). Our solution, named SCRABLE, represents an adaptive customer review response automation that enhances itself with self-optimizing prompts and a judging mechanism based on LLMs. Additionally, we introduce an automatic scoring mechanism that mimics the role of a human evaluator to assess the quality of responses generated in customer review domains. Extensive experiments and analyses conducted on real-world datasets reveal that our method is effective in producing high-quality responses, yielding improvement of more than 8.5% compared to the baseline. Further validation through manual examination of the generated responses underscores the efficacy our proposed system.</abstract>
<identifier type="citekey">azov-etal-2024-self</identifier>
<location>
<url>https://aclanthology.org/2024.ecnlp-1.5</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>40</start>
<end>57</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Self-Improving Customer Review Response Generation Based on LLMs
%A Azov, Guy
%A Pelc, Tatiana
%A Fledel Alon, Adi
%A Kamhi, Gila
%Y Malmasi, Shervin
%Y Fetahu, Besnik
%Y Ueffing, Nicola
%Y Rokhlenko, Oleg
%Y Agichtein, Eugene
%Y Guy, Ido
%S Proceedings of the Seventh Workshop on e-Commerce and NLP @ LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F azov-etal-2024-self
%X Previous studies have demonstrated that proactive interaction with user reviews has a positive impact on the perception of app users and encourages them to submit revised ratings. Nevertheless, developers encounter challenges in managing a high volume of reviews, particularly in the case of popular apps with a substantial influx of daily reviews. Consequently, there is a demand for automated solutions aimed at streamlining the process of responding to user reviews. To address this, we have developed a new system for generating automatic responses by leveraging user-contributed documents with the help of retrieval-augmented generation (RAG) and advanced Large Language Models (LLMs). Our solution, named SCRABLE, represents an adaptive customer review response automation that enhances itself with self-optimizing prompts and a judging mechanism based on LLMs. Additionally, we introduce an automatic scoring mechanism that mimics the role of a human evaluator to assess the quality of responses generated in customer review domains. Extensive experiments and analyses conducted on real-world datasets reveal that our method is effective in producing high-quality responses, yielding improvement of more than 8.5% compared to the baseline. Further validation through manual examination of the generated responses underscores the efficacy our proposed system.
%U https://aclanthology.org/2024.ecnlp-1.5
%P 40-57
Markdown (Informal)
[Self-Improving Customer Review Response Generation Based on LLMs](https://aclanthology.org/2024.ecnlp-1.5) (Azov et al., ECNLP-WS 2024)
ACL