
The Seventh Workshop on e-Commerce and NLP (ECNLP 7), pages 65–73
21 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

65

Turkish Typo Correction for E-Commerce Search Engines

K.Elif Oral, Koray Mancuhan, Hüseyin Varol Erdem, Ece Hatipoğlu
Hepsiburada, Hepsiburada, Hepsiburada, Hepsiburada

{kadriye.oral, koray.mancuhan, varol.erdem, ece.aktan}@hepsiburada.com

Abstract
Typo correction is a challenging problem when it is developed for morphologically rich languages. The existing
approaches in the literature are successful mainly for English, leaving the problem open for such languages.
This creates an issue, because the typo correction is a critical component in practice for many systems such
as search engines. Especially, the search engines of e-commerce platforms rely heavily on typo correction for
product relevancy. A bad performing typo corrector could result in very few number of relevant products when a
user is looking for a product on an e-commerce platform, resulting in significant revenue decrease. For the first
time in the literature, this paper proposes a modern typo corrector for a morphologically rich language, Turkish;
which is integrated to the search engine of one of the leading e-commerce platforms in Turkey, Hepsiburada.
Our thorough experiments show that this new typo corrector performs very successful in practice, outperform-
ing the existing Turkish specific propositions in the literature; even if it is applied out of the context of the search engines.

Keywords: typo correction, search engines, e-commerce, deep learning

1. Introduction

The search engines play an important role for e-
commerce, providing customers an effective tool for
purchasing their desired products. As a first step of
the search experience, the typo correction is vital in
e-commerce; since it directly affects the precision
of the search outcomes in terms of the product rele-
vancy. Users often enter the search queries hastily;
this leads to unintentional misspellings. Addition-
ally, they may use different input sources (e.g., key-
word customization for different languages), which
result in completely incorrect search terms. A typo
corrector detects and corrects these errors, ensur-
ing that the search results contain the products that
the users are intended to find. Thus, it provides the
users a much better online shopping experience.

The traditional spelling corrector systems use sta-
tistical techniques (Brill and Moore, 2000; Hasan
et al., 2015; Li et al., 2012; Gupta et al., 2019) and
edit distances (Damerau, 1964; Whitelaw et al.,
2009). These methodologies have limitations in ad-
dressing the learning issues, when they are faced
with increased data sparsity. In recent years, the
deep neural models (Ye et al., 2023; Kuznetsov
and Urdiales, 2021; Jayanthi et al., 2020; Etoori
et al., 2018a) have gained considerable popular-
ity in this field by improving the accuracy despite
an important drawback: the increased inference
latency due to the model complexity. Although
spelling correction is a well-studied field encom-
passing languages with different characteristics
(Liu et al., 2021; Azmi et al., 2019; Duong et al.,
2020; Eryiğit and Torunoğlu-Selamet, 2017; Park
et al., 2021); the studies, which focus specifically on
the morphologically rich languages (MRLs), are still
in an immature state. Especially, their applications

in e-commerce are still in early stages.
Turkish, a morphologically rich and agglutinative

language with the presence of diacritized letters (e.i,
çığüö), is prone to spelling errors. This becomes
particularly important in the context of e-commerce
search. For example, the users face difficulties in
spelling the non-Turkish brands (e.g., "Lenova" in-
stead of "Lenovo"); or, use "ciguo" instead of the
Turkish letters and vice versa (e.g., İphone instead
of Iphone). Furthermore, the agglutinate nature
of the Turkish brings an additional challenge. Cor-
recting considering the inflections is crucial, as the
absence of suffixes in the search queries impacts
products matched at the retrieval level. The over-
all search relevancy is also affected significantly.
For example, we cannot correct the "banyo muslul"
as "banyo musluk" instead of the "banyo musluğu"
(bathroom faucet)1); because, (1) there is a degra-
dation in the meaning due to the absence of the
genitive marker I; and, (2) the search system could
bring different products since there may be exact
match between the word "musluk" and other prod-
uct names, under partially relevant categories such
as "banyo musluk aksesuarları" (bathroom faucet
accessories).

We group the Turkish spelling errors, encoun-
tered in e-commerce, under two subcategories: (i)
the general spelling errors (e.g., fat finger, inser-
tion/deletion.) which can be dealt with applying
general solutions proposed for English, (ii) the lan-
guage specific spelling errors (e.g., missing dia-
critics, phonetics) which necessitate the special-
ized treatments. Figure 1 shows the distribution of

1The last consonant of the word "musluk" (faucet)
becomes ğ when a genitive marker -I is attached to it, a
phenomenon called the consonant lenition.



66

Figure 1: Spelling Error Distribution: The red bars
indicate the misspelling types of the language spe-
cific spelling errors, the orange ones show the sec-
ond type of the language specific spelling errors.
The misspelling type descriptions are available in
the Appendix A.1

.

searches which had bad relevancy due to the mis-
spellings errors 2. As shown in the figure, 59.58%
of total misspellings belong to the latter category.

In the latter subcategory, the proposed ap-
proaches, tailored for the languages with limited
linguistic characterization, do not fit due to the fol-
lowing factors: (1) high data sparsity due to the rich
morphology (a word may have hundreds of different
surface forms), (2) substantial edit distances due to
the absence of diacritics and phonetic spelling (e.g.,
the edit distance between the words "başlığı" (head)
and "basligi" in Turkish is 4 3). The deep models are
relatively more effective addressing these issues;
but, they are not suitable for the search engines
due to the high latency costs.

In this paper, we introduce a generalized spelling
correction method, which handles the language
specific spelling errors along with the general ones,
without additional latency. Our simple yet effec-
tive method enhances the candidate generation
through a morphology-centered approach. The
main contributions of our work are:

• A candidate generation method, which re-
lies on using a character level transformer
model with low latency; capturing the morphol-
ogy based relationships between the syntactic
word vectors.

2We collected 20k queries on our platform and an-
alyzed them based on the search relevancy. We found
that 12% of our search results had low relevancy, and
11% of this was due to the misspelling errors.

3The last consonant of the word "başlık" (head) be-
comes ğ when a genitive marker -I is attached to it due
to lenition.

• A candidate scoring function that is customized
to our morphologically rich language, Turkish.

• A blueprint methodology of forming a training
set specific to our morphologically rich lan-
guage, Turkish.

2. Related Work

The field of spelling correction has evolved from the
early work, which was based on the (Wagner and
Fischer, 1974) editing distance and the noisy chan-
nel model, (Kemighan et al., 2003; Brill and Moore,
2000) to the neural methods based approaches.
Early investigations leverage the edit distance and
its variations (Wagner and Fischer, 1974); and,
the noisy channel model (Brill and Moore, 2000;
Kemighan et al., 2003) to rectify the spelling errors.
For spelling correction, Sun et al. (2015) propose
the convolutional neural networks (CNNs) while
Jayanthi et al. (2020) introduce NeuSpell. Ghosh
and Kristensson (2017) and Etoori et al. (2018b)
extended the neural approach to address the nu-
anced challenges in the spelling correction tasks.
Along with neural models, the spelling correction
has been reformulated as a generational task (Zhou
et al., 2017; Kuznetsov and Urdiales; Zhang et al.,
2019a; Grundkiewicz et al., 2019; Sharma et al.,
2023; Zhang et al., 2023).

Spelling correction is a critical component for e-
commerce search engines, particularly in the con-
text of e-commerce. Several recent studies have
addressed the unique challenges posed by the e-
commerce search engines. Yang et al. (2022) pro-
pose a generalized spelling correction to address
the phonetic errors. Kakkar et al. (2023) and Pande
et al. (2022) improve the correction rate on tough
spelling mistakes by weakly supervised data. Ye
et al. (2023) tailor the pretrained language models
for e-commerce search queries.

Non-English languages may need additional
treatments for spelling correction due to their spe-
cific properties (Zitouni and Sarikaya, 2009; AZMI
and ALMAJED, 2015; Liu et al., 2022; Zhang et al.,
2019b; Liu et al., 2021). Turkish spelling correction
Eryiğit and Torunoğlu-Selamet (2017); Demir and
Topcu (2022); Torunoglu-Selamet et al. (2016); Akın
and Dündar (2007) has contributed significantly to
the field, providing valuable insights and method-
ologies. Safaya et al. (2022); Koksal et al. (2020)
introduced a spelling correction corpus.

3. Spelling Corrector

Our spelling corrector includes the candidate gener-
ation and the ranking steps according to the general
approach in the literature. For a given input query



67

Figure 2: The Correction pipeline

Qw∗ with a misspelled word w∗, the spelling correc-
tor generates a set of words W = {w1, w2, ..., wn};
where wi is a candidate word that could be the
correction of w∗. Then, a query candidate list is
formed by replacing w∗ with wi. The corrected Qc

is obtained by the selection of a candidate with
the highest score. The score calculation uses the
following formula

Qc = wiargmax(f(Qwi
|Qw∗)) (1)

where f is the scoring function that is applied on
each query candidate (Qwi) at the ranking stage.
Our correction pipeline is depicted in Figure 2

3.1. Candidate Generation
We frame the candidate generation as a vector
search where the words are represented by the
vectors based on their syntax. The basic idea of
this is that the incorrectly spelled words should be
substantially close to their correctly spelled coun-
terparts in terms of syntax. Consequently, obtain-
ing the closest n words, which are based on the
syntax-aware vector similarity for a misspelled word,
automatically forms a candidate list; including the
potential corrections.

Syntax-aware representations have the ability to
capture the relationship between the root words
and their surface forms. Such an ability enables
to locate the inflected words close to their nomina-
tive forms. This capability provides an opportunity
to correct the words, restoring the missing word
inflections. It brings the awareness of the mor-
phology; and, allows more accurate corrections
since the inflected forms of the words can be in-
cluded among the candidates. We train a charac-
ter level transformer (Vaswani et al., 2017) model
that learns the syntax-aware representations with
a contrastive learning objective. The model aims
to create a vector space for the words by capturing
the intrinsic character patterns, which enables the
model to discover the language specific rules (e.g.,

Figure 3: An illustration of our vector space, the
similarly spelled words (i.e., word inflections) are
represented by the neighbouring vectors.

vowel harmony, lenition, phone mapping of char-
acter sequence such as ’sq‘ to ’su‘, sh to ş, etc.).
We avoided complex models due to their latency
costs; opted to design the model solely as an en-
coder layer, incorporating a feed-forward layer with
a mean pooler on top of it.

The candidate generation (illustrated in Figure 2)
starts with the extraction of vw∗ , which is the vector
of w∗. Then, the corresponding n vectors similar
to vw∗ (e.g. corresponding to n similar words) are
retrieved from the database; which holds the vec-
tors of the words extracted from the product titles.
Figure 3 illustrates the vector space with a few sam-
ples4. For example, the query "banyo muslul" has a
misspelled word "muslul"; and, its correction should
be in the inflected form ("musluğu") rather than the
nominative form ("musluk" (faucet)). Since the vec-
tors of both (vwmusluk

and vwmuslugu
) are located

close to each other, and to vw∗ ; we can generate
the candidate queries "banyo musluk" and "banyo
musluğu".

3.2. Candidate Ranking
The candidates are ranked using a score, which is
calculated by using features obtained from three dif-
ferent sources. Each source represents a different
aspect of the candidates:

• The first source (s1) is the edit distance be-
tween Qw∗ and Qwi

. This prevents Qw∗ and
Qc from being completely different queries for
the cases the input query has more than one
misspelled words.

• The second source (s2) is the vector similarity.

4One should note that this figure is only for illustration
purposes, and shows approximate distances.



68

This regularizes the edit distance by consider-
ing the similar syntax aware representations.
In particular, it boosts the candidates which are
dissimilar in terms of the edit distance. The
features from the vector similarity play an im-
portant role in the correction of the phonetic
and diacritic based misspellings.

• The third source (s3) is the language score,
namely perplexity. In this case, we train two
statistical language models: one using the
search logs, and the other using the product
titles. The features derived from the perplex-
ities validate to some extent the candidates,
exhibiting a bias towards the selection of the
correct inflections.

Based on these various sources, the final form
of the scoring function f is

f(Qwi
|Qw∗) =

3∑
j=0

wsj ∗ xQwi
|Qw∗sj (2)

where sj is a feature source, xQwi
|Qw∗sj ∈ Rn , n ∈

[0, N ] is a feature vector derived form si. xQwi
|Qw∗

are extracted from the generated candidate Qwi

and the user query Qw∗ . wsj ∈ Rm , m ∈ N is a
weight vector that is learnt by a regression model.

4. Data Generation

We create the training data from the search logs by
leveraging the user interactions (e.g., clicks). All the
training data is automatically generated, eliminat-
ing the need for human annotations. The training
data contains samples (< wk, wj >, lkj), where
< wk, wj > is a word pair and lkj is the correspond-
ing label of the pair.

We have two sources of obtaining the positive
pairs: the users’ feedback and the synthetic data.
When lkj is equal to 1, namely positive samples,
wk and wj are expected to possess similar vectors
since wk represent the misspelled version of wj .
To enhance the syntax awareness, we introduce
additional morphology-based < w,winf > pairs;
where winf denotes the inflection of w. This aug-
mentation aims to ensure that the stems and their
inflections have similar vectors by providing the
syntactic variations of the words. Consequently,
it makes our representations more resilient to the
syntactic changes. Negative samples (lkj is equal
to 0), on the other hand, are expected to have dis-
similar vectors for the words wk and wj . They are
generated by the outer cross join of the positive
pairs.

In the following, we explain the used methodolo-
gies to form all the pairs.

4.1. User Feedback Chain

We trace the users’ specific action sequences and
use their interactions as a feedback to generate
the positive samples. Qwk

denotes ‘the query with
the misspelled word wk’, Qwj denotes ‘the query
with the corrected word wj ’; and, Pwj

denotes ‘the
product title containing the word wj ’. We extract
the correctly spelled-misspelled word pairs from the
Qwk

and Pwj
(Qwj

), where we add several check
conditions to exclude the drastically different word
pairs. The considered action sequences are ex-
plained below.

4.1.1. Query Refinement Chain

Users may correct their misspelled queries in the
consecutive searches. For example, a user could
search Qwk

, then correct it himself/herself and
make a subsequent search with Qwj . We lever-
age such behaviour sequences and match wk with
wj to form a pair if and only if the elapsed time
between two consecutive searches, Qwk

and Qwj
,

is less than 10 minutes; and, the edit distance be-
tween them is less than 5.

4.1.2. Fuzzy Match and Click

The retrieval systems may bring relevant products
with their fuzzy match abilities, even if the queries
have misspelled words. In such cases, the users
may still click on the relevant products which are
not affected by the incorrect search terms. Assum-
ing that a user searched Qwk

, and subsequently
clicked on Pwj ; we can extract < wk, wj > if the
edit distance between wk and wj is less than 4.

4.1.3. Click on Suggestion or Rejection

Users’ clicks can be considered a reliable source
for forming pairs, because they serve as a natural
labeling mechanism for our system. Specifically,
their clicks on ‘did you mean’ (suggestion of the cor-
rector) or ‘return to the initial query’ (rejection) auto-
matically labels the outputs of the spelling corrector.
A click on the suggestion indicates a successful
acceptance of the correction, meaning that the cor-
rector successfully updates the given query. Con-
versely, the rejection clicks imply that the corrector
is unable to achieve the correction. We collect the
users’ feedback clicks and use the click rates to
filter out the unintentional clicks. One should note
that this feedback mechanism, complemented with
the other twos, plays a crucial role in gradually im-
proving the spelling corrector’s performance; as,
the training data is continuously updated with the in-
sights from the unsuccessful corrections. However,
this is not initially available.



69

4.2. Synthetic Data Generation
We generate the synthetic data for two purposes:
(1) increase the representation of the most com-
mon user mistakes in the training data, (2) form
effortlessly the morphology based pairs. For the
first purpose, we create the artificial misspellings
by

• deacritization: removing deacritics of the Turk-
ish characters, e.g., "yılbaşı çam ağacı" (Christ-
mas pine tree) to "yilbasi cam agaci"

• insertion: adding adjacent characters on the
keyboard, e.g., "yılbaşı çam ağacı" to "yıolbaşı
çam ağascı"

• deletion: removing the random vowels5, e.g.,
"yılbaşı çam ağacı" to "ylbaşı çam ağacı"

• replacement: replacing the characters with the
ones neighbouring on the keyboard, e.g., "yıl-
başı çam ağacı" to "yıkbaşı çam ağacu"

• swapping: swapping the adjacent characters,
e.g., "yılbaşı çam ağacı" to "yılbaşı çma ağacı"

The meaning of the words might deteriorate if the
excessive distortion is applied. Therefore, we allow
two artificial distortions on a given word.

4.3. Morphology-based Pairs Generation
Generating the morphology-based pairs
(< w,winf >) with the predefined rules is a
challenging task due to the grammar rules of Turk-
ish (e.g., lenition, consonant and vowel harmonies,
etc.). We employ the n-gram based word embed-
dings to generate such kind of pairs, leveraging
their ability to approximate the morpheme length.
As the n-gram size decreases, these embeddings
capture the syntactic variation of the words in
the agglutinative languages. This allows us to
form the meaningful morphology-based pairs that
comply with the rules of the Turkish grammar. We
train a Fasttext (Bojanowski et al., 2017) model
for these embeddings using our search logs and
product titles, because it was shown to capture the
morphological variations for Turkish (). Thus, the
overall morphology-based pair generation process
can be summarized in three steps.

1. We collect a set of correctly spelled high im-
pression queries from the search logs.

2. We build a word vocabulary from the former
query set.

5We observed that the users tend to skip the wovels
while writing

3. We generate 20 most similar words for each
word (w) within the vocabulary using the Fast-
text embeddings. If the edit distance between
the generated word and the word w is less than
4, they form the pair < w,winf >.

5. Experiments

We conducted the evaluations for our corrector in
both offline and online experiments. We also did a
final error analysis to identify the limitations of our
corrector, for determining the future steps.

5.1. Offline Experiments
5.1.1. Accuracy Based Evaluations

The first type of evaluation focused on the correc-
tion accuracy of the corrector, which was assessed
through the in-domain and out-of-domain settings.
The in-domain setting was performed using the
data from the e-commerce domain, while the out-
of-domain setting was performed using the data
prepared for general purposes. This allowed us to
compare our corrector with others in the literature
and evaluate its performance beyond the specific
domain.

We adopt the evaluation metrics precision and
recall by defining the following terms:

1. True Positive (TP): The successful misspelling
identification and correction cases

2. False Positive (FP): The false misspelling iden-
tification and correct word distortion cases

3. False Negative (FN): The misspelling identifi-
cation and correction failure cases

4. True Negative (TN): The correct identification
cases of the correctly spelled words

While the precision represents how many of the cor-
rected queries are successfully corrected, the recall
represents how many of the misspelled queries are
successfully corrected.

For the in-domain evaluation, we created a gold
standard test set; which contains 5.6K queries.
Here, the data is collected from both short and
long tail queries. Then, the data was manually an-
notated in two iterations by three native-speaking
annotators; who have the domain expertise and the
NLP background. In the first iteration, the samples
were annotated from scratch separately by two an-
notators. In the second iteration, the third annotator
checked the data quality by validating the labeled
samples’ accuracy. Our corrector achieves an F1-
score of 86% on this data, with a precision of 89%
and a recall of 83%.

For the out-of-domain evaluation, we evaluated
our corrector on trspell-10 (Safaya et al., 2022). To



70

Corrector SCA F1
HUNSPELL-TR (Zafer, 2017) 25.52 86.52
ZEMBEREK (Akın and Dündar, 2007) 62.12 96.56
Safaya et al. (2022) 71.72 99.62
ours 83.3 98.18

Table 1: Results on trspell10.

be inline with the mentioned study, we reported
the spell correction accuracy (SCA) and the macro-
averaged F1 score of misspellings detection. Ta-
ble 1 shows the results. While our corrector per-
forms relatively close to others in detecting the mis-
spellings, it outperforms them with a significant mar-
gin in SCA; improving the number of successfully
corrected words.

5.1.2. Search Relevancy Based Evaluations

The second type of evaluation focused on the
impact of the corrector on the search relevancy.
We established an experimental setup, where we
compare the change in Normalized Discounted
Cumulative Gain (NDCG) for the same dataset
after correction intervention. We selected 1000
queries, of which 14% are misspelled to reflect
the overall misspelling rate in our search en-
gine. Firstly, top 12 products for each of these
queries were retrieved and annotated with Ex-
act/Substitute/Complement/Irrelevant (ESCI) la-
bels. Using these labels, we calculated the NDCG6

score which is 90.9. Secondly, we fed all the 1000
queries to our corrector model and repeated the
same labeling process. After the correction, the
NDCG score reached 91.2; where we improved the
score of the misspelled samples from 87.8 to 89.7.

5.2. Online Experiments
To be able to correlate our offline evaluation with
the main business metric of our search engine (i.e.,
Conversion Rate (CR)7), we launched an A/B test.
Our old in-house model was used in the control
bucket, while our new in-house model was used
in the treatment bucket. 100% of the users were
randomly assigned to both control and treatment
buckets. The experiment was run for 4 weeks to
ensure the statistically significant results. The re-
sults showed that the treatment bucket achieved a
CR of 4.84%, while the control bucket had a CR of
4.52%; resulting in a 6.99% CR increase between
the buckets.

6Weights used in our NDCG calculations are 4, 3, 2, 1
for the labels Exact, Substitute, Complement, Irrelevant;
respectively

7CR is a metric that represents the percentage of
users who have completed a desired action, which is the
purchase for our domain.

5.3. Error Analysis
We also made an error analysis to identify the weak-
nesses of our corrector. One limitation is that our
corrector operates at the word level, rather than the
sequence level. This results in a sub-optimal per-
formance when the context information is crucial for
the corrections. Additionally, it has relatively poor
performance in the correction of words that are
typically Turkish adaptations of the foreign words,
deviating from the Turkish harmonies (e.g., palatal
harmony, rounding harmony, etc.)

6. Conclusions and Future Work

In this paper, we proposed a typo corrector which
was specific to a morphologically rich language,
Turkish. We addressed the data related challenges
specific to Turkish; in particular, for training and
evaluation data creation. We implemented our ap-
proach end-to-end, and integrated it to our search
engine. The implementation was evaluated using
online and offline experiments. In both offline and
online experiments, our corrector outperformed the
old default corrector that had been deployed. More-
over, our proposed corrector outperformed the ex-
isting best Turkish corrector in the literature; when
it was used separately from our search engine.

In future, we are planning to modify the candi-
date generation of our corrector from the word level
model to the sequence level model; so, it captures
the context in the corrections. We are also plan-
ning to adapt our approach to develop the corrector
models in Russian and Arabic.

Acknowledgements

The authors would like to offer special thanks to
Feride Duman for her valuable feedback, Zeynep
Aycan and Şevval Koca for their assistance dur-
ing the data annotation, and all search-algorithm
team for helpful discussions during the develop-
ment stage.

7. References

Ahmet Afşın Akın and Mehmet Dündar. 2007. Zem-
berek, an open source nlp framework for turkic
languages.

AQIL M. AZMI and REHAM S. ALMAJED. 2015.
A survey of automatic Arabic diacritization
techniques. Natural Language Engineering,
21(3):477–495.

Aqil M Azmi, Manal N Almutery, and Hatim A Aboal-
samh. 2019. Real-word errors in Arabic texts:

https://doi.org/10.1017/S1351324913000284
https://doi.org/10.1017/S1351324913000284


71

A better algorithm for detection and correction.
IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 27(8):1308–1320.

Youssef Bassil. 2012. Parallel spell-checking algo-
rithm based on yahoo! n-grams dataset. ArXiv,
abs/1204.0184.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2017. Enriching word vec-
tors with subword information. Transactions
of the association for computational linguistics,
5:135–146.

Eric Brill and Robert C Moore. 2000. An improved
error model for noisy channel spelling correction.
In Proceedings of the 38th annual meeting of the
association for computational linguistics, pages
286–293.

Qing Chen, Mu Li, and Ming Zhou. 2007. Improv-
ing query spelling correction using web search
results. In Proceedings of the 2007 joint confer-
ence on empirical methods in natural language
processing and computational natural language
learning (EMNLP-CoNLL), pages 181–189.

Fred J Damerau. 1964. A technique for computer
detection and correction of spelling errors. Com-
munications of the ACM, 7(3):171–176.

Seniz Demir and Berkay Topcu. 2022. Graph-
based turkish text normalization and its impact on
noisy text processing. Engineering Science and
Technology, an International Journal, 35:101192.

Quan Duong, Mika Hämäläinen, and Simon
Hengchen. 2020. An unsupervised method for
ocr post-correction and spelling normalisation for
Finnish. arXiv preprint arXiv:2011.03502.

Steffen Eger, Tim vor der Brück, and Alexander
Mehler. 2016. A comparison of four character-
level string-to-string translation models for (ocr)
spelling error correction. The Prague bulletin of
mathematical linguistics, 105(1):77.

Gülşen Eryiğit and Dilara Torunoğlu-Selamet. 2017.
Social media text normalization for turkish. Nat-
ural Language Engineering, 23(6):835–875.

Pravallika Etoori, Manoj Chinnakotla, and Radhika
Mamidi. 2018a. Automatic spelling correction
for resource-scarce languages using deep learn-
ing. In Proceedings of ACL 2018, Student Re-
search Workshop, pages 146–152, Melbourne,
Australia. Association for Computational Linguis-
tics.

Pravallika Etoori, Manoj Chinnakotla, and Radhika
Mamidi. 2018b. Automatic spelling correction for
resource-scarce languages using deep learning.

In Proceedings of ACL 2018, Student Research
Workshop, pages 146–152.

Jianfeng Gao, Chris Quirk, et al. 2010. A large scale
ranker-based system for search query spelling
correction. In The 23rd International Conference
on Computational Linguistics.

Shaona Ghosh and Per Ola Kristensson. 2017.
Neural networks for text correction and com-
pletion in keyboard decoding. arXiv preprint
arXiv:1709.06429.

Priscila A Gimenes, Norton T Roman, and Ari-
adne MBR Carvalho. 2015. Spelling error pat-
terns in brazilian portuguese. Computational
Linguistics, 41(1):175–183.

Roman Grundkiewicz, Marcin Junczys-Dowmunt,
and Kenneth Heafield. 2019. Neural grammatical
error correction systems with unsupervised pre-
training on synthetic data. In Proceedings of
the Fourteenth Workshop on Innovative Use of
NLP for Building Educational Applications, pages
252–263.

Jai Gupta, Zhen Qin, Michael Bendersky, and Don-
ald Metzler. 2019. Personalized online spell cor-
rection for personal search. In The World Wide
Web Conference, pages 2785–2791.

Matthias Hagen, Martin Potthast, Marcel Gohsen,
Anja Rathgeber, and Benno Stein. 2017. A large-
scale query spelling correction corpus. In Pro-
ceedings of the 40th International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 1261–1264.

Saša Hasan, Carmen Heger, and Saab Mansour.
2015. Spelling correction of user search queries
through statistical machine translation. In Pro-
ceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
451–460, Lisbon, Portugal. Association for Com-
putational Linguistics.

Daniel Hládek, Ján Staš, and Matúš Pleva. 2020.
Survey of automatic spelling correction. Elec-
tronics, 9(10):1670.

Sai Muralidhar Jayanthi, Danish Pruthi, and
Graham Neubig. 2020. Neuspell: A neu-
ral spelling correction toolkit. arXiv preprint
arXiv:2010.11085.

Vishal Kakkar, Chinmay Sharma, Madhura Pande,
and Surender Kumar. 2023. Search query spell
correction with weak supervision in e-commerce.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 5: Industry Track), pages 687–694.

https://api.semanticscholar.org/CorpusID:9309269
https://api.semanticscholar.org/CorpusID:9309269
https://doi.org/https://doi.org/10.1016/j.jestch.2022.101192
https://doi.org/https://doi.org/10.1016/j.jestch.2022.101192
https://doi.org/https://doi.org/10.1016/j.jestch.2022.101192
https://doi.org/10.1017/S1351324917000134
https://doi.org/10.18653/v1/P18-3021
https://doi.org/10.18653/v1/P18-3021
https://doi.org/10.18653/v1/P18-3021
https://doi.org/10.18653/v1/D15-1051
https://doi.org/10.18653/v1/D15-1051


72

Mark Kemighan, Kenneth Church, and William
Gale. 2003. A spelling correction program based
on a noisy channel model. 2.

Asiye Tuba Koksal, Ozge Bozal, Emre Yürekli, and
Gizem Gezici. 2020. # turkishtweets: A bench-
mark dataset for turkish text correction. In Find-
ings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 4190–4198.

A Kuznetsov and H Urdiales. Spelling correction
with denoising transformer. arxiv 2021. arXiv
preprint arXiv:2105.05977.

Alex Kuznetsov and Hector Urdiales. 2021. Spelling
correction with denoising transformer. arXiv
preprint arXiv:2105.05977.

Yanen Li, Huizhong Duan, and ChengXiang Zhai.
2011. Cloudspeller: Spelling correction for
search queries by using a unified hidden markov
model with web-scale resources. In Spelling Al-
teration for Web Search Workshop, pages 10–14.
Citeseer.

Yanen Li, Huizhong Duan, and ChengXiang Zhai.
2012. Cloudspeller: query spelling correction
by using a unified hidden markov model with
web-scale resources. In Proceedings of the 21st
International Conference on World Wide Web,
pages 561–562.

Shulin Liu, Shengkang Song, Tianchi Yue, Tao
Yang, Huihui Cai, TingHao Yu, and Shengli Sun.
2022. Craspell: A contextual typo robust ap-
proach to improve Chinese spelling correction.
In Findings of the Association for Computational
Linguistics: ACL 2022, pages 3008–3018.

Shulin Liu, Tao Yang, Tianchi Yue, Feng Zhang,
and Di Wang. 2021. Plome: Pre-training with mis-
spelled knowledge for Chinese spelling correc-
tion. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics
and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long
Papers), pages 2991–3000.

Madhura Pande, Vishal Kakkar, Manish Bansal,
Surender Kumar, Chinmay Sharma, Himanshu
Malhotra, and Praneet Mehta. 2022. Learning-to-
spell: Weak supervision based query correction
in e-commerce search with small strong labels.
In Proceedings of the 31st ACM International
Conference on Information & Knowledge Man-
agement, pages 3431–3440.

Chanjun Park, Kuekyeng Kim, YeongWook Yang,
Minho Kang, and Heuiseok Lim. 2021. Neu-
ral spelling correction: translating incorrect sen-
tences to correct sentences for multimedia. Multi-
media Tools and Applications, 80:34591–34608.

Martin Reynaert. 2004. Multilingual text induced
spelling correction. In Proceedings of the Work-
shop on Multilingual Linguistic Resources, pages
110–117, Geneva, Switzerland. COLING.

Ali Safaya, Emirhan Kurtuluş, Arda Goktogan, and
Deniz Yuret. 2022. Mukayese: Turkish NLP
strikes back. In Findings of the Association for
Computational Linguistics: ACL 2022, pages
846–863, Dublin, Ireland. Association for Com-
putational Linguistics.

Sanat Sharma, Josep Valls-Vargas, Tracy Hol-
loway King, Francois Guerin, and Chirag Arora.
2023. Contextual multilingual spellchecker for
user queries. In Proceedings of the 46th Interna-
tional ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’23,
page 3395–3399, New York, NY, USA. Associa-
tion for Computing Machinery.

Chengjie Sun, Xiaoqiang Jin, Lei Lin, Yuming Zhao,
and Xiaolong Wang. 2015. Convolutional neu-
ral networks for correcting english article errors.
In Natural Language Processing and Chinese
Computing: 4th CCF Conference, NLPCC 2015,
Nanchang, China, October 9-13, 2015, Proceed-
ings 4, pages 102–110. Springer.

Dilara Torunoglu-Selamet, Eren Bekar, Tugay Ilbay,
and Gülsen Eryigit. 2016. Exploring spelling cor-
rection approaches for turkish. In Proceedings of
the 1st International Conference on Turkic Com-
putational Linguistics at CICLING, Konya, pages
7–11.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. Advances in neural informa-
tion processing systems, 30.

Robert A Wagner and Michael J Fischer. 1974. The
string-to-string correction problem. Journal of the
ACM (JACM), 21(1):168–173.

Casey Whitelaw, Ben Hutchinson, Grace Y Chung,
and Gerard Ellis. 2009. Using the web for lan-
guage independent spellchecking and autocor-
rection.

Fan Yang, Alireza Bagheri Garakani, Yifei Teng,
Yan Gao, Jia Liu, Jingyuan Deng, and Yi Sun.
2022. Spelling correction using phonetics in E-
commerce search. In Proceedings of the Fifth
Workshop on e-Commerce and NLP (ECNLP
5), pages 63–67, Dublin, Ireland. Association for
Computational Linguistics.

Dezhi Ye, Bowen Tian, Jiabin Fan, Jie Liu, Tian-
hua Zhou, Xiang Chen, Mingming Li, and Jin

https://aclanthology.org/W04-2216
https://aclanthology.org/W04-2216
https://doi.org/10.18653/v1/2022.findings-acl.69
https://doi.org/10.18653/v1/2022.findings-acl.69
https://doi.org/10.1145/3539618.3591861
https://doi.org/10.1145/3539618.3591861
https://doi.org/10.18653/v1/2022.ecnlp-1.9
https://doi.org/10.18653/v1/2022.ecnlp-1.9


73

Ma. 2023. Improving query correction using pre-
train language model in search engines. In Pro-
ceedings of the 32nd ACM International Confer-
ence on Information and Knowledge Manage-
ment, pages 2999–3008.

Harun Reşit Zafer. 2017. hunspell-tr.

Haoyu Zhang and Qin Zhang. 2017. Embedjoin:
Efficient edit similarity joins via embeddings. In
Proceedings of the 23rd ACM SIGKDD interna-
tional conference on knowledge discovery and
data mining, pages 585–594.

Jingfen Zhang, Xuan Guo, Sravan Bodapati, and
Christopher Potts. 2023. Multi-teacher distillation
for multilingual spelling correction. arXiv preprint
arXiv:2311.11518.

Shiliang Zhang, Ming Lei, and Zhijie Yan. 2019a.
Investigation of transformer based spelling cor-
rection model for ctc-based end-to-end mandarin
speech recognition. In Interspeech, pages 2180–
2184.

Shiliang Zhang, Ming Lei, and Zhijie Yan. 2019b.
Investigation of Transformer Based Spelling Cor-
rection Model for CTC-Based End-to-End Man-
darin Speech Recognition. In Proc. Interspeech
2019, pages 2180–2184.

Yingbo Zhou, Utkarsh Porwal, and Roberto Konow.
2017. Spelling correction as a foreign language.
arXiv preprint arXiv:1705.07371.

Imed Zitouni and Ruhi Sarikaya. 2009. Arabic dia-
critic restoration approach based on maximum
entropy models. Computer Speech Language,
23(3):257–276.

A. Appendix

A.1. Misspelling Types
• missing whitespace: it appears when there

is an missing space in the user query, e.g.,
"banyomusluğu" instead of "banyo musluğu"

• brand misspellings: it appears when brand
names have a typo, which may occur since
users may not know the correct spelling of the
non-Turkish brands., e.g., "lenova" instead of
"lenovo"

• phonetic: it appears when the non-Turkish
words are written using their Turkish phones.,
e.g., "iyfon" instead of "iPhone"

• missing diacratics: it appears when Turkish
specific letters (ö,ı,ü,ç,ş,ğ) are replaced with
their english counterparts., e.g., "banyo mus-
lugu" instead of "banyo musluğu"

• fat finger: it appears when keyboard an input
mistake occurs, e.g., "bsnyo muskuğı" instead
of "banyo musluğu"

• hard-to-write words: It appears when users
does not know the correct spelling of the words
adapted from other languages (e.g., french,
persian, arabic) through time, e.g., "hoporlör"
instead of " hoparlör"

• lazy writing: It appears when there is a
missing or extra letter in the user query, e.g.,
"baanyo msluğu" instead of "banyo musluğu"

A.2. Training Setup & Inference
We trained the transformer model from scratch, em-
ploying 8 attention heads with dimensions of 128
for hidden layers and 64 for output layers. The
training process utilized the Adam Optimizer and
Cosine learning rate scheduler with warm-up. The
learning rate was set to 0.001, and β1 and β2 were
configured as 0.8 and 0.998, respectively. The
sequence length was determined to be 19, consid-
ering the average character length of words within
the search queries. For the training phase, we
utilized an NVIDIA T4 GPU. It took 29 hours to
complete. The inference phase was executed on a
CPU setup. The response time <17.3 ms query on
average under single concurrency.

https://github.com/harunzafer/hunspell-tr
https://doi.org/10.21437/Interspeech.2019-1290
https://doi.org/10.21437/Interspeech.2019-1290
https://doi.org/10.21437/Interspeech.2019-1290
https://doi.org/https://doi.org/10.1016/j.csl.2008.06.001
https://doi.org/https://doi.org/10.1016/j.csl.2008.06.001
https://doi.org/https://doi.org/10.1016/j.csl.2008.06.001

	Introduction
	Related Work
	Spelling Corrector
	Candidate Generation
	Candidate Ranking

	Data Generation
	User Feedback Chain
	Query Refinement Chain
	Fuzzy Match and Click
	Click on Suggestion or Rejection

	Synthetic Data Generation
	Morphology-based Pairs Generation

	Experiments
	Offline Experiments
	Accuracy Based Evaluations
	Search Relevancy Based Evaluations

	Online Experiments
	Error Analysis

	Conclusions and Future Work
	References
	Appendix
	Misspelling Types
	Training Setup & Inference


